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Part 1. Supplementary methods  
 

 
 

Here we provide additional details on methods described in different Sections of the main text. 
 
 
Section 2: Estimation of the cost of lcWGS 
 
The cost estimates presented in Table 1 assume a per library cost of 8 USD (details in 
Therkildsen and Palumbi 2017). This is the pro-rated cost of the reagents needed for a single 
library. An important consideration for researchers adopting lcWGS for the first time is that 
many of the reagents needed are only available in relatively large batches, requiring a 
substantial upfront investment. One of the most expensive reagents to acquire is often a 
sufficiently large set of indexed (barcoded) adapter oligos needed to individually label each 
library. To avoid misassigned reads due to index hopping, we recommend a unique dual index 
strategy (i.e. two unique oligos per sample for the P5 and P7 ends of the library construct; 
MacConaill et al., 2018). With May 2021 pricing, custom synthesis of each adapter oligo pair 
would cost ~44 USD, bringing the initial investment for oligos for 50 uniquely barcoded 
samples (which can then be pooled in a single sequencing lane) to ~2,200 USD. Several 
commercial barcoding adapter kits are also available and may be a cheaper option if a 
relatively small total number of samples are to be processed. The investment in indexed 
adapters is for most users a one-time investment in a resource that can be split among 
laboratories. 
 
 
Section 4: Population genomic inference from lcWGS data under 
different experimental designs 
 
Basic simulation setup: We used SLiM3 (Haller & Messer, 2019) to generate forward genetic 
simulations of a 30Mbp chromosome within in silico populations under a diploid Wright-Fisher 
model. The simulated populations had an effective population size (Ne) of 105 (unless 
otherwise noted), a mutation rate of 10-8 per base per generation, and a recombination rate of 
2.5 cM/Mbp. These parameters were set to resemble a typical metazoan species with a 
relatively large population size (Allio, Donega, Galtier, & Nabholz, 2017; Stapley, Feulner, 
Johnston, Santure, & Smadja, 2017). See a discussion of how different parameter choices 
can affect our results in Part 2 below in these supplementary materials. We then sampled a 
subset of individuals in the simulated populations and used ART-MountRainier (Huang, Li, 
Myers, & Marth, 2012) to simulate different lcWGS experimental designs with different 
combinations of sample sizes and depths of coverage per sample. We performed genotype-
likelihood-based analyses of these simulated sequencing reads with ANGSD (Korneliussen 
et al. 2014), and compared the power of different experimental designs for population genetic 
inference. We used the Samtools genotype likelihood model implemented in ANGSD (-GL 1) 

and only report the results from GATK model (-GL 2) when the two show significant 
discrepancies. In addition, we simulated data generated with other high-throughput 
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sequencing strategies, including Pool-seq and RAD-seq, and compared their performance 
with that of lcWGS.  
 
To examine the performance for different types of population genomic inference, we 
generated three separate sets of simulations. First, we simulated an isolated population to test 
the accuracy of lcWGS in estimating key population genetic parameters in a single population. 
Second, we simulated two different metapopulations to test the ability of lcWGS to infer spatial 
structure among subpopulations under different levels of connectivity. Lastly, we simulated 
two populations closely connected by gene flow under divergent selection, and tested the 
power of lcWGS to identify the genetic loci under divergent selection. The key model 
parameters used in our simulations are summarized in Table S2, and our entire simulation 
and analysis pipeline is available on GitHub (https://github.com/therkildsen-lab/lcwgs-
simulation, DOI: 10.5281/zenodo.5037406). 
 
Population genomic inference for a single population: First, we tested the accuracy of 
low-coverage sequencing for allele frequency estimation with different sequencing strategies 
in a single simulated population with stable population size and no selection. We used SLiM3 
to randomly generate a starting nucleotide sequence on a 30Mbp chromosome, and then 
created a diploid population with all individuals initially having this same starting sequence. 
We aimed to simulate a large population with effective population size (Ne) on the order of 105. 
However, it is computationally expensive to directly simulate large population sizes with 
forward genetic simulation methods, since all individuals in the population need to be tracked 
in every generation, and more time is required to reach mutation-drift equilibrium. Therefore, 
we chose to scale down our simulated population size (N) by a factor of 100, and scale up the 
mutation rate (μ) and recombination rate (r) by a factor of 100. Because the most important 
parameters of the simulated population (e.g. nucleotide diversity, linkage disequilibrium, site 
frequency spectrum) depends on products in the form of Nμ, Nr, etc., this scaling approach 
can generate a realistic population with a reasonable computational cost (Uricchio & 
Hernandez, 2014).  
 
Specifically, we set N to be 1,000, and ran the simulation with μ = 1x10-6 per bp per generation 
and r = 250 cM/Mbp for 10,000 generations, resulting in a population that has achieved 
mutation-drift equilibrium with population genetic parameters similar to what we find in natural 
diploid animal populations with Ne on the order of 105 (Allio et al., 2017; Stapley et al., 2017). 
All mutations are neutral in this simulation. We output the entire haplotype sequences at the 
last generation in fasta format. We also output the true allele frequency for each site.  
 
Next, for each haplotype sequence, we used ART-MountRainier to simulate the sequencing 
process on an Illumina platform with 150bp paired-end reads and 10x coverage for each 
haplotype. We then sorted the resulting bam files and merged the two bam files originating 
from the two haplotypes of each individual. We created a series of datasets with all 
combinations of select sample sizes (5, 10, 20, 40, 60, 80, 160) and depths of coverage per 
sample (0.25x, 0.5x, 1x, 2x, 4x, 8x) by randomly subsampling the merged bam files and the 
reads within them. For each combination of sample size and coverage per sample, we called 
SNPs and performed genotype likelihoods (using the Samtools genotype likelihood model) 
and allele frequency estimation using ANGSD-0.931 with the following options: -GL 1 -doGlf 2 

-doMaf 1 -doMajorMinor 5 -doCounts 1 -doDepth 1 -dumpCounts 3 -SNP_pval 1e-6 -rmTriallelic 1e-6 -

setMinDepth 2 -minInd 1 -minMaf 0.0005 -minQ 20.  
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Based on the ANGSD output from each dataset, we then compared the inferred allele 
frequencies for each called SNP with the true allele frequencies in the simulated population, 
and quantified the accuracy in allele frequency estimation by calculating the Coefficient of 
determination (R2) and root-mean-square error (RMSE) using custom R scripts (Figure 3). We 
also estimated the sample allele frequency likelihoods (SAF) and subsequently the site 
frequency spectrum (SFS) using ANGSD. For the SAF, we found that a more stringent depth 
filter has better performance, so we used the following options -doSaf 1 -GL 1 -doCounts 1 -

setMinDepth sample_size*coverage. For the SFS, we found that extending the number of 
iterations can improve its performance, and thus run the realSFS module in ANGSD with the 
following options -tole 1e-08 -maxIter 1000. From the estimated SFS for each dataset, we 
calculated different estimators of theta (e.g. Watterson’s estimator, Tajima’s estimator) and 
performed neutrality tests (e.g. Tajima’s D) in 10kb windows, using ANGSD with the following 
options: -GL 1 -doSaf 1 -doThetas 1 -doCounts 1 -setMinDepth sample_size*coverage, and the 
thetaStat module in ANGSD with the following options: do_stat -win 10000 -step 10000 (Figure 
S2, S3).  
 
Lastly, from the genotype likelihoods calculated using the Samtools model, we estimated 
linkage disequilibrium (LD) between intermediate frequency SNPs (minimum minor allele 
frequency = 0.1) within 5kb of each other using ngsLD (Fox et al. 2019) with the following 
options: --probs --rnd_sample 1 --max_kb_dist 5 --min_maf 0.1 (Figure S4). We then fitted the 
estimated r2 values with the LD decay model described by Hill and Weir (1988) using the 
fit_LDdecay.R script in ngsLD with the following options: --fit_level 2 --n_ind $SAMPLE_SIZE --

fit_boot 1000 (Figure S5). We also computed the theoretical expectation of the LD decay curve 
using the effective population size and recombination rate used in our simulation, also based 
on the model described by Hill and Weir (1988) (Figure S4, S5). To compare the performance 
between different genotype likelihood models, we replicated the entire analysis pipeline above 
using the GATK genotype likelihood model (-GL 2) (Figure S2-S5). 
 
Inference of spatial structure: Next, we tested the power of low-coverage sequencing for 
resolving the genetic structure of spatially distributed populations. Again, we began by 
randomly creating a starting sequence on a 30Mbp chromosome, but this time we created 
nine populations, each with N of 500. These nine populations are distributed on a three-by-
three grid, with a constant bidirectional migration rate (m) equal to 0.0005 (or 0.002 in the high 
migration rate scenario) connecting each pair of adjacent populations (Figure 5). Similar to the 
single population case, we scaled up the neutral mutation rate (μ) to 2x10-7 per bp per 
generation, and recombination rate (r) to 50cM/Mbp. We ran the simulation for 10,000 
generations, resulting in a metapopulation that has achieved mutation-drift-migration 
equilibrium. This metapopulation consists of nine populations, each with population genetic 
parameters resembling a diploid animal population with effective population size (Ne) on the 
order of 104. We used ART-MountRainier to simulate the sequencing process with the same 
read type as the single popular scenario, and subsampled the bam files to create different 
combinations of sample size per population (5, 10, 20, 40, 60, 80) and depth of coverage per 
sample (0.125x, 0.25x, 0.5x, 1x, 2x, 4x).  
 
For each dataset, we called SNPs and estimated genotype likelihoods with the nine 
populations combined using -GL 1 -doGlf 2 -doMaf 1 -doMajorMinor 5 -doCounts 1 -doDepth 1 -

dumpCounts 1 -doIBS 2 -makematrix 1 -doCov 1 -P 6 -SNP_pval 1e-6 -rmTriallelic 1e-6 -setMinDepth 
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2 -minInd 1 -minMaf 0.05 -minQ 20 in ANGSD. This step outputs a covariance matrix (-doCov 1) 
and a distance matrix (-doIBS 2) among individuals, and in addition to these, we also used 
PCAngsd (Meisner & Albrechtsen, 2018) to generate another covariance matrix using the 
estimated genotype likelihoods. Using the eigen() function and the cmdscale() function in R, we 
conducted principal component analysis (PCA) and principal coordinate analysis (PCoA) with 
these covariances matrices and distance matrix, respectively, plotted the samples on the first 
two principal components / principal coordinates, and compared these with the true spatial 
structure that was simulated and a PCA generated in PLINK2 with the true genotypes in the 
simulated populations (Figure 5, S12, S13). Lastly, to test whether PCA performance improves 
with genome-wide data instead of a single chromosome, we simulated a longer chromosome 
of 300Mbp under the high migration rate scenario, and repeated the entire pipeline but only 
with 5 samples per population (Figure S11). We also compared the performance of the 
Samtools (used as our default) and the GATK genotype likelihood models by running the 
above pipeline with -GL 2 (the GATK GL model) under the scenario with higher migration rate 
(Figure S6). 
 
Scans for divergent selection in the face of gene flow: Finally, we tested the power of low-
coverage sequencing in detecting signatures of divergent selection between two populations 
connected by gene flow. This simulation consists of two stages: a neutral burn-in stage, and 
a selection stage, both conducted in SLiM3. Two populations under mutation-drift-migration 
equilibrium are created in the burn-in stage, and then selection is imposed on these 
populations in the selection stage. In the burn-in stage, we began by randomly creating a 
starting sequence on a 30Mbp chromosome and two populations, each with a population size 
(N) of 500, and with a constant bidirectional migration rate (m) between them. We used a 
scaled-up recombination rate (r) and neutral mutation rate (μ), ran the simulation for 5,000 
generations, and output the entire haplotype of each individual in the two populations. In the 
first generation of the selection stage, we read the output from the burn-in stage into SLiM, 
selected 11 evenly spaced-out positions on the chromosome, and at each of these positions 
we added a non-neutral mutation to one randomly sampled genome in the first population. 
These mutations were set to be beneficial in the first population with a certain selection 
coefficient (s) and deleterious in the second population with a selection coefficient of (1/s). 
Despite this, since these non-neutral mutations each exist in a single copy, a majority of them 
are likely to get lost in the first few generations of the selection stage due to drift, in which case 
the simulation needs to be reset. To avoid resetting the simulation too many times (which can 
take a long time), we instantly expanded the population size by a factor of 10 (to 5,000) in 
each population after introducing the non-neutral mutations, which would then exist in multiple 
copies. Correspondingly, we scaled down the original m, r, and μ by a factor of 10, in order to 
preserve the key population genomic parameters of the simulated populations. We ran the 
simulation for an additional 200 generations. If more than half of the selected alleles become 
lost due to drift or Hill-Robertson interference during the process, we restart from the beginning 
of the selection stage with a different random seed (the same burn-in is always used).  
 
After the selection stage is complete, the SNP density is mainly determined by the mutation 
rate (μ), the background level of differentiation between the two populations is mainly 
determined by the migration rate (m), the level of differentiation at the selected locus is mainly 
determined by both the selection coefficient (s) and the migration rate (m), and the width of 
the genomic region that shows high differentiation between the two populations is mainly 
determined by the recombination rate (r). We were therefore able to create population pairs 
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with different genomic landscapes of differentiation by reiterating this process with different 
combinations of mutation rate (μ), selection coefficients (s), migration rates (m), and 
recombination rates (r) (Table S2). Then, we again subsampled each population, and used 
ART to simulate the sequencing process with the same combinations of sample size per 
population (5, 10, 20, 40, 60, 80, 160) and coverage per sample (0.25x, 0.5x, 1x, 2x, 4x, 8x) 
as in our neutral model. Using ANGSD, we called SNPs with the two populations combined 
through -dosaf 1 -GL 1 -doGlf 2 -doMaf 1 -doMajorMinor 5 -doCounts 1 -doDepth 1 -dumpCounts 1 -

SNP_pval 1e-6 -rmTriallelic 1e-6 -setMinDepth 2 -minInd 1 -minMaf 0.0005 -minQ 20, estimated 
genotype likelihoods and allele frequencies for each population through -dosaf 1 -GL 1 -doGlf 2 

-doMaf 1 -doMajorMinor 5 -doCounts 1 -doDepth 1 -dumpCounts 1 -setMinDepth 1 -minInd 1 -minQ 

20, and finally estimated per-SNP FST between the population pair from the two-dimensional 
site frequency spectrum estimated from realSFS using the default option. Using custom R 
scripts, we visualized and compared the FST landscape under different simulation scenarios 
and sequencing strategies (Figure 6). We also tested the performance of the GATK genotype 
likelihood model (in comparison to the Samtools model we used as default) by running the 
above pipeline with -GL 2 under the scenario with larger population size (Figure S7). In 
addition, we examined the performance of neutrality test statistics in identifying targets of 
selection by running the same pipeline as in the single population scenario to obtain estimates 
of Tajima’s D and Fay and Wu’s H in one of the two populations simulated here (Figure S14, 
S15). 

 
Comparison with Pool-seq: In addition to these investigations on different sequencing 
designs for low-coverage whole genome sequencing, we have also compared low-coverage 
whole genome sequencing with two other commonly used high-throughput sequencing 
strategies, namely pool-seq and RAD-seq. With pool-seq, we were mainly interested in its 
accuracy in allele frequency estimation (in comparison to the estimation with individually 
barcoded low-coverage samples), particularly when the sequencing yield from different 
individuals in the pool is uneven. Uneven contribution of different individuals can be minimized 
with a lcWGS design by repooling libraries to add more sequence to each in quantities scaled 
by initial sequencing yields (Figure S10), but is almost inevitable with pool-seq (Figure S8). 
Therefore, we simulated pool-seq with our neutral model under two different scenarios. In the 
first scenario, we assumed that the total sequencing yield is equal among individuals. In this 
case, the simulation and analysis are exactly the same as in low-coverage whole genome 
sequencing until the last step, where instead of using the allele frequency estimates outputted 
by ANGSD, we calculated allele frequencies based on the allele counts in the population 
instead (this was generated by -minQ 20 -doCounts 1 -dumpCounts 1) (Figure 4). In the second 
scenario, we kept the total sequencing yield to be the same, but added variation in the 
contribution of each individual to the pool. To do this, we sampled each individual’s sequencing 
yield from an empirical distribution, which we obtained by subsampling and rescaling the 
individual sequencing yield from three of our low-coverage whole genome sequencing projects 
where we tried our best effort to generate even yield among samples by pooling by DNA 
molarity. These empirical sequencing yields have a right-skewed distribution with a standard 
deviation that is 60% of the mean (Figure S8). We subsampled each individual bam file 
according to its target yield, and inputted these subsampled bam files to the same ANGSD 
pipeline for SNP calling, genotype likelihoods estimation, and allele frequency estimation. 
Allele frequency estimates outputted by the pipeline would represent the result from low-
coverage whole genome sequencing, and allele frequencies calculated from allele counts 
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would represent the estimates from pool-seq. We again calculated R2 and RMSE from these 
allele frequency estimates as a measure of their accuracy (Figure S9). 

 
Comparison with RAD-seq: With RAD-seq, we were mainly interested in its power for 
identifying genomic islands of differentiation. Therefore, we simulated RAD-seq with our 
divergent selection model. We assumed that with the high coverage of RAD-seq, genotypes 
can always be called correctly, so we used true genotypes instead of simulating the 
sequencing process (which gives our RAD-seq simulation a better chance of accurately 
recovering patterns than real RAD-seq data that also would be affected by genotyping error). 
We used R to randomly sample 150bp fragments on our 30MB genome as our RAD tags at a 
range of different densities (4, 8, 16, 32, 64, and 128 per MB), obtained each sample’s true 
genotype at these fragments, and calculated sample allele frequencies. We used these allele 
frequencies to estimate per-SNP FST (FST = 1 - HS / HT), visualized and then compared these 
FST results with those from low-coverage whole genome sequencing simulation (Figure 7, 
S18). 

 
 

Section 5: Analysis of down-sampled Heliconius data 
 
To determine the effect of sequencing coverage on our ability to detect local signatures of 
differentiation and global population structure we re-analysed Heliconius spp. whole-genome 
data from a previous studying using high-coverage whole-genome sequencing (Van 
Belleghem et al., 2017). Raw whole-genome data for 70 H. erato individuals were downloaded 
from NCBI (Supplementary Table S3) and mapped to the H. erato demophoon reference 
genome (Heliconius_erato_demophoon_v1) using Bowtie 2 (Langmead & Salzberg, 2013) 
using the --very-sensitive setting. Reads with mapping qualities (MAPQ) below 20 were filtered 
out and the remaining reads sorted using Samtools v.1.9 (Heng Li et al., 2009). Duplicated 
reads were removed using MarkDuplicates v.2.9.0 from Picard Tools and reads realigned 
around indels using GATK v.3.7.  
 
Subsequently, we subsampled each filtered bam file based on the fraction of reads to an 
approximated depth of coverage of 8x (30M reads per individual), 4x (15M reads), 2x (7.5M 
reads), 1x (3.75M reads) and 0.5x (1.625M reads) using SAMTOOLS. Individuals with 
insufficient coverage for a mean of 8x were filtered out (2 individuals).  
 
To determine how the ability to detect local signatures of differentiation differs with coverage, 
we estimated FST between individuals with and without the red-bar phenotype along the 
genomic scaffold containing the underlying gene optix (scaffold Herato1801) (Van Belleghem 
et al., 2017). Individuals with the same phenotypes were pooled across sampling sites and 
subspecies to achieve sample sizes of 23 red-barred individuals (H. e. demophoon, H. e. 
favorinus; H. e. hydara and H. e. notabilis) and 28 non-red-barred individuals (H. e. amalfreda, 
H. e. emma; H. e. erato; H. e. lativitta and H. e. etylus). Using each set of subsampled bam 
file, we identified variant sites across scaffold Herato1801 using ANGSD v.0.28 with the 
following criteria: SNP_p-val = 10

-6
; minDepth = number of individuals * 0.1 (= 5); maxDepth = average 

depth of coverage * number of individuals * 3; minInd = number of individuals * 0.75 (= 40); minQ = 30; 

and minMAF=0.05 (Korneliussen, Albrechtsen, & Nielsen, 2014). FST values were estimated 
based on these variant sites (-sites option) in ANGSD based on genotype likelihoods in 50kb 
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sliding windows with a 20kb step size to make them comparable to results in Van Belleghem 
et al. (2017).  
 
To understand how the sequencing coverage affects the ability to detect global population 
structure in Heliconius, we performed a principal components analysis for all individuals at 
each coverage based on covariance matrices estimated in ANGSD. Covariance matrices were 
estimated using a random-read sampling procedure in ANGSD and PCA was performed using 
the eigen() function in R. All results were plotted in R using ggplot. 

 

 
Box 4: Using imputation to bolster genotype estimation from lcWGS  
 
Simulations: To explore the performance of genotype imputation under different scenarios, 
we used the same forward simulation framework as in Section 4.1 (of the main paper) to 
simulate a 30Mb chromosome for three neutrally evolving populations that have reached 
mutation-drift equilibrium. We set the mutation rate (μ) to be 10-8/bp/generation for all three 
populations and altered their effective population size (Ne) and recombination rate (r), creating 
three different scenarios with different levels of genetic diversity and linkage disequilibrium 
(LD). Genetic diversity and LD are known to affect imputation performance (Pasaniuc et al., 
2012). In a neutral population, genetic diversity is proportional to the product of effective 
population size and mutation rate, whereas LD is inversely proportional to the product of 
effective population size and recombination rate, and accordingly, our three scenarios were 
characterized by 1) a low diversity, high LD scenario (r = 0.5 cM/Mbp, Ne = 1,000); 2) a medium 
diversity, medium LD scenario (r = 0.5 cM/Mbp, Ne = 10,000); and 3) a medium diversity, low 
LD scenario (r = 2.5, Ne = 10,000). 
 
We generated sample sizes of 25, 100, 250, 500, and 1000 individuals from a single, neutrally 
evolving population of stable size for each simulated scenario. We sampled with replacement 
2n haplotypes (n diploid individuals) from the offspring of the final generation of the simulation. 
Similar to our approach in Section 4, we used ART-MountRainier (W. Huang et al., 2012) to 
simulate bam files of sequencing reads to average depths of 1x, 2x and 4x per individual for 
each sample size, for a total of five sample sizes x three depths x three population scenarios 
= 45 datasets. 
  
SNP calling and genotype estimation with and without imputation: For each dataset, we 
evaluated the accuracy of genotype dosages and genotypes called using imputation without 
a reference panel in the programs Beagle v.3.3.2 and STITCH v.3.6.2. For comparison, we 
called genotypes and estimated genotype dosages without imputation in ANGSD v.0.931. 
Although ANGSD recommends basing downstream analyses on genotype likelihoods rather 
than called genotypes, we used it as a baseline for evaluating any improvement of genotype 
calls by imputation. For all downstream analyses, we first identified SNPs in ANGSD using the 
following settings: -GL 1 -doGlf 2 -doMaf 1 -doMajorMinor 5 -doCounts 1 -doDepth 1 -dumpCounts 3 

-P 6 -SNP_pval 1e-6 -rmTriallelic 1e-6 -setMinDepth 2 -minInd 1 -minMaf 0.0005 -minQ 20. 
 
We called non-imputed genotypes directly from the posterior genotype probability in ANGSD, 
using minor allele frequencies as a prior and a posterior probability cutoff of 0.90 (-postCutoff 

0.90 -doPost 1 -doMaf 1 -GL 2 -dogeno 5 -doMajorMinor 3). Because ANGSD does not directly 
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output genotype dosages, we converted posterior genotype probabilities using the formula: 
genotype dosage=P(AA | data)*0 + P(AB | data)*1 + P(BB | data)*2. 
 
Before running the full imputation in STITCH, we explored performance under varying settings 
of the parameter K (K=25, 30 and 35), and examined output plots as well as r2 values between 
simulated genotypes and imputation dosages. In most cases K=30 performed best or very 
close to best; thus, we used the settings K=30, nGen=10, and S=4, and called genotypes with 
posterior probability ≥ 0.90. For the imputation in Beagle, we passed genotype likelihoods 
estimated in ANGSD directly to Beagle and ran the imputation under default settings. We 
called genotypes from posterior genotype probability threshold of 0.9 using the script 
gprobs2beagle.jar (https://faculty.washington.edu/browning/beagle_utilities/utilities.html). 
  
We evaluated the performance of each method in the following ways, by the proportion of 
correct genotype calls (genotype concordance), the proportion of genotypes actually called, 
and by the r2 between allelic dosage and true genotypes within allele frequency bins of size 
0.05. We report average values for all sites with MAF>0.05, excluding variant sites that were 
not identified (false negatives) or non-variant sites called as SNPs (false positives) in the 
ANGSD SNP-calling step. 
  
Genotype calling rates and genotype concordance with imputation: At the smallest 
sample size tested (n=25), there was little to no improvement in genotype calling accuracy 
using Beagle, and accuracy actually decreased when imputation was performed in STITCH 
with 25 samples (Figures S20-S22), suggesting that such small sample sizes are inadequate 
for reliable imputation; thus, we focused our results on n≥100. For all sample sizes and 
sequencing depths across scenarios, the accuracy of genotype estimates varied with allele 
frequency. The correlation (r2) between imputed allelic dosage and true genotypes was low 
for sites with minor allele frequency (MAF) < 0.05 to 0.10, but increased and was relatively 
consistent across higher MAF bins (Figure S20). Genotype concordance (GC), by contrast, 
had the opposite relationship with MAF; GC was higher for sites with low MAF and decreased 
with higher MAF (Figure S20). This is because it is easy to achieve high accuracy by calling 
the homozygous major genotype when the minor allele is rare. In order to summarize overall 
imputation performance, we averaged r2, GC and the proportion of called genotypes across 
sites with MAF>0.05 for each combination of method, scenario and study design (Figure S20-
22).  

 
Genotype concordance (GC) was universally high for all methods and sequencing strategies 
(GC>0.9), except for imputation of 100 samples from the medium diversity, high LD scenario 
in STITCH (Figure S23D-F). At 1x coverage, fewer than half of genotypes were called by 
Beagle and without imputation, especially for sites with higher MAF (Figure S22). GC was 
similar under the medium diversity, medium LD scenario compared to the low diversity, high 
LD scenario (Figure S23D-E), except GC was somewhat lower for genotypes imputed in 
STITCH at 1x coverage. The least improvement in GC using imputation was seen under 
medium diversity, low LD scenario (Figure S23F). For n≤250 samples sequenced at 1x and 
2x coverage, GC for genotypes imputed in STITCH were less accurate than those estimated 
without imputation. 
 
Overall, imputation accuracy required larger sample sizes or was reduced altogether as 
genetic diversity and recombination rates increased. This was particularly true for the program 
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STITCH, which estimates distinct haplotype probabilities within a given region across a mosaic 
of ancestral haplotypes (Davies, Flint, Myers, & Mott, 2016), a problem that becomes 
increasingly complex under high recombination. Imputation showed larger improvements with 
increasing sample size in STITCH than in Beagle, especially at low coverage (1x), whereas 
Beagle improved more with increasing sequence read depth (Figure 9). 
  
Allele frequency estimation from imputed genotype probabilities: Because imputation 
increased the accuracy of posterior genotype probabilities under most of the tested scenarios 
and study designs, we asked whether allele frequency estimation was improved by using 
imputed genotype probabilities compared to MAF estimation without imputation. To estimate 
MAF from imputed genotype probabilities, we summed over the posterior genotype 
probabilities (-domaf 4 in ANGSD), and compared the results to MAF estimated from genotype 
likelihoods using the EM algorithm implemented in ANGSD (-domaf 1). Under some scenarios 
and study designs, imputation resulted in small improvements in accuracy of allele frequency 
estimation (Figure S24). Imputation yielded the largest improvements in allele frequency 
estimation for large sample sizes (N≥250) sequenced at 1x coverage from the low diversity, 
high LD population, and from the medium diversity, medium LD population. For small sample 
sizes from the medium diversity, low LD population, MAF estimated from genotype 
probabilities imputed in STITCH were less accurate. Beagle showed more consistent, modest 
improvements, increasing MAF estimation accuracy when coverage was ≥2x for all sample 
sizes and scenarios.  
 
Under the low diversity, high LD scenario, allele frequency estimates based on genotype 
probabilities imputed in STITCH from 1000 samples at 1x coverage were slightly more 
accurate (r2=0.999) than for 500 samples at 2x coverage (r2=0.998) and 250 samples at 4x 
coverage (r2=0.997). However, given that smaller sample sizes are already sufficient for 
estimating allele frequencies with high accuracy without imputation (r2=0.990 for MAF 
estimated from 250 samples sequenced at 1x coverage; Figure S24), imputation is not likely 
to contribute to analyses of these types of population-level statistics as much as it would for 
individual-level and genotype-level analyses like GWAS. 
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Part 2. Sensitivity of our population genomic 
inference power to simulation assumptions  

 
 
 
In Section 4 of the main text, we test the performance of different types of population genomic 
inference under different lcWGS experimental designs using forward genetic simulation. We 
found that for most of these analyses, distributing the same amount of sequencing effort 
across more samples can consistently improve inference power. This conclusion should be 
relatively robust regardless of the parameter settings in our simulation model, although the 
power of inference under each combination of sample size and coverage can be strongly 
affected by these model assumptions. Here, we briefly present a qualitative discussion of how 
the power of different types of population genomic inference could be impacted by different 
parameter choices in the simulation.  
 
Section 4.1: Given the same true allele frequency, the accuracy of allele frequency estimation 
at a single SNP should be largely independent of simulation parameters other than sample 
size and coverage. The values of RMSE and r2 genome-wide, however, will be sensitive to 
the site frequency spectrum (SFS) in the simulated data, since errors are strongly affected by 
the true allele frequencies (Figure 3). As a result, any processes that can skew the SFS (e.g. 
demographic expansion and contraction, selection) could affect the values of RMSE and r2, 
although the directionality of the change is context dependent.  
 
Section 4.2: For the inference of spatial structure, higher migration rate is an obvious driver 
for lower inference power (Figure 5). We have also shown that with more SNPs (which can 
result from a larger genome, larger population size, or higher mutation rate), inference power 
can improve (Figure S11). On the other hand, stronger LD (caused by lower population size 
or lower recombination rate) should decrease the power of inference, since SNPs can become 
highly correlated with each other, resulting in fewer independent SNPs that are informative. 
 
Section 4.3: Similarly, a larger number of SNPs in the dataset due to higher mutation rate can 
also lead to higher power to locate the region under divergent selection, as a window-based 
approach can have more information to work with. Stronger LD due to lower recombination 
rate generates more distinct patterns of linked selection, therefore also enhances the power 
to locate the general region of interest. Both factors, however, have a more complex effect on 
the power to locate the causal SNPs due to the higher number of linked neutral SNPs that 
potentially become false positives. Stronger divergent selection should be able to more reliably 
increase the detection power of both the general region of interest and the causal SNPs. 
Lastly, the effects of population size and migration rate are also complex. On the one hand, 
higher population size leads to more SNPs in the dataset. On the other hand, it can result in 
narrower peaks that are more difficult to detect due to reduced LD. Lower migration rate 
increases the FST values of the selected SNPs, but also increases the background noise. A 
more quantitative power analysis is therefore warranted to better understand the effect of 
these simulation parameters.  
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Part 3. Additional details about software 
packages for the analysis of low-coverage data 

 
 

 
 
In this section, we include some additional details about the software packages that we 
introduced in Section 3 of the main text. When applicable, we highlight the methodological 
differences between the different packages for solving the same problem.  
 
Genotype likelihood models: Four different genotype likelihood models are currently 
implemented in ANGSD. The GATK model (McKenna et al., 2010) assumes that base quality 
scores at the same site from different sequencing reads are each an independent and 
unbiased representation of the probabilities of sequencing error, whereas the Samtools model 
(Li, 2011) assumes that these quality scores are not completely independent. Both the SYK 
model (Kim et al., 2011) and the SOAPsnp model (Li et al., 2009) assume that the quality 
scores could be biased and thus implement a quality score recalibration step. In the SKY 
mode, type-specific error rates (e.g. the probability of an A being called a T) are estimated 
and accounted for in GL calculation. In the SOAPsnp model, in addition to the type-specific 
errors, strand and read position specific errors can be accounted for as well, but a set of 
invariant loci should be provided to minimize biases. Additional genotype likelihood models 
are adopted by other software packages, and they can be useful alternatives to ANGSD for 
specific types of data. For example, the program ATLAS (Kousathanas et al., 2017) explicitly 
incorporates post-mortem DNA damage in addition to sequencing error in its genotype 
likelihood model, making it well-suited for ancient DNA studies. EBG (Blischak, Kubatko, & 
Wolfe, 2018) uses a simplified version of the SAMtools model but relaxes ANGSD’s 
assumption of diploidy, allowing the analysis of polyploid samples.  
 
SNP identification: In ANGSD, SNPs are inferred by first estimating allele frequencies at 
each site (including the presumably invariable loci) and then testing whether its minor allele 
frequency is significantly larger than zero (Korneliussen et al., 2014). Accordingly, the first 
step is to restrict the number of alleles that can possibly occur at each site to two: a major 
allele, and a minor allele. The identities of these alleles can be determined through a maximum 
likelihood approach (Jørsboe & Albrechtsen, 2019; Skotte, Korneliussen, & Albrechtsen, 
2012) or by user specification. Next, the likelihood of the minor allele frequency at each site 
can be formulated as a function of genotype likelihoods across all individuals (see Equation 2 
in (Kim et al., 2011)), and these minor allele frequencies can be estimated using a maximum 
likelihood approach. In this way, all possible genotypes for each individual can be considered, 
effectively avoiding explicitly calling genotypes. Then, polymorphic sites will be identified 
through a likelihood ratio test (Kim et al., 2011). The list of polymorphic sites (i.e. SNPs) can 
then be exported and used for downstream analyses, along with the genotype likelihoods at 
each of these sites for each individual. Other software programs address SNP calling in similar 
ways. ATLAS, for example, follows the same general framework as ANGSD, but has made 
modifications (Kousathanas et al., 2017) to accommodate cases where the sample size is 
very small and neither the major nor the minor alleles is specified by users, which is often the 
case for ancient DNA studies (Kousathanas et al., 2017).  
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Dimensionality reduction methods for population structure inference: The random read 
sampling method employed by ANGSD does not take full advantage of the full dataset 
(because it ignores all but a single read for each individual at each position). In contrast, 
ngsTools (Fumagalli, Vieira, Linderoth, & Nielsen, 2014) uses a more sophisticated method 
where posterior genotype probabilities are first calculated with an empirical Bayes approach. 
This approach is valid under the assumption of Hardy-Weinberg equilibrium across the entire 
sample set, but for most structured populations, this assumption will not hold, which can lead 
to inaccurate PCA results (e.g. population clusters can have long tails, see Meisner & 
Albrechtsen, 2018). PCAngsd (Meisner & Albrechtsen, 2018) therefore takes one step further 
and uses an iterative approach to correct for potential violation of the HWE assumption by 
updating prior genotype probabilities based on the PCA result in each previous iteration, since 
these PCA results can represent the population structure that exists in the data (Meisner & 
Albrechtsen, 2018). For all of these dimensionality reduction methods, a key limitation is that 
axis loadings cannot be directly obtained (because they are based on a single covariance or 
distance metric for each pairwise comparison of individuals). In other words, we cannot know 
which genomic regions are driving the pattern along each PC axis based on results from these 
methods alone. One effective workaround is to perform PCA in small windows along the 
genome and measure the correlation between the patterns in these windowed PCA and each 
axis of the genome-wide PCA or PCoA (i.e., localPCA, see Li & Ralph, 2019; Mérot et al. 
2021). Alternatively, performing a genotype-likelihood-based genome-wide association 
analysis (GWAS) with each PC axis being the response variable is another viable strategy to 
detect the genomic regions driving the genome-wide PCA or PCoA patterns.  
 
Model-based clustering for population structure inference: NGSAdmix (Skotte, 
Korneliussen, & Albrechtsen, 2013) adopts a maximum likelihood implementation of the 
classic STRUCTURE model (Tang, Peng, Wang, & Risch, 2005; Pritchard, Stephens, & 
Donnelly, 2000), but formulates a likelihood function with sequencing data as its observed 
data and uses genotype likelihoods to consider all possible genotypes for each individual (see 
Equation 6 in Skotte et al., 2013). It then uses an expectation-maximization (EM) algorithm to 
estimate model parameters. Because of the more complex formulation of the likelihood 
function, however, NGSAdmix tends to be computationally demanding. As an alternative, 
Ohana (Cheng, Racimo, & Nielsen, 2019) adopts the same likelihood function as NGSAdmix 
but uses a sequential quadratic programming (QP) method instead of EM for optimization, 
which should speed up computation. No formal comparison between the performance of the 
two methods is available to date, but separate evaluations on simulated and real data have 
shown that both methods deliver great accuracy even at very low coverage (Cheng et al., 
2019; Skotte et al., 2013). Distinct from both NGSAdmix and Ohana, PCAngsd uses individual 
allele frequencies, an intermediate output from its PCA analysis, as input for a non-negative 
matrix factorization (NMF) algorithm to infer admixture proportions. 

 
Genome-wide association analysis: In Kim et al. (2011), case/control association is tested 
by first estimating allele frequencies within case and control individuals with the approach as 
described in the “SNP identification” section, and then using a likelihood ratio test for 
differences between case and control individuals at each locus (see equations 6-7 in Kim et 
al. 2011). The first step in Skotte et al. (2012) and Jørsboe & Albrechtsen (2019) is to calculate 
the posterior genotype probability using an empirical Bayes approach, with priors informed by 
either population allele frequencies or the SFS. Skotte et al. (2012) then used a score statistics 
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approach to test for significant associations with the phenotype at each site. This approach is 
computationally efficient, but cannot estimate the effect size of the loci. In contrast, Jørsboe & 
Albrechtsen (2019) employs a maximum likelihood approach to explicitly estimate the effect 
size of each locus. As expected, this approach is slower than the score statistics method. To 
take advantage of both methods, ANGSD also implements a hybrid approach, first using the 
score statistic to identify significant loci, and then using the maximum-likelihood approach to 
estimate effect sizes of these significant loci.  

 
Linkage disequilibrium: GUS-LD (Bilton et al., 2018) constructs a likelihood function of the 
LD coefficient D and uses a numerical method to optimize the likelihood function. In contrast, 
ngsLD (Fox, Wright, Fumagalli, & Vieira, 2019) constructs a likelihood function of the 
haplotype frequencies between each pair of SNPs instead, and uses an EM algorithm to 
optimize it (Fox et al., 2019). Different LD statistics, such as D, D’ and r2, can then be derived 
from the inferred haplotype frequencies. Furthermore, ngsLD incorporates several other 
helpful features, such as LD pruning and the fitting of an LD decay model.  

 
Allele frequency estimation: As mentioned in the SNP identification section, ANGSD takes 
a maximum-likelihood approach to estimate allele frequencies among all samples (Kim et al., 
2011). It then uses the same algorithm to estimate the frequencies of the minor alleles in each 
population separately for each site identified as polymorphic (based on the selected filtering 
and confidence threshold). It is important to note that a SNP significance filter or a minimum 
minor allele frequency filter should not be applied in population-specific allele frequency 
estimation, because sites fixed for the major allele in a subset of populations (which would be 
removed by these filters) are typically of interest. As mentioned in the main text, when minor 
allele frequencies in different populations are estimated separately (e.g. with ANGSD), it is 
critical to define the same alleles as the minor alleles in all populations (with ANGSD -

doMajorMinor options 3, 4 or 5). Other programs that can estimate allele frequencies from 
genotype likelihoods follow the same general workflow. ATLAS (Kousathanas et al., 2017), 
for example, adopts a similar maximum likelihood framework, but also provides a Bayesian 
inference option.  

 
Genetic diversity and neutrality test statistics within a single population: To estimate θ 
in different parts of the genome, ANGSD adopts an empirical Bayes approach, where the SFS 
within a window (posterior) can be formulated and solved as the product of the SAF likelihoods 
within the window (likelihood) and the genome-wide or chromosome-wide SFS (prior; see the 
equation in the “Empirical Bayes” section in Korneliussen, Moltke, Albrechtsen, & Nielsen 
(2013)). Different θ estimators can then be extracted from the SFS in each window.  
 
Genetic differentiation between populations: ANGSD implements the method-of-moment 
estimator of FST developed by Reynolds, Weir, & Cockerham (1983). While different estimators 
of θ depend on the local SFS within a single population, Reynolds et al.’s estimator of pairwise 
FST can be formulated as a function of the local two-dimensional SFS (the matrix with the joint 
distribution of allele counts in two populations). Therefore, ANGSD again takes an empirical 
Bayes approach, using the maximum likelihood method to estimate a genome-wide two-
dimensional SFS, which it then uses as a prior to calculate the two-dimensional SFS at each 
genomic locus. FST at each locus can then be derived from these locus-specific SFS. GPAT 
(http://www.yandell-lab.org/software/gpat.html) implements two additional methods to 
estimate FST using genotype likelihoods as its input. In the first method (wcFst), GPAT 
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estimates allele frequencies from genotype likelihoods and directly plugs the estimated allele 
frequencies into Weir and Cockerham's FST estimator. This method is computationally efficient 
but may not account for the uncertainties in the estimated allele frequencies as well as ANGSD 
does. In the second method (bFst), GPAT implements a Bayesian framework as described by 
Holsinger, Lewis, & Dey (2002). This Bayesian approach has the advantage of being able to 
provide a confidence interval for FST, but it is computationally expensive. 
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Part 4. References for software listed in Table 2 
of the main text 

 
 
See the full reference information in the reference list at the end of this supplementary 
materials document. 
 
AlphaAssign (Whalen, Gorjanc, & Hickey, 2019) 
Angsd (Korneliussen et al., 2014) 
ATLAS (Link et al., 2017) 
BaseVar (Liu et al., 2018) 
Bcftools/ROH (Narasimhan et al., 2016) 
EBG (Blischak et al., 2018) 
Entropy (Gompert et al., 2014) 
evalAdmix (Garcia-Erill & Albrechtsen, 2020) 
Freebayes (Garrison & Marth, 2012) 
GATK (McKenna et al., 2010) 
GPAT (Domyan et al., 2016) 
GUS-LD (Bilton et al., 2018) 
Heterozygosity-em (Bryc, Patterson, & Reich, 2013; 
https://github.com/kasia1/heterozygosity-em) 
HMMploidy (https://github.com/SamueleSoraggi/HMMploidy)  
LB-Impute (https://github.com/dellaporta-laboratory/LB-Impute)  
LepMap3 (Rastas 2017) 
LinkImpute (Money et al., 2015) 
loimpute (Wasik et al., 2019) 
lostruct (Li & Ralph, 2019) 
MAPGD (Maruki & Lynch, 2015) 
ngsAdmix (Skotte et al., 2013) 
ngsDist (Vieira, Lassalle, Korneliussen, & Fumagalli, 2016) 
ngsF (Vieira, Fumagalli, Albrechtsen, & Nielsen, 2013) 
ngsF-HMM (Vieira, Albrechtsen, & Nielsen, 2016) 
ngsLD (Fox et al., 2019) 
ngsRelate (Korneliussen & Moltke, 2015) 
ngsTools (Fumagalli et al., 2014) 
NOISYmputer (Lorieux, Gkanogiannis, Fragoso, & Rami, 2019) 
Ohana (Cheng, Mailund, & Nielsen, 2017; Cheng et al., 2019) 
PCAngsd (Meisner & Albrechtsen, 2018) 
PopLD (Maruki & Lynch, 2014) 
Reveel (Huang, Wang, Chen, Bercovici, & Batzoglou, 2016) 
skmer (Sarmashghi, Bohmann, P Gilbert, Bafna, & Mirarab, 2019) 
SNPTEST (Marchini, Howie, Myers, McVean, & Donnelly, 2007) 
STITCH (Davies et al., 2016) 
svgem (Lucas-Lledó, Vicente-Salvador, Aguado, & Cáceres, 2014) 
vcflib (https://github.com/vcflib/vcflib) 
WHODAD (Snyder-Mackler et al., 2016) 
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Supplementary Tables 
 

 
Table S1. A list of example studies that have used low-coverage whole genome sequencing for population genomics. This list was compiled through a combination of work 
familiar to the authors, database searching, and requests for input on Twitter. The list is not intended to be comprehensive, but merely to provide some example studies for 
inspiration. We included only studies that used a sequencing depth ≤5x for the majority of samples and did not rely on pre-existing reference panels for imputation. Full 
reference information for the listed studies is provided in the footnotes.  

First author 
& year 

Species Genome 
size (Gb) 

Total 
sample 
size 

Number of 
populations 
/ groups 

Average 
depth per 
individual* 

Questions addressed Library prep 
method 

Notes 

Baiz et al. 
20211 

Multiple warbler 
species (Genus 
Setophaga) 

1.02 156 34 4-5x Genomic basis of trait variation, 
speciation 

Illumina TruSeq 
Nano kit 

 

Cayuela et al. 
20212 

Capelin (Mallotus 
villosus) 

0.49 453 12 1.5x Genomic basis of trait variation Therkildsen & 
Palumbi (2017) 

Genome-wide methylation map was also 
generated by whole genome shotgun 
bisulfite sequencing 

Ceballos et 
al. 20203 

Human (Homo 
sapiens) 

3.10 440 4 3x Demographic and evolutionary history Not applicable New data was not generated 

Clucas et al. 
20194 

Atlantic cod (Gadus 
morhua) 

0.65 333 20 0.67x Population structure, genomic basis of 
trait variation, adaptation / selection 

Therkildsen & 
Palumbi (2017) 

 

Cooke et al. 
20205 

Reef-building coral 
(Acropora tenuis) 

0.49 150 5 3x Demographic and evolutionary history, 
population structure, adaptation / 
selection 

Unspecified 
 

Crawford et 
al. 20176 

Human (Homo 
sapiens) 

3.10 42 1 5x Genomic basis of trait variation, 
adaptation / selection 

Illumina TruSeq 
PCR-free Kit 

Pre-existing data from 300 individuals in 6 
populations was also used 

Cui et al. 
20207 

Killifish 
(Nothobranchius 
rachovii and 
Nothobranchius 
orthonotus) 

1.53 231 4 2.7x Demographic and evolutionary history, 
population structure, genomic basis of 
trait variation, adaptation / selection 

Rowan et al. (2015) 
with modifications 

One individual per population was 
sequenced at high coverage (>25x); more 
data were generated for other killifish 
species for genome assembly, and existing 
human and chimpanzee data was also used  

Foote et al. 
20169 

Killer whale (Orcinus 
orca) 

2.40 48 5 2x Demographic and evolutionary history, 
population structure, genomic basis of 
trait variation, adaptation / selection 

NEBNext library kit, 
Meyer & Kircher 
(2010) 

High coverage data (≥20x) from 2 
individuals was also generated 

Foote et al. 
20198 

Killer whale (Orcinus 
orca) 

2.40 26 11 5x Demographic and evolutionary history, 
population structure 

NEBNext library kit, 
Meyer & Kircher 
(2010) 

Pre-existing data from 20 individuals were 
also used 

Fuller et al. 
202010 

Reef-building coral 
(Acropora millepora) 

0.48 193 12 1.5x Genomic basis of trait variation, 
adaptation / selection, genomic 
prediction 

Picelli et al. (2014) 48 individuals were also sequenced at high 
coverage to form a reference haplotype 
panel for imputation 
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Gignoux-
Wolfsohn et 
al. 202111 

Little brown bat 
(Myotis lucifugus) 

2.00 176 6 1.8x Genomic basis of trait variation, 
adaptation / selection 

Therkildsen & 
Palumbi (2017), 
Baym et al. (2015) 

 

Ilardo et al. 
201812 

Human (Homo 
sapiens) 

3.10 93 2 5x Genomic basis of trait variation, 
adaptation / selection 

Illumina TruSeq 
Nano Kit 

Pre-existing data was also used 

Jones et al. 
201213 

Three-spined 
stickleback 
(Gasterosteus 
aculeatus) 

0.46 20 20 2.3x Genomic basis of trait variation, 
adaptation / selection 

Unspecified 
 

Liu et al. 
201414 

Polar bear (Ursus 
maritimus)  

2.41 79 3 3.5x Demographic and evolutionary history, 
adaptation / selection 

Nebulization & 
Illumina DNA sample 
preparation protocol 

High coverage data (22x) from 18 polar 
bears and 10 brown bears were also 
generated; the low-covereage samples were 
only used in the PCA 

Mérot et al. 
202115 

Seaweed fly 
(Coelopa frigida) 

0.24 1446 16 1.4x Genomic basis of trait variation, 
adaptation / selection 

Therkildsen & 
Palumbi (2017), 
Baym et al. (2015) 

ddRAD data was also generated for linkage 
map building and QTL mapping 

Oziolor et al. 
201916 

Gulf killifish 
(Fundulus grandis) 

1.20 288 7 0.6x Genomic basis of trait variation, 
adaptation / selection 

NEBNext library kit 
 

Pečnerová et 
al. 202117 

African leopard 
(Panthera pardus) 

1.37 47 10 2-5x Demographic and evolutionary history, 
population structure 

Custom protocol An additional six samples were sequenced 
at higher coverage (15-20x) 

Powell et al. 
202018 

Swordtail fish (genus 
Xiphophorus) 

0.73 574 3 1x Genomic basis of trait variation, 
adaptation / selection, population 
structure 

Tn5 transposase 
enzyme 

A variety of other methods are also used 
(e.g. RNA-seq, high-coverage whole 
genome sequencing) 

Reid et al. 
201619 

Atlantic killifish 
(Fundulus 
heteroclitus) 

1.20 384 8 0.6x-7x Genomic basis of trait variation, 
adaptation / selection 

Ultrasonication & 
NextFlex DNA 
sequencing kit 

RNA-seq data was also generated 

Rowan et al. 
201920 

Arabidopsis thaliana 0.12 1920 1 1-2x Genomic basis of meiotic crossover 
frequency variation 

Nextera LITE (a 
custom method 
derived from the 
Illumina Nexteral kit) 

Pre-existing data from 363 individuals was 
also used 

Therkildsen 
et al. 201921 

Atlantic silverside 
(Menidia menidia) 

0.55 372 7 1.3x Genomic basis of trait variation, 
adaptation / selection 

Therkildsen & 
Palumbi (2017) 

Data was mapped to a reference 
transcriptome 

Wang et al. 
201722 

Rice (genus Oryza) 0.37 638 11 unspecified Demographic and evolutionary history, 
population structure, adaptation / 
selection 

Not applicable New data was not generated 

Westbury et 
al. 201823 

Brown hyena 
(Parahyaena 
brunnea) 

2.37 14 3 2.1-3.7x Demographic and evolutionary history, 
population structure 

Meyer & Kircher 
(2010), Fortes and 
Paijmans (2015) 

High coverage data (56x) from 1 individual 
was also generated (≥20x) 

Wilder et al. 
202024 

Atlantic silverside 
(Menidia menidia) 

0.55 236 5 1.5x Demographic and evolutionary history, 
population structure, adaptation / 
selection 

Therkildsen & 
Palumbi (2017) 

Data was mapped to a reference 
transcriptome 

 
* We report average depth values as reported in the original papers. Note that this statistic is often calculated differently across studies. 



21 
 

 
1. Baiz, M. D., Wood, A. W., Brelsford, A., Lovette, I. J., & Toews, D. P. L. (2021). Pigmentation genes show evidence of repeated divergence and multiple bouts of introgression in Setophaga warblers. 
Current Biology, 31(3), 643-649.e3. doi: 10.1016/j.cub.2020.10.094 
2. Cayuela, H., Rougeux, C., Laporte, M., Mérot, C., Normandeau, E., Leitwein, M., … Bernatchez, L. (2021). Genome-wide DNA methylation predicts environmentally-driven life history variation in a 
marine fish. BioRxiv, 2021.01.28.428603. doi: 10.1101/2021.01.28.428603 
3. Ceballos, F. C., Gürün, K., Altınışık, N. E., Gemici, H. C., Karamurat, C., Koptekin, D., … Somel, M. (2020). Human inbreeding has decreased in time through the Holocene. BioRxiv, 
2020.09.24.311597. doi: 10.1101/2020.09.24.311597 
4. Clucas, G. V., Lou, R. N., Therkildsen, N. O., & Kovach, A. I. (2019). Novel signals of adaptive genetic variation in northwestern Atlantic cod revealed by whole-genome sequencing. Evolutionary 
Applications, 12(10), 1971–1987. doi: 10.1111/eva.12861 
5. Cooke, I., Ying, H., Forêt, S., Bongaerts, P., Strugnell, J. M., Simakov, O., … Miller, D. J. (2020). Genomic signatures in the coral holobiont reveal host adaptations driven by Holocene climate 
change and reef specific symbionts. Science Advances, 6(48), eabc6318. doi: 10.1126/sciadv.abc6318 
6. Crawford, J. E., Amaru, R., Song, J., Julian, C. G., Racimo, F., Cheng, J. Y., … Nielsen, R. (2017). Natural selection on genes related to cardiovascular health in high-altitude adapted Andeans. 
American Journal of Human Genetics, 101(5), 752–767. doi: 10.1016/j.ajhg.2017.09.023 
7. Cui, R., Medeiros, T., Willemsen, D., Iasi, L. N. M., Collier, G. E., Graef, M., … Valenzano, D. R. (2019). Relaxed selection limits lifespan by increasing mutation load. Cell, 178(2), 385-399.e20. 
doi: 10.1016/j.cell.2019.06.004 
8. Foote, A. D., Martin, M. D., Louis, M., Pacheco, G., Robertson, K. M., Sinding, M.-H. S., … Morin, P. A. (2019). Killer whale genomes reveal a complex history of recurrent admixture and vicariance. 
Molecular Ecology, 28(14), 3427–3444. doi: 10.1111/mec.15099 
9. Foote, A. D., Vijay, N., Ávila-Arcos, M. C., Baird, R. W., Durban, J. W., Fumagalli, M., … Wolf, J. B. W. (2016). Genome-culture coevolution promotes rapid divergence of killer whale ecotypes. 
Nature Communications, 7(1), 11693. doi: 10.1038/ncomms11693 
10. Fuller, Z. L., Mocellin, V. J. L., Morris, L. A., Cantin, N., Shepherd, J., Sarre, L., … Przeworski, M. (2020). Population genetics of the coral Acropora millepora: Toward genomic prediction of 
bleaching. Science, 369(6501). doi: 10.1126/science.aba4674 
11. Gignoux-Wolfsohn, S. A., Pinsky, M. L., Kerwin, K., Herzog, C., Hall, M., Bennett, A. B., … Maslo, B. (2021). Genomic signatures of selection in bats surviving white-nose syndrome. Molecular 
Ecology. doi: 10.1111/mec.15813 
12. Ilardo, M. A., Moltke, I., Korneliussen, T. S., Cheng, J., Stern, A. J., Racimo, F., … Willerslev, E. (2018). Physiological and genetic adaptations to diving in sea nomads. Cell, 173(3), 569-580.e15. 
doi: 10.1016/j.cell.2018.03.054 
13. Jones, F. C., Grabherr, M. G., Chan, Y. F., Russell, P., Mauceli, E., Johnson, J., … Kingsley, D. M. (2012). The genomic basis of adaptive evolution in threespine sticklebacks. Nature, 484(7392), 
55–61. doi: 10.1038/nature10944 
14. Liu, S., Lorenzen, E. D., Fumagalli, M., Li, B., Harris, K., Xiong, Z., … Wang, J. (2014). Population genomics reveal recent speciation and rapid evolutionary adaptation in polar bears. Cell, 157(4), 
785–794. doi: 10.1016/j.cell.2014.03.054 
15. Mérot, C., Berdan, E., Cayuela, H., Djambazian, H., Ferchaud, A.-L., Laporte, M., … Bernatchez, L. (2021). Locally adaptive inversions modulate genetic variation at different geographic scales in 
a seaweed fly. Molecular Biology and Evolution, msab143. doi: 10.1093/molbev/msab143 
16. Oziolor, E. M., Reid, N. M., Yair, S., Lee, K. M., VerPloeg, S. G., Bruns, P. C., … Matson, C. W. (2019). Adaptive introgression enables evolutionary rescue from extreme environmental pollution. 
Science, 364(6439), 455–457. doi: 10.1126/science.aav4155 
17. Pečnerová, P., Garcia-Erill, G., Liu, X., Nursyifa, C., Waples, R. K., Santander, C. G., … Hanghøj, K. (2021). High genetic diversity and low differentiation reflect the ecological versatility of the 
African leopard. Current Biology, 31(9), 1862-1871.e5. doi: 10.1016/j.cub.2021.01.064 
18. Powell, D. L., García-Olazábal, M., Keegan, M., Reilly, P., Du, K., Díaz-Loyo, A. P., … Schumer, M. (2020). Natural hybridization reveals incompatible alleles that cause melanoma in swordtail 
fish. Science, 368(6492), 731–736. doi: 10.1126/science.aba5216 
18. Reid, N. M., Proestou, D. A., Clark, B. W., Warren, W. C., Colbourne, J. K., Shaw, J. R., … Whitehead, A. (2016). The genomic landscape of rapid repeated evolutionary adaptation to toxic pollution 
in wild fish. Science, 354(6317), 1305–1308. doi: 10.1126/science.aah4993 
20. Rowan, B. A., Heavens, D., Feuerborn, T. R., Tock, A. J., Henderson, I. R., & Weigel, D. (2019). An ultra high-density arabidopsis thaliana crossover map that refines the influences of structural 
variation and epigenetic features. Genetics, 213(3), 771–787. doi: 10.1534/genetics.119.302406 
21. Therkildsen, N. O., Wilder, A. P., Conover, D. O., Munch, S. B., Baumann, H., & Palumbi, S. R. (2019). Contrasting genomic shifts underlie parallel phenotypic evolution in response to fishing. 
Science, 365(6452), 487–490. doi: 10.1126/science.aaw7271 
22. Wang, H., Vieira, F. G., Crawford, J. E., Chu, C., & Nielsen, R. (2017). Asian wild rice is a hybrid swarm with extensive gene flow and feralization from domesticated rice. Genome Research, 
gr.204800.116. doi: 10.1101/gr.204800.116 
23. Westbury, M. V., Hartmann, S., Barlow, A., Wiesel, I., Leo, V., Welch, R., … Hofreiter, M. (2018). extended and continuous decline in effective population size results in low genomic diversity in 
the world’s rarest hyena species, the brown hyena. Molecular Biology and Evolution, 35(5), 1225–1237. doi: 10.1093/molbev/msy037 
24. Wilder, A. P., Palumbi, S. R., Conover, D. O., & Therkildsen, N. O. (2020). Footprints of local adaptation span hundreds of linked genes in the Atlantic silverside genome. Evolution Letters, 4(5), 
430–443. doi: 10.1002/evl3.189 



22 
 

 
Table S2. Model parameters used for the forward genetic simulation. 
 

Scenario* Chromoso

me length 

(in Mb) 

Number of 

populations 

Population 

size (N)
†
 

Mutation 

rate (μ) 

Recombi

nation 

rate (r) 

Migration 

rate (m) 

Selection 

coefficient 

(s) 

Corresp

onding 

figures 

Single population 30 1 1000 10
-6 

2.5x10
-6 

NA NA 3-4, S1-

5, S8-9 

Spatial structure 

(low migration) 

30 9 500 2x10
-7 

5x10
-7 

0.0005 NA 5A, S12 

Spatial structure 

(high migration) 

30 9 500 2x10
-7 

5x10
-7 

0.002 NA 5B, S6, 

S13 

Spatial structure 

(high migration, 

longer 

chromosome) 

300 9 500 2x10
-7 

5x10
-7 

0.002 NA S11 

Divergent 

selection
‡
  

(large Ne,  

high migration) 

30 2 5000 10
-7 

2.5x10
-7 

0.001 0.08 6-7, S7, 

S14-15 

Divergent 

selection
‡
  

(small Ne,  

low migration) 

30 2 5000 2x10
-8

 5x10
-8 

0.0005 0.08 S16-18 

Imputation test 

(low diversity, 

high LD) 

30 1 1000 10
-8

 5x10
-9 

NA NA 9, S20-

24 

Imputation test 

(medium 

diversity,  

medium LD) 

30 1 1000 10
-7

 5x10
-8

 NA NA 9, S20-

24 

Imputation test 

(medium 

diversity,  

low LD) 

30 1 1000 10
-7

 2.5x10
-7

 NA NA 9, S20-

24 

 

* Each entry is linked to its corresponding simulation pipeline on GitHub. 

†
 Note that since we scaled down population size and scaled up mutation rate, recombination rate, migration rate, and selection 

coefficient in order to speed up computation, these population sizes do not represent the effective population size of our 

simulated populations.  

‡
 These parameters are the ones used in the selection stage of the simulation. Prior to the selection stage, a burn-in stage was 

first performed, during which the population size was further scaled down, whereas mutation rate and recombination rate were 

scaled up, all by a factor of 10. See supplementary methods for details. 
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Table S3. NCBI short read archive (SRA) accessions for the Heliconius erato individuals 
used for the subsampling and genotype-likelihood-based analysis of empirical data. These 
samples were originally analyzed by Van Belleghem et al. (2017) 
 

SRA ID H. erato subspecies 

SRS1618075 amalfreda 

SRS1618086 amalfreda 

SRS1618008 amalfreda 

SRS1618009 amalfreda 

SRS1618010 amalfreda 

SRS1618033 emma 

SRS1618034 emma 

SRS1618062 emma 

SRS1618063 emma 

SRS1618065 emma 

SRS1618066 emma 

SRS1618067 emma 

SRS1618069 erato 

SRS1618070 erato 

SRS1618071 erato 

SRS1618072 erato 

SRS1618073 erato 

SRS1618084 erato 

SRS1618014 etylus 

SRS1618015 etylus 

SRS1618016 etylus 

SRS1618017 etylus 

SRS1618018 etylus 

SRS1618053 lativitta 

SRS1618044 lativitta 

SRS1618045 lativitta 

SRS1618046 lativitta 

SRS1618047 lativitta 

SRS1618002 demophoon 

SRS1618093 demophoon 

SRS1618094 demophoon 

SRS1618098 demophoon 

SRS1618100 demophoon 

SRS1617995 demophoon 

SRS1618032 favorinus 

SRS1618057 favorinus 

SRS1618056 favorinus 

SRS1618058 favorinus 

SRS1618059 favorinus 

SRS1618060 favorinus 

SRS1618083 favorinus 

SRS1618102 hydara 

SRS1617999 hydara 

SRS1618068 hydara 

SRS1618074 hydara 

SRS1618087 hydara 

SRS1618101 hydara 

SRS1618005 notabilis 

SRS1618012 notabilis 

SRS1618090 notabilis 

SRS1618091 notabilis 
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Supplementary Figures 
 

 
 
 
 
 
 
 
 

 

 
 
Figure S1. Histogram of the allele frequencies of false negative SNPs (i.e. true SNPs in the 
population that are undetected) with simulated lcWGS data under different experimental 
designs. Across the different facets, the sample size increases from left to right, and the depth 
of coverage per sample increases from top to bottom. The total sequencing effort remains the 
same along the diagonal from bottom left to top right. 
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Figure S2. A comparison of the distribution of Tajima’s θ (aka π) and Watterson’s θ estimated 
using the Samtools genotype likelihood model and the GATK genotype likelihood model in 
10kb windows based on simulated lcWGS data under different experimental designs. Across 
the different facets, the sample size increases from left to right, and the depth of coverage per 
sample increases from top to bottom. The total sequencing effort remains the same along the 
diagonal from bottom left to top right. The true chromosome-average values for both statistics 
should be 0.004, which is marked with a read line. 
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Figure S3. A comparison of Tajima’s D estimates obtained using the Samtools genotype 
likelihood model and the GATK genotype likelihood model in 10kb windows under different 
experimental designs. Across the different facets, the sample size increases from left to right, 
and depth of coverage per sample increases from top to bottom. The total sequencing effort 
remains the same along the diagonal from bottom left to top right. The true chromosome-
average Tajima’s D should be 0, which is marked with a red line.  
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Figure S4. Linkage disequilibrium (LD) estimated using ngsLD from simulated lcWGS data 
with the Samtools (top) and GATK (bottom) genotype likelihood models. LD, shown on the y 
axis, is measured as r2 between pairs of SNPs, and the physical distance between these SNP 
pairs is shown on the x axis. The blue line shows the mean of the estimated r2 for each 
distance value, and the lighter blue area shows its interquartile range. The red line marks the 
theoretical expectation of r2 under mutation-drift equilibrium. Across the different facets, the 
sample size increases from left to right, and the depth of coverage per sample increases from 
top to bottom. The total sequencing effort remains the same along the diagonal from bottom 
left to top right.  
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Figure S5. Estimated linkage disequilibrium (LD) fitted to a linkage decay model using ngsLD 
with the Samtools (top) and GATK (bottom) genotype likelihood models. The solid blue line 
shows the best fitted model, and the dashed blue lines represent its 95% confidence interval. 
When the true recombination rate is known, the effective population size (Ne) can be 
calculated from the estimated LD decay rate and is shown on the top right corner in each 
facet. The true effective population size used in the simulation is 100,000. The red line marks 
the theoretical expectation of r2 under mutation-drift equilibrium, given by (Hill & Weir, 1988). 
Across the different facets, the sample size increases from left to right, and depth of coverage 
per sample increases from top to bottom.  
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Figure S6. Patterns of spatial population structure inferred through principal component 
analysis (PCA) in ANGSD from simulated data with the Samtools (top) and GATK (bottom) 
genotype likelihood models. This is a scenario with higher gene flow (an average of 1 effective 
migrant from one population to another every generation). The figure shows the first two 
principal components from the PCA with simulated lcWGS data under different experimental 
designs; each point corresponds to an individual sample and its color corresponds to the 
population it is sampled from. The sample size per population increases across panels from 
left to right, and the coverage per sample increases from top to bottom. Note that the top panel 
of this figure is identical to Figure 5B; it is included here again to facilitate comparison between 
the two genotype likelihood models. 
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Figure S7. Patterns of genetic differentiation between two populations under divergent 
selection as measured by FST in 1kb windows with the Samtools (top) and GATK (bottom) 
genotype likelihood models. The sample size per population increases from left to right, and 
the depth of coverage per sample increases from top to bottom. The black points mark both 
the selected and neutral SNPs, and the red asterisks only mark the positions of the selected 
SNPs. Estimated chromosome-average FST is shown on the top right corner of each facet; 
note that average FST is overestimated when the sample size is low. Also, at lower sample 
size, average FST is more sensitive to coverage. Except for the inclusion of these average FST 
values, the top panel of this figure is identical to Figure 6B; it is included here again to facilitate 
comparison between the two genotype likelihood models. 
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Figure S8. The empirically derived distribution of per-sample depth of coverage that we 
sampled from when simulating uneven sequencing coverage among samples. This 
distribution is obtained from the sequencing depths we obtained across samples when we  
had tried to pool libraries in equal molarity in three of our lcWGS projects.  
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Figure S9. The error in allele frequency estimation with lcWGS (yellow) and Pool-seq (blue) 
data, both simulated with uneven coverage among individual samples. The distribution of 
absolute errors (|estimated frequency - true frequency|) is shown with the box plots along the 
x-axis. The left and right hinges of the box plots show 25th and 75th percentile of the absolute 
errors, and the whiskers extend to the largest or smallest values no further than 1.5 times the 
interquartile range. Outlier points are hidden. Across the different facets, the sample size 
increases from left to right, and the depth of coverage per sample increases from top to 
bottom. The total sequencing effort remains the same along the diagonal from bottom left to 
top right. The root mean squared error (RMSE) for the two sequencing designs are shown in 
each facet. False negative SNPs are not included in this figure. See supplementary methods 
and Figure S8 for how uneven coverage was simulated.  
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Figure S10. An empirical example from one of our lcWGS projects of the distribution of raw 
sequencing yields from individual samples when additional sequence is added based on each 
library’s data yield in an initial sequencing lane. This is to demonstrate that very similar 
sequencing effort across samples can be achieved by such a sequencing design. (The type 
specimens were designed to have higher sequencing yield then other samples.) 
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Figure S11. The spatial population structure inferred through principal component analysis 
(PCA) with lcWGS data using PCA on a larger set of markers than used in our standard 
simulations. The first two principal components are shown. This result is from our higher gene 
flow scenario (an average of 1 effective migrant from one population to another every 
generation), but a longer chromosome is simulated (300Mbp, or 10 times longer than the 
scenarios shown in Figure 5). Sample size remains five per sample, and coverage increases 
from top to bottom. 
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Figure S12. Patterns of spatial population structure inferred through principal component 
analysis (PCA) with lcWGS data using PCAngsd (in contrast to ANGSD used for Figure 5), in 
a scenario with lower gene flow (an average of 0.25 effective migrants per generation).The 
sample size per population increases across panels from left to right, and the coverage per 
sample increases from top to bottom. This figure is based on the same dataset as Figure 5A, 
where the single-read sampling approach implemented in ANGSD was used instead of 
PCAngsd (used here) to generate the covariance matrix.  
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Figure S13. Patterns of spatial population structure inferred through principal component 
analysis (PCA) with lcWGS data using PCAngsd (in contrast to ANGSD used for Figure 5), in 
a scenario with higher gene flow (an average of 1 effective migrants per generation). The 
sample size per population increases across panels from left to right, and the coverage per 
sample increases from top to bottom. This figure is based on the same dataset as Figure 5B, 
where the single-read sampling approach implemented in ANGSD was used instead of 
PCAngsd (used here) to generate the covariance matrix.   
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Figure S14. Genome-wide scan for selection using Tajima’s D in 10kb windows. Tajima’s D 
is estimated in one of the two populations under divergent selection as shown in Figure 6. The 
sample size per population increases from left to right, and the coverage per sample increases 
from top to bottom. The black points mark both the selected and neutral SNPs, and the red 
lines mark the positions of the selected SNPs. The Samtools genotype likelihood model is 
used for this figure. Note that the y-axes are in different scales in different facets.  
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Figure S15. Genome-wide scan for selection using Fay and Wu’s H in 10kb windows. Fay 
and Wu’s H is estimated in one of the two populations under divergent selection as shown in 
Figure 6. The sample size per population increases from left to right, and the coverage per 
sample increases from top to bottom. The black points mark both the selected and neutral 
SNPs, and the red lines mark the positions of the selected SNPs. The Samtools genotype 
likelihood model is used for this figure. Note that the y-axes are in different scales in different 
facets.  
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Figure S16. The true per-SNP FST values along the chromosome between the two simulated 
populations in a scenario with smaller Ne (Ne = 104) and lower gene flow (an average of 2.5 
effective migrants from one population to the other every generation). Neutral SNPs are shown 
in black and selected SNPs are shown in red. 
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Figure S17. Genome-wide scan for divergent selection with lcWGS data in a scenario with 
smaller Ne (Ne = 104) and lower gene flow (an average of 2.5 effective migrants from one 
population to the other every generation). The FST values inferred from lcWGS data in 5kb 
windows along the chromosome are shown on the y axis. The sample size increases from left 
to right, and the depth of coverage per sample increases from top to bottom. The black points 
mark both the selected and neutral SNPs, and the red asterisks only mark the positions of the 
selected SNPs (not their inferred FST values).  
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Figure S18. Genome-wide scan for divergent selection with RAD-seq data in a scenario with 
smaller Ne (Ne = 104) and lower gene flow (an average of 2.5 effective migrants from one 
population to the other every generation). The per-SNP FST values inferred from RAD-seq data 
are shown on the y axis and the SNP positions are shown on the x axis. The sample size 
increases from left to right, and the RAD-tag density increases from top to bottom. The black 
points mark both the selected and neutral SNPs, and the red asterisks only mark the positions 
of the selected SNPs (not their inferred FST values).  
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Figure S19. Principal components plot and estimates of genetic differentiation around the 
optix gene for the Heliconius dataset at 4x (top) and 1x coverage (bottom), respectively.   
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Figure S20. Genotype estimation accuracy (r2) by minor allele frequency (MAF) for imputation 
in STITCH and Beagle compared to posterior genotypes estimated without imputation. 
Combinations of sample size (n; with increasing n indicated by more contiguous lines) and 
sequencing coverage (plots in rows correspond to 1x, 2x and 4x coverage) were tested for 
each method (line colors) under different diversity and linkage disequilibrium scenarios. Note 
the different y-axis scales. 
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Figure S21. Genotype concordance by minor allele frequency (MAF) for imputation in STITCH 
and Beagle and without imputation. Genotypes were called with minimum posterior genotype 
probability of 0.9. Combinations of sample size (n; with increasing n indicated by more 
contiguous lines) and sequencing coverage (plots in rows correspond to 1x, 2x and 4x 
coverage) were tested for each method (line colors) under different diversity and linkage 
disequilibrium scenarios. Note the different y-axis scales. 
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Figure S22. Proportion of genotypes called by minor allele frequency (MAF) for imputation in 
STITCH and Beagle and without imputation. Genotypes were called with minimum posterior 
genotype probability of 0.9. Combinations of sample size (n; with increasing n indicated by 
more contiguous lines) and sequencing coverage (plots in rows correspond to 1x, 2x and 4x 
coverage) were tested for each method (line colors) under different diversity and linkage 
disequilibrium scenarios. Note the different y-axis scales. 
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Figure S23. Genotype estimation by imputation in STITCH and Beagle compared to posterior 
genotypes estimated without imputation for sites with MAF>0.05. Combinations of sample size 
(n; with increasing n indicated by more contiguous lines) and sequencing coverage (x-axis) 
were tested for each method (line colors) under different diversity and linkage disequilibrium 
scenarios. (A)-(C) Mean r2 between true genotypes and estimated genotype dosage. (D)-(F) 
Genotype concordance (GC) between true and called genotypes with posterior genotype 
probability>0.9. G-I) Proportion of genotypes called with posterior genotype probability>0.9.  
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Figure S24. Change in accuracy (r2) of minor allele frequencies (MAF) estimation using 
imputed genotype probabilities from STITCH and Beagle, relative to non-imputed genotype 
likelihoods. Values above the x-axis show r2 for MAF estimated without imputation. The three 
diversity/LD scenarios are arranged in columns, sample sizes (n=100, 250, 500 and 1000) are 
arranged in rows, and sequencing depths are shown on the x-axis. Note the different y-axis 
scales. 
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