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Supplementary figures 25 35 
Figure S1. Histogram of the allele frequencies of false negative SNPs with lcWGS. 36 
Across the different facets, sample size increases from left to right, and coverage 37 
increases from top to bottom. The total sequencing effort remains the same along the 38 
diagonal from bottom left to top right. 25 39 
Figure S2. Distribution of Tajima’s θ (aka π) and Watterson’s θ estimated using the 40 
Samtools genotype likelihood model and the GATK genotype likelihood model in 10kb 41 
windows. Across the different facets, sample size increases from left to right, and 42 
coverage increases from top to bottom. The total sequencing effort remains the same 43 
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along the diagonal from bottom left to top right. The true chromosome-average values for 44 
both statistics should be 0.004, which is marked with a read line. 26 45 
Figure S3. Tajima’s D estimated using the Samtools genotype likelihood model and the 46 
GATK genotype likelihood model in 10kb windows. Across the different facets, sample 47 
size increases from left to right, and coverage increases from top to bottom. The total 48 
sequencing effort remains the same along the diagonal from bottom left to top right. The 49 
true chromosome-average Tajima’s D should be 0, which is marked with a red line. 27 50 
Figure S4. Linkage disequilibrium (LD) estimated using ngsLD from simulated data. LD, 51 
shown on the y axis, is measured as r2 between pairs of SNPs, and the physical 52 
distance between these SNP pairs is shown on the x axis. The blue line shows the mean 53 
of the estimated r2 for each distance value, and the lighter blue area shows its 54 
interquartile range. The red line marks the theoretical expectation of r2 under mutation-55 
drift equilibrium. Across the different facets, sample size increases from left to right, and 56 
coverage increases from top to bottom. The total sequencing effort remains the same 57 
along the diagonal from bottom left to top right. 28 58 
Figure S5.  Estimated linkage disequilibrium (LD) fitted to a linkage decay model using 59 
ngsLD. The solid blue line shows the best fitted model, and the dashed blue lines 60 
represent its 95% confidence interval. When the true recombination rate is known, the 61 
effective population size (Ne) can be calculated from the estimated LD decay rate and is 62 
shown on the top right corner in each facet. The true effective population size used in the 63 
simulation is 100,000. The red line marks the theoretical expectation of r2 under 64 
mutation-drift equilibrium, given by ref. Across the different facets, sample size increases 65 
from left to right, and coverage increases from top to bottom. The total sequencing effort 66 
remains the same along the diagonal from bottom left to top right. 29 67 
Figure S6. The sequencing coverage distribution that we sampled from when simulating 68 
uneven sequencing coverage among samples. This distribution is obtained by merging 69 
the distributions of coverage among samples from three of our lcWGS projects where we 70 
pooled samples by molarity. 30 71 
Figure S7. The error in allele frequency estimation with lcWGS (yellow) and Pool-seq 72 
(blue) data, both with uneven coverage among individual samples. The distribution of 73 
absolute errors (|estimated frequency - true frequency|) is shown with the box plots along 74 
the x-axis. The lower and upper hinges of the box plots show 25th and 75th percentile of 75 
the absolute errors, and the whiskers extend to the largest or smallest values no further 76 
than 1.5 times the interquartile range. Outlier points are hidden. Across the different 77 
facets, sample size increases from left to right, and coverage increases from top to 78 
bottom. The total sequencing effort remains the same along the diagonal from bottom left 79 
to top right. The root mean squared error (RMSE) for the two sequencing designs are 80 
shown in each facet. False negative SNPs are not included in this figure. See 81 
supplementary methods and Figure S7 for how uneven coverage was simulated. 31 82 
Figure S8. An empirical example from one of our lcWGS projects of the distribution of 83 
raw sequencing yield from individual samples when they are repooled based on the first 84 
round of sequencing. This is to demonstrate that equal distribution of sequencing effort 85 
can be approximated by such a sequencing design. (The type specimens were designed 86 
to have higher sequencing yield then other samples.) 32 87 
Figure S9. The spatial population structures inferred through principal component 88 
analysis (PCA) with lcWGS data using PCA. The first two principal components are 89 
shown. This result is from our higher gene flow scenario (an average of 1 effective 90 
migrant from one population to another every generation), but a longer chromosome is 91 
simulated (300Mbp, or 10 times longer than the scenarios shown in Figure 4). Sample 92 
size remains five per sample, and coverage increases from top to bottom. 33 93 
Figure S10. Patterns of spatial population structure inferred through principal component 94 
analysis (PCA) with lcWGS data using PCAngsd, in a scenario with lower gene flow (an 95 
average of 0.25 effective migrants per generation). Sample size per population increases 96 
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across panels from left to right, and coverage per sample increases from top to bottom. 97 
This figure is based on the same dataset as Figure 5A, in which case ANGSD was used 98 
instead of PCAngsd to perform the PCA. 34 99 
Figure S11. Patterns of spatial population structure inferred through principal component 100 
analysis (PCA) with lcWGS data using PCAngsd, in a scenario with higher gene flow (an 101 
average of 1 effective migrants per generation). Sample size per population increases 102 
across panels from left to right, and coverage per sample increases from top to bottom. 103 
This figure is based on the same dataset as Figure 5B, in which case ANGSD was used 104 
instead of PCAngsd to perform the PCA. 35 105 
Figure S12. The true per-SNP FST values along the chromosome between the two 106 
simulated populations in a scenario with smaller Ne (Ne = 104) and lower gene flow (an 107 
average of 2.5 effective migrants from one population to the other every generation). 108 
Neutral SNPs are shown in black and selected SNPs are shown in black. 36 109 
Figure S13. Genome-wide scan for divergent selection with lcWGS data in a scenario 110 
with smaller Ne (Ne = 104) and lower gene flow (an average of 2.5 effective migrants 111 
from one population to the other every generation). The FST values inferred from lcWGS 112 
data in 5kb windows along the chromosome are shown on the y axis. Sample size 113 
increases from left to right, and coverage increases from top to bottom. The black points 114 
mark both the selected and neutral SNPs, and the red asterisks only mark the positions 115 
of the selected SNPs (not their inferred Fst values). 37 116 
Figure S14. Genome-wide scan for divergent selection with RADseq data in a scenario 117 
with smaller Ne (Ne = 104) and lower gene flow (an average of 2.5 effective migrants 118 
from one population to the other every generation). The per-SNP FST values inferred 119 
from RAD-seq data are shown on the y axis and the SNP positions are shown on the x 120 
axis. Sample size increases from left to right, and RAD-tag density increases from top to 121 
bottom. The black points mark both the selected and neutral SNPs, and the red asterisks 122 
only mark the positions of the selected SNPs (not their inferred Fst values). 38 123 
Figure S15. Principal components plot and estimates of genetic differentiation around 124 
the optix gene for the Heliconius dataset at 4x (top) and 1x coverage (bottom), 125 
respectively. 39 126 
Figure S16. Genotype estimation accuracy (r2) by minor allele frequency (MAF) for 127 
imputation in STITCH and Beagle compared to posterior genotypes estimated without 128 
imputation. Combinations of sample size (n; with increasing n indicated by more 129 
contiguous lines) and sequencing coverage (plots in rows correspond to 1x, 2x and 4x 130 
coverage) were tested for each method (line colors) under different diversity and linkage 131 
disequilibrium scenarios. Note the different y-axis scales. 40 132 
Figure S17. Genotype concordance by minor allele frequency (MAF) for imputation in 133 
STITCH and Beagle and without imputation. Genotypes were called with minimum 134 
posterior genotype probability of 0.9. Combinations of sample size (n; with increasing n 135 
indicated by more contiguous lines) and sequencing coverage (plots in rows correspond 136 
to 1x, 2x and 4x coverage) were tested for each method (line colors) under different 137 
diversity and linkage disequilibrium scenarios. Note the different y-axis scales. 41 138 
Figure S18. Proportion of genotypes called by minor allele frequency (MAF) for 139 
imputation in STITCH and Beagle and without imputation. Genotypes were called with 140 
minimum posterior genotype probability of 0.9. Combinations of sample size (n; with 141 
increasing n indicated by more contiguous lines) and sequencing coverage (plots in rows 142 
correspond to 1x, 2x and 4x coverage) were tested for each method (line colors) under 143 
different diversity and linkage disequilibrium scenarios. Note the different y-axis scales.144 
 42 145 
Figure S19. Genotype estimation by imputation in STITCH and Beagle compared to 146 
posterior genotypes estimated without imputation for sites with MAF>0.05. Combinations 147 
of sample size (n; with increasing n indicated by more contiguous lines) and sequencing 148 
coverage (x-axis) were tested for each method (line colors) under different diversity and 149 
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linkage disequilibrium scenarios. (A)-(C) Mean r2 between true genotypes and estimated 150 
genotype dosage. (D)-(F) Genotype concordance (GC) between true and called 151 
genotypes with posterior genotype probability>0.9. G-I) Proportion of genotypes called 152 
with posterior genotype probability>0.9. 43 153 
Figure S20. Change in accuracy (r2) of minor allele frequencies (MAF) estimation using 154 
imputed genotype probabilities from STITCH and Beagle, relative to non-imputed 155 
genotype likelihoods. Values above the x-axis show r2 for MAF estimated without 156 
imputation. The three diversity/LD scenarios are arranged in columns, sample sizes 157 
(n=100, 250, 500 and 1000) are arranged in rows, and sequencing depths are shown on 158 
the x-axis. Note the different y-axis scales. 44 159 

Supplementary References 45 160 
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Supplementary methods  164 
 165 
Section 2: Estimation of the cost of lcWGS 166 
The cost estimates presented in Table 1 assume a per library cost of 8 USD (details in 167 
Therkildsen and Palumbi 2017). This is the pro-rated cost of the reagents needed for a 168 
single library. An important consideration for researchers adopting lcWGS for the first time, 169 
is that many of the reagents needed are only available in relatively large batches, requiring a 170 
substantial upfront investment. One of the most expensive reagents to acquire is often a 171 
sufficiently large set of indexed (barcoded) adapter oligos needed to individually label each 172 
library. To avoid misassigned reads due to index hopping, we recommend a unique dual 173 
index strategy (i.e. two unique oligos per sample for the P5 and P7 ends of the library 174 
construct (MacConaill et al., 2018)). With November 2020 pricing, custom synthesis of each 175 
adapter oligo pair would cost ~44 USD, bringing the initial investment for oligos for 50 176 
uniquely barcoded samples (which can then be pooled in a single sequencing lane) to 177 
~2,200 USD. Several commercial barcoding adapter kits are also available and may be a 178 
cheaper option if a relatively small total number of samples are to be processed. The 179 
investment in indexed adapters is for most users a one-time investment in a resource that 180 
can split among laboratories. 181 
 182 
 183 
  184 
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Section 4: Population genomic inference from lcWGS data under different experimental 185 
designs 186 
 187 
In short, we used SLiM3 (Haller & Messer, 2019) to generate forward genetic simulations of 188 
a 30Mbp chromosome within in silico populations under a diploid Wright-Fisher model. The 189 
simulated populations had an effective population size (Ne) of 105 (unless otherwise noted), 190 
a mutation rate of 10-8 per base per generation, and a recombination rate of 2.5 cM/Mbp. 191 
These parameters were set to resemble a typical metazoan species with a relatively large 192 
population size (Allio, Donega, Galtier, & Nabholz, 2017; Stapley, Feulner, Johnston, 193 
Santure, & Smadja, 2017), and see a discussion of how different parameter choices can 194 
affect our results in the supplementary materials). We then sampled a subset of individuals 195 
in these populations and used ART-MountRainier (Huang, Li, Myers, & Marth, 2012) to 196 
simulate different lcWGS experimental designs with different combinations of sample size 197 
and coverage per sample. We performed genotype-likelihood-based analyses of these 198 
simulated sequencing reads with ANGSD, and tested the power of different experimental 199 
designs in population genetic inference. We used the Samtools genotype likelihood model 200 
implemented in ANGSD (-GL 1) and only report the results from GATK model (-GL 2) when 201 
the two show significant discrepancies. In addition, we simulated other high-throughput 202 
sequencing strategies, including Pool-seq and RAD-seq, and compared their performance 203 
with that of lcWGS (detailed methods in the supplementary materials).  204 
 205 
To examine the performance for different types of population genomic inference, we 206 
generated three separate sets of simulations. First, we simulated an isolated population to 207 
test the accuracy of lcWGS in estimating key population genetic parameters in a single 208 
population. Second, we simulated two different metapopulations to test the ability of lcWGS 209 
to infer spatial structure among subpopulations under different levels of connectivity. Lastly, 210 
we simulated two populations closely connected by gene flow under divergent selection, and 211 
tested the power of lcWGS to identify the genetic loci under selection. The key model 212 
parameters used in our simulations are summarized in Table S2, and our entire simulation 213 
and analysis pipeline is available on GitHub (https://github.com/therkildsen-lab/lcwgs-214 
simulation). 215 
 216 
Population genomic inference for single populations: First, we tested the accuracy of 217 
low-coverage sequencing in allele frequency estimation with different sequencing strategies 218 
in a single simulated population with stable population size and no selection. We used 219 
SLiM3 (Haller & Messer, 2019) to randomly generate a starting nucleotide sequence on a 220 
30Mbp chromosome, and then created a diploid population with all individuals initially having 221 
this same starting sequence. We aimed to simulate a large population with effective 222 
population size (Ne) on the order of 105. However, it is computationally expensive to directly 223 
simulate large population sizes with forward genetic simulation methods, since all individuals 224 
in the population need to be tracked in every generation, and more time is required to reach 225 
mutation-drift equilibrium. Therefore, we chose to scale down our simulated population size 226 
(N) by a factor of 100, and scale up the mutation rate (μ) and recombination rate (r) by a 227 
factor of 100. Because the most important parameters of the simulated population (e.g. 228 
nucleotide diversity, linkage disequilibrium, site frequency spectrum) depends on products in 229 
the form of Nμ, Nr, and etc., this scaling approach can generate a realistic population with a 230 
reasonable computational cost. Specifically, we set N to be 1,000, and ran the simulation 231 
with μ = 1x10-6 per bp per generation and r = 250 cM/Mbp for 10,000 generations, resulting 232 
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in a population that has achieved mutation-drift equilibrium with population genetic 233 
parameters similar to what we find in natural diploid animal populations with Ne on the order 234 
of 105 (Allio et al., 2017; Stapley et al., 2017). All mutations are neutral in this simulation. We 235 
outputted the entire haplotype sequences at the last generation in fasta format. We also 236 
output the true allele frequency for each site. Next, for each haplotype sequence, we used 237 
ART-MountRainier (W. Huang et al., 2012) to simulate the sequencing process on an 238 
Illumina platform with 150-base paired-end reads and 10x coverage for each haplotype. We 239 
then sorted the resulting bam files and merged the two bam files originating from the two 240 
haplotypes of each individual. We selected a combination of sample size (5, 10, 20, 40, 60, 241 
80, 160) and coverage per sample (0.25x, 0.5x, 1x, 2x, 4x, 8x) by randomly subsampling 242 
these merged bam files. For each of these different combinations of sample size and 243 
coverage, we called SNPs and performed genotype likelihoods (using the Samtools 244 
genotype likelihood model) and allele frequency estimation using ANGSD-0.931 with the 245 
following options -GL 1 -doGlf 2 -doMaf 1 -doMajorMinor 5 -doCounts 1 -doDepth 1 -dumpCounts 3 246 
-SNP_pval 1e-6 -rmTriallelic 1e-6 -setMinDepth 2 -minInd 1 -minMaf 0.0005 -minQ 20. We were 247 
then able to compare the inferred allele frequencies with the true allele frequencies in the 248 
simulated population, and quantify the accuracy in allele frequency estimation by calculating 249 
the Coefficient of determination (R2) and root-mean-square error (RMSE) using custom R 250 
scripts (Figure 2). We also estimated the sample allele frequency likelihoods (SAF) and 251 
subsequently the site frequency spectrum (SFS) using ANGSD. For SAF, we found that a 252 
more stringent depth filter has better performance, so we used the following options -doSaf 1 253 
-GL 1 -doCounts 1 -setMinDepth sample_size*coverage. For SFS, we found that extending the 254 
number of iterations can improve its performance, and thus run the realSFS module in 255 
ANGSD with the following options  -tole 1e-08 -maxIter 1000. From the estimated SFS, we 256 
calculated different estimators of theta (e.g. Watterson’s estimator, Tajima’s estimator) and 257 
performed neutrality tests (e.g. Tajima’s D) in 10kb windows, using ANGSD with the 258 
following options: -GL 1 -doSaf 1 -doThetas 1 -doCounts 1 -setMinDepth sample_size*coverage, 259 
and the thetaStat module in ANGSD with the following options: do_stat -win 10000 -step 10000 260 
(Figure S2, S3). To compare the performance between different genotype likelihood models, 261 
we replicated the entire analysis pipeline above using the GATK genotype likelihood model 262 
(-GL 2) (Figure S2, S3). Lastly, from the genotype likelihoods calculated using the Samtools 263 
model, we estimated linkage disequilibrium (LD) between intermediate frequency SNPs 264 
(minimum minor allele frequency = 0.1) within 5kb of each other using ngsLD (Fox et al. 265 
2019) with the following options: --probs --rnd_sample 1  --max_kb_dist 5  --min_maf 0.1 (Figure 266 
S4). We then fitted the estimated r2 values with the LD decay model described by Hill and 267 
Weir (1988) using the fit_LDdecay.R script in ngsLD with the following options: --fit_level 2 --268 
n_ind $SAMPLE_SIZE --fit_boot 1000 (Figure S5). We also computed the theoretical 269 
expectation of LD decay curve using the effective population size and recombination rate 270 
used in our simulation, also based on the model described by Hill and Weir (1988) (Figure 271 
S4, S5). 272 
 273 
Inference of spatial structure: Then, we tested the power of low-coverage sequencing in 274 
resolving the genetic structure of spatially distributed populations. Again, we began by 275 
randomly creating a starting sequence on a 30Mbp chromosome, but this time we created 276 
nine populations, each with N of 500. These nine populations are distributed on a three-by-277 
three grid, with a constant bidirectional migration rate (m) equal to 0.0005 (or 0.002 in the 278 
high migration rate scenario) connecting each pair of adjacent populations (Figure 4). 279 
Similarly, we scaled up the neutral mutation rate (μ) to 2x10-7 per bp per generation, and 280 
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recombination rate (r) to 50cM/Mbp. We ran the simulation for 10,000 generations, resulting 281 
in a metapopulation that has achieved mutation-drift-migration equilibrium. This 282 
metapopulation consists of nine populations, each with population genetic parameters 283 
resembling a diploid animal population with effective population size (Ne) on the order of 284 
104. We used ART to simulate the sequencing process, and subsampled the bam files to 285 
create different combinations of sample size (5, 10, 20, 40, 60, 80) and coverage per sample 286 
(0.125x, 0.25x, 0.5x, 1x, 2x, 4x). We called SNPs and estimated genotype likelihoods with 287 
the nine populations combined using -GL 1 -doGlf 2 -doMaf 1 -doMajorMinor 5 -doCounts 1 -288 
doDepth 1 -dumpCounts 1 -doIBS 2 -makematrix 1 -doCov 1 -P 6 -SNP_pval 1e-6 -rmTriallelic 1e-6 -289 
setMinDepth 2 -minInd 1 -minMaf 0.05 -minQ 20 in ANGSD. This step outputs a covariance 290 
matrix (-doCov 1) and a distance matrix (-doIBS 2) among individuals, and in addition to 291 
these, we also used PCAngsd (Meisner & Albrechtsen, 2018) to generate another 292 
covariance matrix using the estimated genotype likelihoods. Using the eigen() function and 293 
the cmdscale() function in R, we conducted principal component analysis (PCA) and principal 294 
coordinate analysis (PCoA) with these covariances matrices and distance matrix, 295 
respectively, plotted the samples on the first two principal components / principal 296 
coordinates, and compared these with the true spatial structure that was simulated (Figure 297 
4, S10, S11). Also, we performed PCA with the true sample genotypes using PLINK2 as an 298 
additional comparison (Figure 4). Lastly, to test whether performance improves with 299 
genome-wide data instead of a single chromosome, we simulated a longer chromosome of 300 
300Mbp under the high migration rate scenario, and repeated the entire pipeline but only 301 
with 5 samples per population (Figure S9). 302 
 303 
Scans for divergent selection in the face of gene flow: Lastly, we tested the power of 304 
low-coverage sequencing in detecting signatures of divergent selection between two 305 
populations connected by gene flow. This simulation consists of two stages: a neutral burn-306 
in stage, and a selection stage. Two populations under mutation-drift-migration equilibrium 307 
are created in the burn-in stage, and then selection is imposed on these populations in the 308 
selection stage. In the burn-in stage, we began by randomly creating a starting sequence on 309 
a 30Mbp chromosome and two populations, each with a population size (N) of 500, and with 310 
a constant bidirectional migration rate (m) between them. We used a scaled-up 311 
recombination rate (r) and neutral mutation rate (μ), ran the simulation for 5,000 generations, 312 
and outputted the entire populations. In the first generation of the selection stage, we read 313 
the output from the burn-in stage into SLiM, selected 11 evenly distributed positions on the 314 
chromosome, and at each of these positions we added a non-neutral mutation to one 315 
randomly sampled genome in the first population. These mutations were set to be beneficial 316 
in the first population with a certain selection coefficient (s) and deleterious in the second 317 
population with a selection coefficient of (1/s). Despite this, since these non-neutral 318 
mutations each exist in a single copy, a majority of them are likely to get lost in the first few 319 
generations of the selection due to drift, in which case the simulation needs to be reset. To 320 
avoid resetting the simulation too many times (which can take a long time), we instantly 321 
expanded the population size by a factor of 10 (to 5,000) in each population after introducing 322 
the non-neutral mutations, which would then exist in multiple copies. Correspondingly, we 323 
scaled down the original m, r, and μ by a factor of 10, in order to preserve the key population 324 
genomic parameters of the simulated populations. We ran the simulation for an additional 325 
200 generations. If more than half of the selected alleles become lost due to drift or Hill-326 
Robertson interference during the process, we restart from the beginning of the selection 327 
stage with a different random seed (the same burn-in is always used). After the selection 328 
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stage is complete, the SNP density is mainly determined by the mutation rate (μ), the 329 
background level of differentiation between the two populations is mainly determined by the 330 
migration rate (m), the level of differentiation at the selected locus is mainly determined by 331 
both the selection coefficient (s) and the migration rate (m), and the width of the genomic 332 
region that shows high differentiation between the two populations is mainly determined by 333 
the recombination rate (r). We were therefore able to create population pairs with different 334 
genomic landscapes of differentiation by reiterating this process with different combinations 335 
of mutation rate (μ), selection coefficients (s), migration rates (m), and recombination rates 336 
(r) (Table S2). Then, we again subsampled each population, and used ART to simulate the 337 
sequencing process with the same combinations of sample size (5, 10, 20, 40, 60, 80, 160) 338 
and coverage per sample (0.25x, 0.5x, 1x, 2x, 4x, 8x) as in our neutral model. Using 339 
ANGSD, we called SNPs with the two populations combined through -dosaf 1 -GL 1 -doGlf 2 -340 
doMaf 1 -doMajorMinor 5 -doCounts 1 -doDepth 1 -dumpCounts 1 -SNP_pval 1e-6 -rmTriallelic 1e-6 -341 
setMinDepth 2 -minInd 1 -minMaf 0.0005 -minQ 20, estimated genotype likelihoods and allele 342 
frequencies for each population through -dosaf 1 -GL 1 -doGlf 2 -doMaf 1 -doMajorMinor 5 -343 
doCounts 1 -doDepth 1 -dumpCounts 1 -setMinDepth 1 -minInd 1 -minQ 20, and finally estimated 344 
per-SNP Fst between the population pair from the two-dimensional site frequency spectrum 345 
estimated from realSFS using the default option. Using custom R scripts, we visualized and 346 
compared the Fst landscape under different simulation scenarios and sequencing strategies 347 
(Figure 5, S12, S13).  348 

 349 
Comparison with Pool-seq: In addition to these investigations on different sequencing 350 
designs of low-coverage whole genome sequencing, we have also compared low-coverage 351 
whole genome sequencing with two other commonly used high-throughput sequencing 352 
strategies, namely pool-seq and RAD-seq. With pool-seq, we were mainly interested in its 353 
accuracy in allele frequency estimation (in comparison to the estimation with individually 354 
barcoded low-coverage samples), particularly when the sequencing yield from different 355 
individuals in the pool is uneven, which is avoidable with a lcWGS design by repooling 356 
(Figure S6) but is almost inevitable with pool-seq. Therefore, we simulated pool-seq with our 357 
neutral model under two different scenarios. In the first scenario, we assumed that the 358 
sequencing yield is equal among individuals. In this case, the simulation and analysis is 359 
exactly the same as in low-coverage whole genome sequencing until the last step, where 360 
instead of using the allele frequency estimates outputted by ANGSD, we calculated allele 361 
frequencies based on the allele counts in the population instead (this was generated by -362 
minQ 20 -doCounts 1 -dumpCounts 1) (Figure 3). In the second scenario, we kept the total 363 
sequencing yield to be the same, but added variation in the contribution of each individual to 364 
the pool. To do this, we sampled each individual’s sequencing yield from an empirical 365 
distribution, which we obtained by subsampling and rescaling the individual sequencing yield 366 
from three of our low-coverage whole genome sequencing projects where we tried our best 367 
effort to generate even yield among samples by pooling by DNA molarity. These empirical 368 
sequencing sequencing yields have a right-skewed distribution with a standard deviation that 369 
is 60% of the mean (Figure S7). We subsampled each individual bam file according to its 370 
target yield, and inputted these subsampled bam files to the same ANGSD pipeline for SNP 371 
calling, genotype likelihoods estimation, and allele frequency estimation. Allele frequency 372 
estimates outputted by the pipeline would represent the result from low-coverage whole 373 
genome sequencing, and allele frequencies calculated from allele counts would represent 374 
the estimates from pool-seq. We again calculated R2 and RMSE from these allele frequency 375 
estimates as a measure of their accuracy (Figure S8). 376 
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 377 
Comparison with RAD-seq: With RAD-seq, we were mainly interested in its power in 378 
identifying genomic islands of differentiation. Therefore, we simulated RAD-seq with our 379 
divergent selection model. We assumed that with the high coverage of RAD-seq, genotypes 380 
can always be called correctly, so we used true genotypes instead of simulating the 381 
sequencing process. We used R to randomly sample 150-bp fragments on our 30MB 382 
genome as our RAD tags at a range of different densities (4, 8, 16, 32, 64, and 128 per MB), 383 
obtained each sample’s true genotype at these fragments, and calculated sample allele 384 
frequencies. We used these allele frequencies to estimate per-SNP Fst (Fst = 1 - HS / HT), 385 
visualized and then compared these Fst results with those from low-coverage whole genome 386 
sequencing simulation (Figure 6, S14). 387 

 388 
 389 

  390 
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Section 5: Analysis of down-sampled Heliconius data 391 

 392 
To determine the effect of sequencing coverage on our ability to detect local signatures of 393 
differentiation and global population structure we re-analysed Heliconius spp. whole-genome 394 
data from (Van Belleghem et al., 2017). Raw whole-genome data for 70 H. erato individuals 395 
were downloaded from NCBI (Supplementary Table S3) and mapped to the H. erato 396 
demophoon reference genome (Heliconius_erato_demophoon_v1) using BOWTIE2 397 
(Langmead & Salzberg, 2013) using the --very-sensitive setting. Reads with mapping 398 
qualities (MAPQ) below 20 were filtered out and the remaining reads sorted using 399 
SAMTOOLS v.1.9 (Heng Li et al., 2009). Duplicated reads were removed using 400 
MARKDUPLICATES v.2.9.0 from PICARD TOOLS and reads realigned around indels using 401 
PICARD.  402 
 403 
Subsequently, we subsampled each filtered bam file based on the fraction of reads to an 404 
approximated coverage of 8x (30M reads per individual), 4x (15M reads), 2x (7.5M reads), 405 
1x(3.75M reads) and 0.5x(1.625M reads) using SAMTOOLS. Individuals with insufficient 406 
coverage for a mean of 8x were filtered out (2 individuals).  407 
 408 
To determine how the ability to detect local signatures of differentiation differs with coverage, 409 
we estimated Fst between individuals with red-bar and no red-bar along the genomic 410 
scaffold containing the underlying gene optix (scaffold Herato1801:) (Van Belleghem et al., 411 
2017). Individuals with the same phenotypes were pooled across sampling sites and 412 
subspecies to achieve sample sizes of 23 red-barred individuals (H. e. demophoon, H. e. 413 
favorinus; H. e. hydara and  H. e. notabilis) and 28 non-barred individuals (H. e. amalfreda, 414 
H. e. emma; H. e. erato; H. e. lativitta and H. e. etylus). Using each set of subsampled bam 415 
file, we identified variant sites across scaffold Herato1801 using ANGSD v.0.28 with the 416 
following criteria: SNP_p-val=1e-6; minDepth = Number of individuals * 0.1x; maxDepth = 417 
coverage * N.ind + (2 * coverage *N.ind); minInd=75% of individuals (= 40); minQ = 30; and 418 
minMAF=0.05 (Korneliussen, Albrechtsen, & Nielsen, 2014). Fst values were estimated 419 
based on these variant sites (-sites option) in ANGSD based on genotype likelihoods in 50kb 420 
sliding windows with a 20kb step size to make them comparable to results in (Van 421 
Belleghem et al., 2017).  422 
 423 
To understand how the sequencing coverage affects the ability to detect global population 424 
structure in Heliconius, we performed a principal components analysis for all individuals at 425 
each coverage based on covariance matrices estimated in ANGSD. Covariance matrices 426 
were estimated using a random-read sampling procedure in ANGSD and PCA was 427 
performed using the eigen function in R. All results were plotted in R using ggplot. 428 

 429 

 430 
  431 
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Box 4: Using imputation to bolster genotype estimation from lcWGS  432 
  433 
Simulations: To explore imputation performance under different scenarios, we used the 434 
same forward simulation framework as in section 4.1 to simulate a 30MB chromosome for 435 
three neutrally evolving populations that have reached mutation-drift equilibrium. We set the 436 
mutation rate (μ) to be 1x10-8/bp/generation for all three populations, and altered their 437 
effective population size (Ne) and recombination rate (r), creating three different scenarios 438 
with different levels of genetic diversity and linkage disequilibrium (LD). Genetic diversity and 439 
LD are known to affect imputation performance(Pasaniuc et al., 2012). In a neutral 440 
population, genetic diversity is proportional to the product of effective population size and 441 
mutation rate, whereas LD is inversely proportional to the product of effective population size 442 
and recombination rate, and accordingly, our three scenarios were characterized by 1) a low 443 
diversity, high LD scenario (r = 0.5 cM/Mbp, Ne = 1,000); 2) a medium diversity, medium LD 444 
scenario (r = 0.5 cM/Mbp, Ne = 10,000); and 3) a medium diversity, low LD scenario (r = 2.5, 445 
Ne = 10,000). 446 
 We generated sample sizes of 25, 100, 250, 500 or 1000 individuals from a single, 447 
neutrally evolving population of stable size for each simulated scenario. We sampled with 448 
replacement 2n haplotypes (n diploid individuals) from the offspring of the final generation of 449 
the simulation. Similar to our approach in Section 4, we used ART-MountRainier(W. Huang 450 
et al., 2012) to simulate bam files of sequence reads to average depths of 1x, 2x and 4x per 451 
individual for each sample size, for a total of five sample sizes x three depths x three 452 
population scenarios = 45 datasets. 453 
  454 
SNP calling and genotype estimation with and without imputation: For each dataset, 455 
we evaluated the accuracy of genotype dosages and genotypes called using imputation 456 
without a reference panel in the programs Beagle v.3.3.2 and STITCH v.3.6.2. For 457 
comparison, we called genotypes and estimated genotype dosages without imputation in 458 
ANGSD v.0.931. (Although ANGSD recommends basing downstream analyses on genotype 459 
likelihoods rather than called genotypes, we use it as a baseline for evaluating any 460 
improvement of genotype calls by imputation.) For all downstream analyses, we first 461 
identified SNPs in ANGSD using the settings (-GL 1 -doGlf 2 -doMaf 1 -doMajorMinor 5 -462 
doCounts 1 -doDepth 1 -dumpCounts 3 -P 6 -SNP_pval 1e-6 -rmTriallelic 1e-6 -setMinDepth 463 
2 -minInd 1 -minMaf 0.0005 -minQ 20). 464 
 We called non-imputed genotypes directly from the posterior genotype probability in 465 
ANGSD, using minor allele frequencies as a prior and a posterior probability cutoff of 0.90 (-466 
postCutoff 0.90 -doPost 1 -doMaf 1 -GL 2 -dogeno 5 -doMajorMinor 3). Because ANGSD 467 
does not directly output genotype dosages, we converted posterior genotype probabilities 468 
using the formula genotype dosage=P(AA | data)*0 + P(AB | data)*1 + P(BB | data)*2. 469 

Before running the full imputation in STITCH, we explored performance under 470 
varying settings of the parameter K (K=25, 30 and 35), and examined output plots as well as 471 
r2 values between simulated genotypes and imputation dosages. In most cases K=30 472 
performed best or very close to best; thus, we used the settings K=30, nGen=10, and S=4, 473 
and called genotypes with posterior probability ≥ 0.90. For the imputation in Beagle, we 474 
passed genotype likelihoods estimated in ANGSD directly to Beagle and ran the imputation 475 
under default settings. We called genotypes from posterior genotype probability threshold of 476 
0.9 using the script gprobs2beagle.jar 477 
(https://faculty.washington.edu/browning/beagle_utilities/utilities.html). 478 
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 We evaluated the performance of each method in the following ways, by the proportion 479 
of correct genotype calls (genotype concordance), the proportion of genotypes actually 480 
called, and by the r2 between allelic dosage and true genotypes within allele frequency bins 481 
of size 0.05. We report average values for all sites with MAF>0.05, excluding variant sites 482 
that were not identified (false negatives) or non-variant sites called as SNPs (false positives) 483 
in the ANGSD SNP-calling step. 484 
  485 
Genotype calling rates and genotype concordance with imputation: At the smallest 486 
sample size tested (n=25), there was little to no improvement in accuracy using Beagle, and 487 
accuracy actually decreased when imputation was performed in STITCH with 25 samples 488 
(Figures S16-S18), suggesting that such small sample sizes are inadequate for reliable 489 
imputation; thus we focused our results on n≥100. For all sample sizes and sequencing 490 
depths across scenarios, the accuracy of genotype estimates varied with allele frequency. 491 
The correlation (r2) between imputed allelic dosage and true genotypes was low for sites 492 
with minor allele frequency (MAF) < 0.05 to 0.10, but increased and was relatively consistent 493 
across higher MAF bins (Figure S16). Genotype concordance (GC), by contrast, had the 494 
opposite relationship with MAF; GC was higher for sites with low MAF and decreased with 495 
higher MAF (Figure S16). This is because it is easy to achieve high accuracy by calling the 496 
homozygous major genotype when the minor allele is rare. In order to summarize overall 497 
imputation performance, we averaged r2, GC and the proportion of called genotypes across 498 
sites with MAF>0.05 for each combination of method, scenario and study design (Figure 499 
S16-18).  500 

Genotype concordance (GC) was universally high for all methods and sequencing 501 
strategies (GC>0.9), except for imputation of 100 samples from the medium diversity, high 502 
LD scenario in STITCH (Figure S19D-F). At 1x coverage, fewer than half of genotypes were 503 
called by Beagle and without imputation, especially for sites with higher MAF (Figure S18). 504 
GC was similar under the medium diversity, medium LD scenario compared to the low 505 
diversity, high LD scenario (Figure S19D-E), except GC was somewhat lower for genotypes 506 
imputed in STITCH at 1x coverage. The least improvement in GC using imputation was seen 507 
under medium diversity, low LD scenario (Figure S19F). For n≤250 samples sequenced at 508 
1x and 2x coverage, GC for genotypes imputed in STITCH were less accurate than those 509 
estimated without imputation. 510 
 Overall, imputation accuracy required larger sample sizes or was reduced altogether 511 
as genetic diversity and recombination rates increased. This was particularly true for the 512 
program STITCH, which estimates distinct haplotype probabilities within a given region 513 
across a mosaic of ancestral haplotypes(Davies, Flint, Myers, & Mott, 2016), a problem that 514 
becomes increasingly complex under high recombination. Imputation showed larger 515 
improvements with increasing sample size in STITCH than in Beagle, especially at low 516 
coverage (1x), whereas Beagle improved more with increasing sequence read depth (Figure 517 
9). 518 
  519 
Allele frequency estimation from imputed genotype probabilities: Because imputation 520 
increased the accuracy of posterior genotype probabilities under most of the tested 521 
scenarios and study designs, we asked whether allele frequency estimation was improved 522 
by using imputed genotype probabilities compared to MAF estimation without imputation. To 523 
estimate MAF from imputed genotype probabilities, we summed over the posterior genotype 524 
probabilities (-domaf 4 in ANGSD), and compared the results to MAF estimated from 525 
genotype likelihoods using the EM algorithm implemented in ANGSD (-domaf 1). Under 526 
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some scenarios and study designs, imputation resulted in small improvements in accuracy 527 
of allele frequency estimation (Figure S20). Imputation yielded the largest improvements in 528 
allele frequency estimation for large sample sizes (N≥250) sequenced at 1x coverage from 529 
the low diversity, high LD population, and from the medium diversity, medium LD population. 530 
For small sample sizes from the medium diversity, low LD population, MAF estimated from 531 
genotype probabilities imputed in STITCH were less accurate. Beagle showed more 532 
consistent, modest improvements, increasing MAF estimation accuracy when coverage was 533 
≥2x for all sample sizes and scenarios.  534 
 Under the low diversity, high LD scenario, allele frequency estimates based on 535 
genotype probabilities imputed in STITCH from 1000 samples at 1x coverage were slightly 536 
more accurate (r2=0.999) than for 500 samples at 2x coverage (r2=0.998) and 250 samples 537 
at 4x coverage (r2=0.997). However, given that smaller sample sizes are already sufficient 538 
for estimating allele frequencies with high accuracy without imputation (r2=0.990 for MAF 539 
estimated from 250 samples sequenced at 1x coverage; Figure S20), imputation is not likely 540 
to contribute to analyses of these types of population-level statistics as much as it would for 541 
individual-level and genotype-level analyses like GWAS. 542 
 543 

 544 
  545 
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Sensitivity of population genomic inference power to simulation assumptions 546 
 547 
In Section 4 of this paper, we have tested the performance of different types of population 548 
genomic inference under different lcWGS experimental designs using forward genetic 549 
simulation. We found that for most of these analyses, distributing the same amount of 550 
sequencing effort across more samples can consistently improve inference power. This 551 
conclusion should be relatively robust regardless of the parameter settings in our simulation 552 
model, although the power of inference under each combination of sample size and 553 
coverage can be strongly affected by these model assumptions. Here, we briefly present a 554 
qualitative discussion on how the power of different types of population genomic inference 555 
could be impacted by different parameter choices in the simulation.  556 
 557 
Section 4.1: Given the same true allele frequency, the accuracy of allele frequency 558 
estimation at a single SNP should be largely independent of simulation parameters other 559 
than sample size and coverage. The values of RMSE and r2 genome-wide, however, will be 560 
sensitive to the site frequency spectrum (SFS) in the simulated data, since errors are 561 
strongly affected by the true allele frequencies (Figure 2). As a result, any processes that 562 
can skew the SFS (e.g. demographic expansion and contraction, selection) could affect the 563 
values of RMSE and r2, although the directionality of the change is context dependent.  564 
 565 
Section 4.2: For the inference of spatial structure, higher migration rate is an obvious driver 566 
for lower inference power (Figure 4). We have also shown that with more SNPS (which can 567 
result from a larger genome, larger population size, or higher mutation rate), inference power 568 
can improve (Figure S9). On the other hand, stronger LD (caused by lower population size 569 
or lower recombination rate) should decrease the power of inference, since SNPs can 570 
become highly correlated with each other, resulting in fewer independent SNPs that are 571 
informative. 572 
 573 
Section 4.3: Similarly, a larger number of SNPs in the dataset due to higher mutation rate 574 
can also lead to higher power to locate the region under divergent selection, as a window-575 
based approach can have more information to work with. Stronger LD due to lower 576 
recombination rate generates more distinct patterns of linked selection, therefore also 577 
enhances the power to locate the general region of interest. Both factors, however, have a 578 
more complex effect on the power to locate the causal SNPs due to the higher number of 579 
linked neutral SNPs that potentially become false positives. Stronger divergent selection 580 
should be able to more reliably increase the detection power of both the general region of 581 
interest and the causal SNPs. Lastly, the effects of population size and migration rate is also 582 
complex. On the one hand, higher population size leads to more SNPs in the dataset. On 583 
the other hand, it can result in narrower peaks that are more difficult to detect due to 584 
reduced LD. Lower migration rate increases the Fst values of the selected SNPs, but also 585 
increases the background noise. A more quantitative power analysis is therefore warranted 586 
to better understand the effect of these simulation parameters.  587 

 588 
  589 
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Additional details on software packages for the analysis of low-coverage data 590 
 591 
In this section, we include some additional details about the software packages that we 592 
introduced in Section 4 of the main text. When applicable, we highlight the methodological 593 
differences between the different packages for solving the same problem.  594 
 595 
Genotype likelihood models: Four different genotype likelihood models are currently 596 
implemented in ANGSD. The GATK model (McKenna et al., 2010) assumes that base 597 
quality scores at the same site from different sequencing reads are each an independent 598 
and unbiased representation of the probabilities of sequencing error, whereas the Samtools 599 
model (Li, 2011) assumes that these quality scores are not completely independent. Both 600 
the SYK model (Kim et al., 2011) and the SOAPsnp model (Li et al., 2009) assume that the 601 
quality scores could be biased and thus implement a quality score recalibration step. In the 602 
SKY mode, type specific error rates (e.g. the probability of an A being called a T) are 603 
estimated and accounted for in GL calculation. In the SOAPsnp model, in addition to the 604 
type specific errors, strand and read position specific errors can be accounted for as well, 605 
but a set of invariant loci should be provided to minimize biases. Additional genotype 606 
likelihood models are adopted by other software packages and they can be useful 607 
alternatives to ANGSD for specific types of data. For example, the program Atlas 608 
(Kousathanas et al., 2017) explicitly incorporates post-mortem DNA damage in addition to 609 
sequencing error in its genotype likelihood model, making it well-suited for ancient DNA 610 
studies. EBG (Blischak, Kubatko, & Wolfe, 2018) uses a simplified version of the SAMtools 611 
model but relaxes ANGSD’s assumption of diploidy, allowing the analysis of polyploid 612 
samples.  613 
 614 
SNP identification: In ANGSD, SNPs are inferred by first estimating allele frequencies at 615 
each site (including the presumably invariable loci) and then testing whether its minor allele 616 
frequency is significantly larger than zero (Korneliussen et al., 2014). Accordingly, the first 617 
step is to restrict the number of alleles that can possibly occur at each site to two: a major 618 
allele, and a minor allele. The identities of these alleles can be determined through a 619 
maximum likelihood approach (Jørsboe & Albrechtsen, 2019; Skotte, Korneliussen, & 620 
Albrechtsen, 2012) or by user specification. Next, the likelihood of the minor allele frequency 621 
at each site can be formulated as a function of genotype likelihoods across all individuals 622 
(see Equation 2 in (Kim et al., 2011)), and these minor allele frequencies can be estimated 623 
using a maximum likelihood approach. In this way, all possible genotypes for each individual 624 
can be considered, effectively avoiding explicitly calling genotypes. Then, polymorphic sites 625 
will be identified through a likelihood ratio test (Kim et al., 2011). The list of polymorphic sites 626 
(i.e. SNPs) can then be exported and used for downstream analyses, along with the 627 
genotype likelihoods at each of these sites for each individual. Other software programs 628 
address SNP calling in similar ways. Atlas, for example, follows the same general framework 629 
as ANGSD, but has made modifications (Kousathanas et al., 2017) to accommodate cases 630 
where the sample size is very small and neither the major nor the minor alleles is specified 631 
by users, which is often the case for ancient DNA studies (Kousathanas et al., 2017).  632 
 633 
Dimensionality reduction methods for population structure inference: The random 634 
read sampling method employed by ANGSD does not take full advantage of the entire 635 
dataset. In contrast, ngsTools (Fumagalli, Vieira, Linderoth, & Nielsen, 2014) uses a more 636 
sophisticated method where posterior genotype probabilities are first calculated with an 637 
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empirical Bayes approach. This approach is valid under the assumption of Hardy-Weinberg 638 
equilibrium across the entire sample set, but for most structured populations, this 639 
assumption will not hold, which can lead to inaccurate PCA results (e.g. population clusters 640 
can have long tails, see Meisner & Albrechtsen, 2018). PCAngsd (Meisner & Albrechtsen, 641 
2018) therefore takes one step further and uses an iterative approach to correct for potential 642 
violation of the HWE assumption by updating prior genotype probabilities based on the PCA 643 
result in each previous iteration, since these PCA results can represent the population 644 
structure that exists in the data (Meisner & Albrechtsen, 2018). 645 

 646 
Model-based clustering for population structure inference: NGSAdmix (Skotte, 647 
Korneliussen, & Albrechtsen, 2013) adopts a maximum likelihood implementation of the 648 
classic STRUCTURE model (Tang, Peng, Wang, & Risch, 2005)(Pritchard, Stephens, & 649 
Donnelly, 2000), (Tang et al., 2005), but formulates a likelihood function with sequencing 650 
data as its observed data and uses genotype likelihoods to consider all possible genotypes 651 
for each individual (see Equation 6 in Skotte et al., 2013). It then uses an expectation-652 
maximization (EM) algorithm to estimate model parameters. Because of the more complex 653 
formulation of the likelihood function, however, NGSAdmix tends to be computationally 654 
demanding. As an alternative, Ohana (Cheng, Racimo, & Nielsen, 2019) adopts the same 655 
likelihood function as NGSAdmix but uses a sequential quadratic programming (QP) method 656 
instead of EM for optimization, which should speed up computation. No formal comparison 657 
between the performance of the two methods is available to date, but separate evaluations 658 
on simulated and real data have shown that both methods deliver great accuracy even at 659 
very low coverage (Cheng et al., 2019; Skotte et al., 2013). Distinct from both NGSAdmix 660 
and Ohana, PCAngsd uses individual allele frequencies, an intermediate output from its 661 
PCA analysis, as input for a non-negative matrix factorization (NMF) algorithm to infer 662 
admixture proportions. 663 

 664 
Genome-wide association analysis: In Kim et al. (2011), case / control association is 665 
tested by first estimating allele frequencies within case and control individuals with the 666 
approach as described in the “SNP identification” section, and then using a likelihood ratio 667 
test for differences between case and control individuals at each locus (see equations 6-7 in 668 
Kim et al. 2011). The first step in Skotte et al. (2012) and Jørsboe & Albrechtsen (2019) is to 669 
calculate the posterior genotype probability using an empirical Bayes approach, with priors 670 
informed by either population allele frequencies or the SFS. Skotte et al. (2012) then used a 671 
score statistics approach to test for significant associations with the phenotype at each site. 672 
This approach is computationally efficient, but cannot estimate the effect size of the loci. In 673 
contrast, (Jørsboe & Albrechtsen, 2019) employs a maximum likelihood approach to 674 
explicitly estimate the effect size of each locus. As expected, this approach is slower than 675 
the score statistics method. To take advantage of both methods, ANGSD also implements a 676 
hybrid approach, first using the score statistic to identify significant loci, and then using the 677 
maximum-likelihood approach to estimate effect sizes of these significant loci.  678 

 679 
Linkage disequilibrium: GUS-LD (Bilton et al., 2018) constructs a likelihood function of the 680 
LD coefficient D and uses a numerical method to optimize the likelihood function. In contrast, 681 
ngsLD (Fox, Wright, Fumagalli, & Vieira, 2019) constructs a likelihood function of the 682 
haplotype frequencies between each pair of SNPs instead, and uses an EM algorithm to 683 
optimize it (Fox et al., 2019). Different LD statistics, such as D, D’ and r2, can then be 684 
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derived from the inferred haplotype frequencies. Furthermore, ngsLD incorporates several 685 
other helpful features, such as LD pruning and the fitting of an LD decay model.  686 

 687 
Allele frequency estimation: As mentioned in the SNP identification section, ANGSD takes 688 
a maximum-likelihood approach to estimate allele frequencies among all samples (Kim et 689 
al., 2011). It then uses the same algorithm to estimate the frequencies of the minor alleles in 690 
each population separately for each site identified as polymorphic (based on the selected 691 
filtering and confidence threshold). It is important to note that a SNP significance filter or a 692 
minimum minor allele frequency filter should not be applied in population-specific allele 693 
frequency estimation, because sites fixed for the major allele in a subset of populations 694 
(which would be removed by these filters) are typically of interest. Other programs that can 695 
estimate allele frequencies from genotype likelihoods follow the same general workflow. 696 
Atlas (Kousathanas et al., 2017), for example, adopts a similar maximum likelihood 697 
framework, but also provides a Bayesian inference option.  698 

 699 
Genetic diversity and neutrality test statistics within a single population: To estimate θ 700 
in different parts of the genome, ANGSD adopts an empirical Bayes approach, where the 701 
SFS within a window (posterior) can be formulated and solved as the product of the SAF 702 
likelihoods within the window (likelihood) and the genome-wide or chromosome-wide SFS 703 
(prior) (see the equation in the “Empirical Bayes” section in Korneliussen, Moltke, 704 
Albrechtsen, & Nielsen, 2013). Different θ estimators can then be extracted from the SFS in 705 
each window.  706 
 707 
Genetic differentiation between populations: ANGSD implements the method-of-moment 708 
estimator of FST developed by (Reynolds, Weir, & Cockerham, 1983). While different 709 
estimators of θ depend on the local SFS within a single population, Reynolds et al.’s 710 
estimator of pairwise Fst can be formulated as a function of the local two-dimensional SFS 711 
(the matrix with the joint distribution of allele counts in two populations). Therefore, ANGSD 712 
again takes an empirical Bayes approach, using the maximum likelihood method to estimate 713 
a genome-wide two-dimensional SFS, which it then uses as a prior to calculate the two-714 
dimensional SFS at each genomic locus. Fst at each locus can then be derived from these 715 
locus-specific SFS. GPAT (http://www.yandell-lab.org/software/gpat.html) implements two 716 
additional methods to estimate Fst using genotype likelihoods as its input. In the first method 717 
(wcFst), GPAT estimates allele frequencies from genotype likelihoods and directly plugs the 718 
estimated allele frequencies into Weir and Cockerham's Fst estimator. This method is 719 
computationally efficient but may not account for the uncertainties in the estimated allele 720 
frequencies as well as ANGSD does. In the second method (bFst), GPAT implements a 721 
Bayesian framework as described by (Holsinger, Lewis, & Dey, 2002). This Bayesian 722 
approach has the advantage of being able to provide a confidence interval for Fst, but it is 723 
computationally expensive. 724 
 725 
  726 
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References for software in Table 2 of the main text 727 
 728 

AlphaAssign (Whalen, Gorjanc, & Hickey, 2019) 729 
Angsd (Korneliussen et al., 2014) 730 
Atlas (Link et al., 2017) 731 
BaseVar (Liu et al., 2018) 732 
Bcftools/ROH (Narasimhan et al., 2016) 733 
EBG (Blischak et al., 2018) 734 
Entropy (Gompert et al., 2014) 735 
evalAdmix (Garcia-Erill & Albrechtsen, 2020) 736 
Freebayes (Garrison & Marth, 2012) 737 
GATK (McKenna et al., 2010) 738 
GPAT (Domyan et al., 2016) 739 
GUS-LD (Bilton et al., 2018) 740 
Heterozygosity-em (Bryc, Patterson, & Reich, 2013) 741 
(https://github.com/kasia1/heterozygosity-em) 742 
HMMploidy (https://github.com/SamueleSoraggi/HMMploidy)  743 
LB-Impute (https://github.com/dellaporta-laboratory/LB-Impute)  744 
LepMap3 (Rastas 2017) 745 
LinkImpute (Money et al., 2015) 746 
loimpute (Wasik et al., 2019) 747 
lostruct (Li & Ralph, 2019) 748 
MAPGD (Maruki & Lynch, 2015) 749 
ngsAdmix (Skotte et al., 2013) 750 
ngsDist (Vieira, Lassalle, Korneliussen, & Fumagalli, 2016) 751 
ngsF (Vieira, Fumagalli, Albrechtsen, & Nielsen, 2013) 752 
ngsF-HMM (Vieira, Albrechtsen, & Nielsen, 2016) 753 
ngsLD (Fox et al., 2019) 754 
ngsRelate (Korneliussen & Moltke, 2015) 755 
ngsTools (Fumagalli et al., 2014) 756 
NOISYmputer (Lorieux, Gkanogiannis, Fragoso, & Rami, 2019) 757 
Ohana (Cheng, Mailund, & Nielsen, 2017; Cheng et al., 2019) 758 
PCAngsd (Meisner & Albrechtsen, 2018) 759 
PopLD (Maruki & Lynch, 2014) 760 
Reveel (Huang, Wang, Chen, Bercovici, & Batzoglou, 2016) 761 
skmer (Sarmashghi, Bohmann, P Gilbert, Bafna, & Mirarab, 2019) 762 
SNPTEST (Marchini, Howie, Myers, McVean, & Donnelly, 2007) 763 
STITCH (Davies et al., 2016) 764 
svgem (Lucas-Lledó, Vicente-Salvador, Aguado, & Cáceres, 2014) 765 
vcflib (https://github.com/vcflib/vcflib) 766 
WHODAD (Snyder-Mackler et al., 2016) 767 
 768 
  769 
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  775 
Table S2. Model parameters used for forward genetic simulation. 776 
 777 

Scenario* Chromoso
me length 
(in Mb) 

Number of 
populations 

Population 
size (N)† 

Mutation 
rate (μ) 

Recombi
nation 
rate (r) 

Migration 
rate (m) 

Selection 
coefficient 
(s) 

Corresp
onding 
figures 

Single population 30 1 1000 10-6 2.5x10-6 NA NA 3-4, S1-
7 

Spatial structure 
(low migration) 

30 9 500 2x10-7 5x10-7 0.0005 NA 5A, S10 

Spatial structure 
(high migration) 

30 9 500 2x10-7 5x10-7 0.002 NA 5B, S11 

Spatial structure 
(high migration, 
longer 
chromosome) 

300 9 500 2x10-7 5x10-7 0.002 NA S9 

Divergent 
selection‡  
(large Ne,  
high migration) 

30 2 5000 10-7 2.5x10-7 0.001 0.08 6-7 

Divergent 
selection‡  
(small Ne,  
low migration) 

30 2 5000 2x10-8 5x10-8 0.0005 0.08 S12-14 

Imputation test 
(low diversity, 
high LD) 

30 1 1000 10-8 5x10-9 NA NA 9, S16-
20 

Imputation test 
(medium 
diversity,  
medium LD) 

30 1 1000 10-7 5x10-8 NA NA 9, S16-
20 

Imputation test 
(medium 
diversity,  
low LD) 

30 1 1000 10-7 2.5x10-7 NA NA 9, S16-
20 

 778 
* Each entry is linked to its corresponding simulation pipeline on GitHub. 779 
† Note that since we scaled down population size and scaled up mutation rate, recombination rate, migration rate, and selection 780 
coefficient in order to speed up computation, these population sizes do not represent the effective population size of our 781 
simulated populations.  782 
‡ These parameters are the ones used in the selection stage of the simulation. Prior to the selection stage, a burn-in stage was 783 
first performed, during which the population size was further scaled down, whereas mutation rate and recombination rate were 784 
scaled up, all by a factor of 10. See supplementary methods for details. 785 

786 
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Table S3. Heliconius erato short read archive (SRA) IDs. Individuals used for the 787 
subsampling and genotype-likelihood-based analysis of H. erato subspecies, with SRA ID 788 
and subspecies names. Samples from (Van Belleghem et al., 2017). 789 
 790 

SRA ID H. erato subspecies 

SRS1618075 amalfreda 

SRS1618086 amalfreda 

SRS1618008 amalfreda 

SRS1618009 amalfreda 

SRS1618010 amalfreda 

SRS1618033 emma 

SRS1618034 emma 

SRS1618062 emma 

SRS1618063 emma 

SRS1618065 emma 

SRS1618066 emma 

SRS1618067 emma 

SRS1618069 erato 

SRS1618070 erato 

SRS1618071 erato 

SRS1618072 erato 

SRS1618073 erato 

SRS1618084 erato 

SRS1618014 etylus 

SRS1618015 etylus 

SRS1618016 etylus 

SRS1618017 etylus 

SRS1618018 etylus 

SRS1618053 lativitta 

SRS1618044 lativitta 

SRS1618045 lativitta 

SRS1618046 lativitta 

SRS1618047 lativitta 

SRS1618002 demophoon 
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SRS1618093 demophoon 

SRS1618094 demophoon 

SRS1618098 demophoon 

SRS1618100 demophoon 

SRS1617995 demophoon 

SRS1618032 favorinus 

SRS1618057 favorinus 

SRS1618056 favorinus 

SRS1618058 favorinus 

SRS1618059 favorinus 

SRS1618060 favorinus 

SRS1618083 favorinus 

SRS1618102 hydara 

SRS1617999 hydara 

SRS1618068 hydara 

SRS1618074 hydara 

SRS1618087 hydara 

SRS1618101 hydara 

SRS1618005 notabilis 

SRS1618012 notabilis 

SRS1618090 notabilis 

SRS1618091 notabilis 

 791 
  792 
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 793 
Supplementary figures 794 

 795 

 796 
Figure S1. Histogram of the allele frequencies of false negative SNPs with lcWGS. Across 797 
the different facets, sample size increases from left to right, and coverage increases from top 798 
to bottom. The total sequencing effort remains the same along the diagonal from bottom left 799 
to top right.   800 
 801 



 

26 

 802 
Figure S2. Distribution of Tajima’s θ (aka π) and Watterson’s θ estimated using the 803 
Samtools genotype likelihood model and the GATK genotype likelihood model in 10kb 804 
windows. Across the different facets, sample size increases from left to right, and coverage 805 
increases from top to bottom. The total sequencing effort remains the same along the 806 
diagonal from bottom left to top right. The true chromosome-average values for both 807 
statistics should be 0.004, which is marked with a read line. 808 
  809 
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 810 
Figure S3. Tajima’s D estimated using the Samtools genotype likelihood model and the 811 
GATK genotype likelihood model in 10kb windows. Across the different facets, sample size 812 
increases from left to right, and coverage increases from top to bottom. The total sequencing 813 
effort remains the same along the diagonal from bottom left to top right. The true 814 
chromosome-average Tajima’s D should be 0, which is marked with a red line.  815 
 816 

 817 
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 818 
Figure S4. Linkage disequilibrium (LD) estimated using ngsLD from simulated data. LD, 819 
shown on the y axis, is measured as r2 between pairs of SNPs, and the physical distance 820 
between these SNP pairs is shown on the x axis. The blue line shows the mean of the 821 
estimated r2 for each distance value, and the lighter blue area shows its interquartile range. 822 
The red line marks the theoretical expectation of r2 under mutation-drift equilibrium. Across 823 
the different facets, sample size increases from left to right, and coverage increases from top 824 
to bottom. The total sequencing effort remains the same along the diagonal from bottom left 825 
to top right.  826 
 827 
  828 
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 829 
Figure S5.  Estimated linkage disequilibrium (LD) fitted to a linkage decay model using 830 
ngsLD. The solid blue line shows the best fitted model, and the dashed blue lines represent 831 
its 95% confidence interval. When the true recombination rate is known, the effective 832 
population size (Ne) can be calculated from the estimated LD decay rate and is shown on 833 
the top right corner in each facet. The true effective population size used in the simulation is 834 
100,000. The red line marks the theoretical expectation of r2 under mutation-drift equilibrium, 835 
given by (Hill & Weir, 1988). Across the different facets, sample size increases from left to 836 
right, and coverage increases from top to bottom. The total sequencing effort remains the 837 
same along the diagonal from bottom left to top right.  838 
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 840 

 841 



 

30 

 842 
Figure S6. The sequencing coverage distribution that we sampled from when simulating 843 
uneven sequencing coverage among samples. This distribution is obtained by merging the 844 
distributions of coverage among samples from three of our lcWGS projects where we pooled 845 
samples by molarity.  846 
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 847 
Figure S7. The error in allele frequency estimation with lcWGS (yellow) and Pool-seq (blue) 848 
data, both with uneven coverage among individual samples. The distribution of absolute 849 
errors (|estimated frequency - true frequency|) is shown with the box plots along the x-axis. 850 
The lower and upper hinges of the box plots show 25th and 75th percentile of the absolute 851 
errors, and the whiskers extend to the largest or smallest values no further than 1.5 times 852 
the interquartile range. Outlier points are hidden. Across the different facets, sample size 853 
increases from left to right, and coverage increases from top to bottom. The total sequencing 854 
effort remains the same along the diagonal from bottom left to top right. The root mean 855 
squared error (RMSE) for the two sequencing designs are shown in each facet. False 856 
negative SNPs are not included in this figure. See supplementary methods and Figure S7 for 857 
how uneven coverage was simulated.  858 
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 859 
Figure S8. An empirical example from one of our lcWGS projects of the distribution of raw 860 
sequencing yield from individual samples when they are repooled based on the first round of 861 
sequencing. This is to demonstrate that equal distribution of sequencing effort can be 862 
approximated by such a sequencing design. (The type specimens were designed to have 863 
higher sequencing yield then other samples.) 864 

 865 
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 875 
Figure S9. The spatial population structures inferred through principal component analysis 876 
(PCA) with lcWGS data using PCA. The first two principal components are shown. This 877 
result is from our higher gene flow scenario (an average of 1 effective migrant from one 878 
population to another every generation), but a longer chromosome is simulated (300Mbp, or 879 
10 times longer than the scenarios shown in Figure 4). Sample size remains five per sample, 880 
and coverage increases from top to bottom. 881 

 882 
 883 
 884 
 885 

  886 
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 887 

 888 
Figure S10. Patterns of spatial population structure inferred through principal component 889 
analysis (PCA) with lcWGS data using PCAngsd, in a scenario with lower gene flow (an 890 
average of 0.25 effective migrants per generation). Sample size per population increases 891 
across panels from left to right, and coverage per sample increases from top to bottom. This 892 
figure is based on the same dataset as Figure 5A, in which case ANGSD was used instead 893 
of PCAngsd to perform the PCA.   894 
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 895 
Figure S11. Patterns of spatial population structure inferred through principal component 896 
analysis (PCA) with lcWGS data using PCAngsd, in a scenario with higher gene flow (an 897 
average of 1 effective migrants per generation). Sample size per population increases 898 
across panels from left to right, and coverage per sample increases from top to bottom. This 899 
figure is based on the same dataset as Figure 5B, in which case ANGSD was used instead 900 
of PCAngsd to perform the PCA.   901 
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 902 

903 
Figure S12. The true per-SNP FST values along the chromosome between the two simulated 904 
populations in a scenario with smaller Ne (Ne = 104) and lower gene flow (an average of 2.5 905 
effective migrants from one population to the other every generation). Neutral SNPs are 906 
shown in black and selected SNPs are shown in black. 907 
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 930 
Figure S13. Genome-wide scan for divergent selection with lcWGS data in a scenario with 931 
smaller Ne (Ne = 104) and lower gene flow (an average of 2.5 effective migrants from one 932 
population to the other every generation). The FST values inferred from lcWGS data in 5kb 933 
windows along the chromosome are shown on the y axis. Sample size increases from left to 934 
right, and coverage increases from top to bottom. The black points mark both the selected 935 
and neutral SNPs, and the red asterisks only mark the positions of the selected SNPs (not 936 
their inferred Fst values).  937 
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 947 
Figure S14. Genome-wide scan for divergent selection with RADseq data in a scenario with 948 
smaller Ne (Ne = 104) and lower gene flow (an average of 2.5 effective migrants from one 949 
population to the other every generation). The per-SNP FST values inferred from RAD-seq 950 
data are shown on the y axis and the SNP positions are shown on the x axis. Sample size 951 
increases from left to right, and RAD-tag density increases from top to bottom. The black 952 
points mark both the selected and neutral SNPs, and the red asterisks only mark the 953 
positions of the selected SNPs (not their inferred Fst values).  954 
 955 
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 958 
Figure S15. Principal components plot and estimates of genetic differentiation around the 959 
optix gene for the Heliconius dataset at 4x (top) and 1x coverage (bottom), respectively.   960 
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 961 
Figure S16. Genotype estimation accuracy (r2) by minor allele frequency (MAF) for 962 
imputation in STITCH and Beagle compared to posterior genotypes estimated without 963 
imputation. Combinations of sample size (n; with increasing n indicated by more contiguous 964 
lines) and sequencing coverage (plots in rows correspond to 1x, 2x and 4x coverage) were 965 
tested for each method (line colors) under different diversity and linkage disequilibrium 966 
scenarios. Note the different y-axis scales. 967 
  968 
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 969 
Figure S17. Genotype concordance by minor allele frequency (MAF) for imputation in 970 
STITCH and Beagle and without imputation. Genotypes were called with minimum posterior 971 
genotype probability of 0.9. Combinations of sample size (n; with increasing n indicated by 972 
more contiguous lines) and sequencing coverage (plots in rows correspond to 1x, 2x and 4x 973 
coverage) were tested for each method (line colors) under different diversity and linkage 974 
disequilibrium scenarios. Note the different y-axis scales. 975 

 976 
 977 
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 978 
Figure S18. Proportion of genotypes called by minor allele frequency (MAF) for imputation 979 
in STITCH and Beagle and without imputation. Genotypes were called with minimum 980 
posterior genotype probability of 0.9. Combinations of sample size (n; with increasing n 981 
indicated by more contiguous lines) and sequencing coverage (plots in rows correspond to 982 
1x, 2x and 4x coverage) were tested for each method (line colors) under different diversity 983 
and linkage disequilibrium scenarios. Note the different y-axis scales.984 
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 985 
Figure S19. Genotype estimation by imputation in STITCH and Beagle compared to 986 
posterior genotypes estimated without imputation for sites with MAF>0.05. Combinations of 987 
sample size (n; with increasing n indicated by more contiguous lines) and sequencing 988 
coverage (x-axis) were tested for each method (line colors) under different diversity and 989 
linkage disequilibrium scenarios. (A)-(C) Mean r2 between true genotypes and estimated 990 
genotype dosage. (D)-(F) Genotype concordance (GC) between true and called genotypes 991 
with posterior genotype probability>0.9. G-I) Proportion of genotypes called with posterior 992 
genotype probability>0.9.  993 
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 994 

 995 
Figure S20. Change in accuracy (r2) of minor allele frequencies (MAF) estimation using 996 
imputed genotype probabilities from STITCH and Beagle, relative to non-imputed genotype 997 
likelihoods. Values above the x-axis show r2 for MAF estimated without imputation. The three 998 
diversity/LD scenarios are arranged in columns, sample sizes (n=100, 250, 500 and 1000) are 999 
arranged in rows, and sequencing depths are shown on the x-axis. Note the different y-axis 1000 
scales. 1001 
  1002 
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