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Abstract 15 
Low-coverage whole genome sequencing (lcWGS) has emerged as a powerful and cost-16 
effective approach for population genomic studies in both model and non-model species. 17 
However, with read depths too low to confidently call individual genotypes, lcWGS requires 18 
specialized analysis tools that explicitly account for genotype uncertainty. A growing number of 19 
such tools have become available, but it can be difficult to get an overview of what types of 20 
analyses can be performed reliably with lcWGS data, and how the distribution of sequencing 21 
effort between the number of samples analyzed and per-sample sequencing depths affects 22 
inference accuracy. In this introductory guide to lcWGS, we first illustrate how the per-sample 23 
cost for lcWGS is now comparable to RAD-seq and Pool-seq in many systems. We then provide 24 
an overview of software packages that explicitly account for genotype uncertainty in different 25 
types of population genomic inference. Next, we use both simulated and empirical data to 26 
assess the accuracy of allele frequency and genetic diversity estimation, detection of population 27 
structure, and selection scans under different sequencing strategies. Our results show that 28 
spreading a given amount of sequencing effort across more samples with lower depth per 29 
sample consistently improves the accuracy of most types of inference, with a few notable 30 
exceptions. Finally, we assess the potential for using imputation to bolster inference from 31 
lcWGS data in non-model species, and discuss current limitations and future perspectives for 32 
lcWGS-based population genomics research. With this overview, we hope to make lcWGS more 33 
approachable and stimulate its broader adoption. 34 
 35 
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1. Introduction 38 
 39 
Despite massive reductions in the cost of DNA sequencing over the past decades, researchers 40 
remain faced with decisions about how to distribute sequencing effort along three dimensions: 41 
1) how much of the genome to sequence (breath of coverage), 2) how deeply to sequence each 42 
sample (depth of coverage), and 3) the total number of samples to sequence. Until recently, 43 
reduced-representation sequencing (e.g. RAD-seq), through which a small random portion of 44 
the genome can be sequenced deeply in many individuals to allow for simultaneous variant 45 
discovery and high-confidence genotyping, has been the most popular approach for population 46 
genomics of non-model organisms (Andrews, Good, Miller, Luikart, & Hohenlohe, 2016; Davey 47 
et al., 2011; McKinney, Larson, Seeb, & Seeb, 2017). While this approach undoubtedly has led 48 
to a breakthrough in our ability to examine genome-wide patterns of variation, an important 49 
limitation is that large stretches of the genome between markers remain unsampled (Figure 1A). 50 
Accordingly, RAD-seq data may miss signatures of selection and adaptive divergence that are 51 
highly localized in the genome (Lowry et al., 2017; Tiffin & Ross-Ibarra, 2014).  52 
 53 
In a growing number of cases, whole genome sequencing has identified striking peaks of 54 
differentiation or strong associations with phenotypes that went completely undetected with 55 
RAD-seq data (see e.g. Aguillon, Walsh, & Lovette, 2020 vs. Aguillon, Campagna, Harrison, & 56 
Lovette, 2018; Campagna, Gronau, Silveira, Siepel, & Lovette, 2015 vs. Campagna et al., 2017; 57 
Clucas, Lou, Therkildsen, & Kovach, 2019 vs. Clucas et al., 2019; and Szarmach, Brelsford, 58 
Witt, & Toews, 2021), suggesting that full genome coverage often is needed to understand 59 
mechanisms of adaptation. However, whole genome sequencing at sufficient depths to 60 
confidently call individual genotypes is still prohibitively expensive on a population scale for 61 
many projects. A popular cost-effective alternative is to sequence pools of individuals (Pool-seq; 62 
Schlötterer, Tobler, Kofler, & Nolte, 2014). When the number of individuals pooled and 63 
sequencing depth are sufficient, Pool-seq is a powerful approach for obtaining reliable estimates 64 
of population-level parameters (Futschik & Schlötterer, 2010; Zhu, Bergland, González, & 65 
Petrov, 2012). However, all information about individuals is lost, making it difficult to control for 66 
uneven contribution to the pool and precluding individual-level analyses as well as detection of 67 
cryptic substructure among sampled individuals (Anderson, Skaug, & Barshis, 2014; Fuentes-68 
Pardo & Ruzzante, 2017). 69 
 70 
Low-coverage whole genome sequencing (lcWGS) is emerging as a cost-effective alternative 71 
that allows population-scale screening of the entire genome while retaining individual 72 
information for - in many cases - a comparable cost to RAD-seq and Pool-seq. The underlying 73 
strategy is to maximize the information content in the sequence data by spreading it across the 74 
entire genomes of many separately barcoded individuals (Figure 1C). This way, we sacrifice 75 
depth of coverage (repeated sequencing of the same locus in the same individual), and 76 
therefore confidence in individual genotypes, in return for much greater breadth of coverage and 77 
potentially also larger sample sizes.  78 
 79 
At low depth of coverage, individual genotypes cannot reliably be inferred (Nielsen, 80 
Korneliussen, Albrechtsen, Li, & Wang, 2012; Nielsen, Paul, Albrechtsen, & Song, 2011). 81 



 

 

However, for most population-level questions, it is not the specific genotype of any particular 82 
individual that matters, but rather the overall population characteristics (e.g. allele frequencies, 83 
linkage disequilibrium (LD) patterns, etc). Similarly, for questions about genetic relationships 84 
between individuals, it is not the genotype at any particular single nucleotide polymorphism 85 
(SNP) that matters, but rather patterns of variation across SNPs genome-wide. Accordingly, 86 
probabilistic analysis frameworks that account for uncertainty about the true genotype (instead 87 
of assuming that any one genotype is correct) can integrate over the uncertainty about 88 
individual genotypes for population-level inference of variation at particular SNPs, and integrate 89 
over the uncertainty about an individual’s genotype at each particular SNP to make inference 90 
about that individual’s overall genetic signature (e.g. level of inbreeding, admixture proportions) 91 
(Buerkle & Gompert, 2013; Nielsen et al., 2012, 2011).  92 
 93 
Simulation studies have demonstrated that when sequencing data are analyzed within this type 94 
of probabilistic statistical framework that accounts for genotype uncertainty, sampling many 95 
individuals each at low read depth actually provides more accurate estimates of many 96 
population parameters than higher read depth for fewer individuals (Buerkle & Gompert, 2013; 97 
Fumagalli, 2013; Nevado, Ramos-Onsins, & Perez-Enciso, 2014). In fact, these studies have 98 
suggested that spreading sequencing depth to 1–2 reads per locus and individual (1–2x 99 
coverage or less) - and increasing sample sizes accordingly - maximizes the information gained 100 
about a population. Many recent empirical studies have demonstrated the power of this 101 
approach (examples are listed in Table S1). Some of the first applications included identification 102 
of genomic regions repeatedly associated with marine-freshwater adaptation in stickleback 103 
(Jones et al., 2012), adaptation to an Arctic lifestyle in polar bears (Liu et al., 2014), and 104 
divergence among killer whale ecotypes (Foote et al., 2016). More recently, lcWGS was used to 105 
identify genes involved in rapid adaptation to fisheries-induced size selection in experimental 106 
populations of Atlantic silversides (Therkildsen et al., 2019), map hybrid incompatibility genes in 107 
swordtail fish (Powell et al., 2020), scan for soft sweeps in response to white-nose syndrome in 108 
bats (Gignoux-Wolfsohn et al., 2021), build ultra-dense crossover maps in Arabidopsis (Rowan 109 
et al., 2019), and assess admixture patterns and elevated differentiation across massive linkage 110 
blocks along environmental gradients in several marine organisms (Clucas et al., 2019; Mérot et 111 
al., 2021; Wilder, Palumbi, Conover, & Therkildsen, 2020). 112 
 113 
Despite the clear promise, adopting a lcWGS approach can seem daunting because working 114 
with genomic data in a probabilistic framework requires both a shift in the way we think about 115 
our data and a different toolbox that incorporates genotype uncertainty in downstream analysis. 116 
In recent years, there has been a proliferation of programs that can explicitly account for 117 
genotype uncertainty in population genomic inference. But for the newcomer, it can be difficult 118 
to get an overview of what types of analyses can reliably be performed with this data type and 119 
what experimental designs will provide the most robust results for a particular system and 120 
question, e.g. how to best divide a given sequencing effort between the number of samples vs. 121 
the depth of sequencing per sample. 122 
 123 
The goal of this paper is to provide a practical “field guide” for researchers considering a lcWGS 124 
approach. We first illustrate that lcWGS is now a feasible option for many research projects by 125 



 

 

comparing the current costs and requirements of lcWGS to alternative sequencing strategies 126 
(Section 2). Next, we introduce the basic statistical framework used to account for genotype 127 
uncertainty inherent to lcWGS data, and provide an overview of current analytical tools built 128 
under a probabilistic framework to help readers identify software that can robustly perform 129 
common types of  population genomics inference with lcWGS data (Section 3). To guide 130 
experimental design, we then use both genetic simulations (Section 4) and downsampling of 131 
empirical data (Section 5) to assess the accuracy of population genomic inference under 132 
different sequencing strategies. We evaluate trade-offs between sample size and depth of 133 
coverage, compare the power of lcWGS to RAD-seq and Pool-seq, and explore the potential of 134 
genotype imputation for bolstering inference with lcWGS data. Finally, in Sections 6 and 7, we 135 
review challenges and limitations associated with lcWGS data and discuss future perspectives. 136 
With this practitioner-centered overview, we hope to make lcWGS seem more approachable 137 
and stimulate broader adoption of this powerful approach, while inspiring future development of 138 
population genomic inference methods for lcWGS data. 139 
 140 
 141 
2. Feasibility: What does lcWGS cost and what resources are 142 
required? 143 
 144 
2.1 Current sequencing costs 145 
It is a widespread assumption that whole genome sequencing approaches are still too 146 
expensive for researchers working on modest budgets. Yet, due to spectacular drops in 147 
sequencing costs over the past decades (the cost per Mb of sequencing is today >600,000 148 
times cheaper than in 2000; (Wetterstrand, 2021), lcWGS can now - in many cases - be 149 
performed at similar per-sample costs as reduced-representation techniques. Table 1 provides 150 
estimates of the total per-sample cost for both library preparation and sequencing (based on 151 
November 2020 pricing) for organisms of different genome sizes. The cost of lcWGS inevitably 152 
scales with genome size (because more sequence data are needed to provide a target 153 
coverage level of a large vs. a small genome), and this approach therefore may remain 154 
impractical for organisms with extremely large genome sizes. However, even for organisms with 155 
sizeable genomes around 1 Gb (e.g. many birds, fish, invertebrates, and plants), the per-sample 156 
cost with 1-2x sequencing coverage (20-32 USD) is now on par with the 30 USD recently 157 
reported for genotyping 20,000 variable RAD-seq loci,15 USD for a custom sequence capture 158 
approach for 500 - 10,000 loci (Meek & Larson, 2019) and 48 USD for custom exome capture 159 
(Puritz & Lotterhos, 2018). For organisms with smaller genome sizes, lcWGS can be cheaper 160 
than reduced-representation approaches, and prices are likely to drop further as sequencing 161 
costs continue to decrease. 162 
 163 
 164 
2.2. Library preparation 165 
Depending on target coverage levels, Pool-seq approaches remain the most cost-effective way 166 
to obtain genome-wide population-level data because it only requires preparation of a single 167 
sequencing library per population. The obvious downside is that all individual-level information is 168 



 

 

lost, precluding many types of analysis. Despite this limitation, Pool-seq has gained popularity 169 
because preparation of separate indexed libraries for hundreds of individuals used to be labor-170 
intensive and costly (the costs for preparing hundreds of libraries could easily outweigh the cost 171 
of sequencing). LcWGS has now become a viable alternative because of the development of 172 
cheap library preparation methods with efficient workflows that make it both practical and 173 
affordable to process hundreds of samples. (Nina Overgaard Therkildsen & Palumbi, 2017) for 174 
example, describe a robust easy-to-implement protocol based on reduced reaction volumes of 175 
Illumina’s Nextera kit, which brings per-sample reagent costs down to ~8 USD (based on 176 
current reagent pricing). Several other protocols that stretch reagents in commercial kits reach 177 
similar price points (e.g. Gaio et al., 2019; Li et al., 2019). An advantage of commercial kit-178 
based protocols is that they often work “straight out of the box” or require only limited 179 
optimization. Substantial further cost savings can be achieved with protocols based on in-house 180 
expression and purification of tn5 transposase (the enzyme used in Illumina’s Nextera 181 
tagmentation approach), such as described by Hennig et al., (2018) and Picelli et al., (2014). 182 
With those protocols, per-sample library costs can be brought to <<1 USD, substantially 183 
reducing overall project costs when analyzing hundreds of samples and essentially eliminating 184 
the added cost of individually indexed libraries, making total costs for lcWGS equivalent to Pool-185 
seq for similar total sequencing effort per population. 186 
 187 
LcWGS library preparation methods also tend to be very efficient and scalable. For example, 188 
tagmentation-based protocols (like the one used by Therkildsen & Palumbi 2017) make it 189 
possible to prepare 96 libraries in <5 hours (with <3 hours hands-on time) - substantially less 190 
time than needed for most RAD-seq protocols (Meek & Larson, 2019). The Therkildsen and 191 
Palumbi (2017) protocol also works well for relatively degraded DNA and requires only very 192 
small amounts of input DNA (~2.5 ng). For highly degraded DNA, we have had great success 193 
with the Carøe et al. (Carøe et al., 2018) single-tube method. Other cost-effective protocols 194 
produce successful lcWGS libraries even from picogram-levels of input DNA (Hennig et al., 195 
2018; Meier, Salazar, Kučka, Davies, & Dréau, 2020; Picelli et al., 2014), for example enabling 196 
high throughput production of libraries from individual zooplankters (Beninde, Möst, & Meyer, 197 
2020). Methods that sidestep DNA extraction with tagmentation directly on cells or tissue may 198 
lead to additional efficiencies for lcWGS library preparation in the future (Vonesch et al., 2020). 199 
 200 
 201 
2.3. The need for a reference genome 202 
For non-model organisms, a key constraint associated with lcWGS is the need for a reference 203 
genome to map the short-read sequence data generated from each individual. If a reference 204 
genome is not already available for the species of interest, a common solution is to map to a 205 
reference genome of a related species. While this can work well in some contexts, increasing 206 
phylogenetic divergence between the re-sequenced species and the reference genome can 207 
restrict mapping to the genomic regions that are most conserved between the two taxa and bias 208 
estimates of population genomic parameters (Bohling, 2020; Nevado et al., 2014). Major 209 
differences in genome organization (e.g. structural and copy number variants) can also exist 210 
even between closely related species (Ekblom & Wolf, 2014). For these reasons, a species-211 
specific reference sequence is preferable where it can be obtained. 212 



 

 

 213 
As a shortcut to obtaining species-specific reference sequence without de novo assembling a 214 
full genome, Therkildsen and Palumbi (2017) mapped lcWGS reads to a reference 215 
transcriptome, in practice performing ‘in-silico’ exome capture. However, major advances in 216 
affordable long-read sequencing, powerful genome scaffolding techniques, and improved 217 
assembly algorithms now enable chromosome-scale assemblies at a much lower cost and 218 
faster speed than earlier approaches (reviewed by Rice & Green, 2019), facilitating high-quality 219 
assemblies of mammalian-sized genomes (several Gb) with chromosome-length scaffolds for 220 
as little as 1,000 USD (Dudchenko et al., 2018; Gatter, von Löhneysen, Drozdova, Hartmann, & 221 
Stadler, 2020). Therefore, at this point, it probably makes sense to start most new lcWGS 222 
studies with a de novo genome assembly or upgrade, if a reference sequence of sufficient 223 
quality is not available.  224 
 225 
 226 
BOX 1: Glossary 227 
 228 
Bayesian inference: a statistical inference strategy that estimates model parameters by 229 
characterizing its posterior probability distribution (i.e. P(parameter | data)). By the Bayes 230 
theorem, the posterior probability is formulated as a product of the likelihood function and the 231 
prior probability distribution (probability distribution of model parameters before considering the 232 
data) divided by the marginal probability of the data (which is a constant), i.e. P(parameter | 233 
data) = P(data | parameter) * P(parameter) / P(data) 234 
 235 
Genotype dosage: the expected genotypic count. For diploid individuals, genotype dosage = 236 
P(AA | data)*0 + P(AB | data)*1 + P(BB | data)*2, where A and B represent the two alleles at the 237 
site, and e.g. P(AB | data) represents the posterior probability of the heterozygous genotype.  238 
 239 
Genotype imputation: A method to infer missing genotypes and bolster genotype likelihood 240 
estimation by identifying stretches of haplotypes shared between individuals. 241 
 242 
Genotype likelihoods (GLs): the probability of observing the sequencing data at a certain site 243 
in an individual given that the individual has each of the possible genotypes at this site (e.g. for 244 
diploids there are 10 possible genotypes, which can be reduced to 3 if the major and minor 245 
alleles are known), i.e. P(data | genotype), or L(genotype). 246 
 247 
Genotype likelihood model: the mathematical model used to estimate GLs. Different GL 248 
models are built under different assumptions about the data, in particular about the sequencing 249 
error profile. For example, the GATK model assumes that the sequencing quality scores 250 
accurately capture the probability of sequencing error, and that all errors are independent. In 251 
comparison, the Samtools model assumes that once a first error occurs at a certain site in an 252 
individual, subsequent errors are more likely.  253 
 254 
Low-coverage whole genome re-sequencing (lcWGS): We use this term to refer to whole 255 
genome re-sequencing of individuals (i.e. labeled with unique barcodes) with depth too low to 256 



 

 

reliably call genotypes without imputation (<5x). Note, however, that even for medium 257 
sequencing depth (5-20x), inference accuracy may improve under a probabilistic analysis 258 
framework based on GLs, rather than working with called genotypes (Nielsen et al., 2011). 259 
 260 
Maximum likelihood inference: a statistical inference strategy that estimates model 261 
parameters by choosing the parameters that maximize the likelihood of the data. In other words, 262 
the maximum likelihood estimators of model parameters = argmax(L(parameter))  263 
 264 
Posterior genotype probability: the probability of an individual having one of the possible 265 
genotypes at a certain site given the sequencing data, i.e. P(genotype | data). 266 
 267 
Prior genotype probability: the probability of an individual having one of the possible 268 
genotypes at a certain site before considering the sequencing data for this individual at this site, 269 
i.e. P(genotype). The prior genotype probability can be uniform (i.e. all genotypes are equally 270 
likely to occur), or can be informed by the allele frequency or the site frequency spectrum (SFS) 271 
at this site for all individual samples. It is often used for the estimation of posterior genotype 272 
probability in Bayesian inference.  273 
 274 
Restriction site-associated DNA sequencing (RAD-seq): a group of techniques for 275 
sequencing short flanking regions around restriction enzyme cut sites to obtain random samples 276 
of genetic markers across the entire genome. These markers are typically sequenced at high 277 
depth (e.g. >20x) for each individual so that individual genotypes can be confidently determined. 278 
 279 
Sample allele frequency (SAF) likelihood: the probability of observing sequencing data at a 280 
certain site across all individual samples given each possible sample allele frequency at this site 281 
(e.g. for diploids, the possible sample allele frequencies range from 0 to 2n; n=sample size), i.e. 282 
P(data | sample allele frequency).  283 
 284 
Whole genome sequencing of pools of individuals (Pool-seq): a whole genome sequencing 285 
strategy in which unlabeled DNA from multiple individuals is pooled before sequencing. The 286 
sequencing depth is typically low on a per-individual level but high for each pool (e.g. >50x). 287 
Due to the absence of individual barcodes, all individual-level information is lost in the 288 
sequencing data.   289 
 290 
 291 
3. The toolbox: What types of analysis can we do with low-coverage 292 
data? 293 
 294 
The major challenge in working with lcWGS data is that individual genotypes cannot be 295 
accurately inferred (Li, Sidore, Kang, Boehnke, & Abecasis, 2011; Nielsen et al., 2012, 2011). 296 
Many analytical tools that incorporate the uncertainty about individuals have therefore been 297 
developed in recent years, covering the most common types of population genomic inference. 298 
We briefly introduce the most widely used applications (see Table 2 for a more comprehensive 299 



 

 

list) and also provide a tutorial with example data as a starting point for exploration: 300 
https://github.com/nt246/lcwgs-guide-tutorial.  301 
 302 
Currently, the most widely used program for lcWGS analysis is ANGSD (Korneliussen, 303 
Albrechtsen, & Nielsen, 2014), a comprehensive package that implements an extensive variety 304 
of analysis options. Because of its broad use and versatility, ANGSD will feature prominently in 305 
this section’s overview of available tools. However, we also seek to highlight that a variety of 306 
alternative programs are available for most types of analysis (Table 2).  307 
 308 
 309 
3.1. Accounting for genotype uncertainty 310 
The most common way to incorporate uncertainty about true genotypes is to use genotype 311 
likelihoods (GLs) rather than genotype calls in downstream analyses. A GL reflects the 312 
probability of observing the sequencing reads that cover a specific site in an individual if said 313 
individual has a particular genotype at this site. GLs refer to the set of likelihoods computed for 314 
each of all possible genotypes that individual could hold at that site (e.g. for diploids there are 315 
ten possible genotypes: AA, AC, AG, AT,  CC, CG, CT, GG, GT, and TT, which can be reduced 316 
to three possible genotypes if the major and minor allele at a site is known, i.e. major-major, 317 
major-minor, minor-minor. 318 
 319 
The key factors that prevent us from confidently identifying the true genotype with lcWGS data 320 
is uncertainty about 1) whether both alleles of a diploid individual have been sampled in the 321 
stochastic sequencing process, 2) whether the base call (A, C, G, T) at each position of a 322 
sequencing read is correct, and 3) whether sequencing reads have been mapped to the correct 323 
position in the genome. Several models for how we should account for these uncertainties in 324 
computing GLs from sequencing data have been proposed, with the main difference between 325 
current models is their assumptions about how base quality scores relate to the true 326 
probabilities of sequencing error (i.e. issue 2 above; see Supplementary text for more detail; 327 
Blischak, Kubatko, & Wolfe, 2018; Korneliussen et al., 2014; Kousathanas et al., 2017). 328 
Unfortunately, the effects of GL model choice on downstream analyses are still incompletely 329 
understood. While GL model choice has been suggested to make little difference for most 330 
downstream analyses, inference that depends on accurate detection of rare alleles can be more 331 
sensitive (Korneliussen et al., 2014). In general, the sensitivity to GL model choice may depend 332 
on the accuracy of base calling, read coverage distribution and filtering, sample size, and 333 
particular individuals included in the sample (see Box 4 in Fuentes-Pardo & Ruzzante, 2017). In 334 
Section 4.1, we report one example where the choice of GL model can strongly influence the 335 
number of low frequency SNPs estimated from simulated low coverage (≤2x) data but more 336 
research is needed to compare the performance of these different models. In the meantime, it 337 
may be prudent to compare inference with several different models with a subset of the data for 338 
each new dataset, particularly for analyses that rely on rare alleles.  339 
 340 
 341 



 

 

3.2. From raw reads to SNP identification 342 
The initial steps in processing lcWGS data are similar to those used in many other NGS 343 
approaches, such as high-coverage whole genome sequencing and Pool-Seq (Figure 2). These 344 
include trimming adapter sequence and bases with low quality scores, mapping (aligning) reads 345 
to a suitable reference genome, removing poorly mapped and duplicated reads, and optionally 346 
realigning reads that span indels (see e.g. Therkildsen & Palumbi 2017). It is in the downstream 347 
processing of the resulting filtered bam files that high-coverage and low-coverage workflows 348 
diverge and where a probabilistic framework based on GLs becomes central for low-coverage 349 
data.  350 
 351 
The optimal approach in a GL-based framework would arguably be to compute GLs for every 352 
site in the genome for all analysis, including sites that appear to be invariant in a sample 353 
(because with lcWGS data we cannot be completely confident that we have not missed an 354 
alternative allele in one or more of our samples). While this approach is required for some 355 
analysis (e.g. for estimation of the site frequency spectrum and related estimates of genetic 356 
diversity), other types of analysis are more tractable and computationally efficient if only 357 
polymorphic sites are considered. Thus, a more practical solution is to initially identify likely 358 
polymorphic sites and restrict most GL-based analyses to those sites.  359 
 360 
Although many types of genetic variants exist, lcWGS analysis is typically restricted to bi-allelic 361 
single-nucleotide polymorphisms (SNPs). A range of programs can identify SNPs from lcWGS 362 
data (Table 2).  Because of built-in integration of a broad variety of downstream analysis tools, 363 
ANGSD is often a convenient option. ANGSD identifies SNPs as sites with minor allele 364 
frequencies significantly larger than zero. In this case, the number of alleles at each site is 365 
restricted to two (major and minor allele), with the identities of these alleles either determined 366 
through a maximum likelihood approach, setting the more common allele as the major allele 367 
(Jørsboe & Albrechtsen, 2019; Skotte, Korneliussen, & Albrechtsen, 2012) or by user 368 
specification (e.g. setting the reference or ancestral allele as the major allele). ANGSD currently 369 
does not allow for identification of indels or multi-nucleotide polymorphisms, but users could 370 
potentially identify biallelic indels with a different tool, such as Freebayes (Garrison & Marth, 371 
2012) or GATK (McKenna et al., 2010), and import estimated GLs into ANGSD for use in 372 
downstream analysis. Regardless of the program used, quality control filters can be crucial to 373 
ensure data reliability. Table 3 provides an overview of the key filters that should be considered 374 
for different types of analysis with lcWGS data. 375 
 376 
 377 
3.3. Individual-level analyses  378 
Despite the lack of called genotypes, lcWGS data can be used for a wide range of individual-379 
level analyses, which we define as those that do not require a priori grouping individual 380 
samples. It should be noted that the input formats for the different approaches differ between 381 
programs and that in some cases the SNP identification can be performed as part of the 382 
analyses (see specific manuals). Note also that none of the analyses listed in this subsection 383 
are possible with Pool-seq data. 384 
 385 



 

 

Population structure: A key component of many population genomic studies is to characterize 386 
population structure, using dimensionality reduction (e.g. PCA and PCoA) and/or model-based 387 
clustering (e.g. admixture analysis). Dimensionality reduction methods are based on a 388 
covariance matrix (PCA) or distance matrix (PCoA). Several methods for computing these 389 
matrices while accounting for genotype uncertainty have been implemented. ANGSD, for 390 
example, can either randomly sample one read per individual per site or use the most common 391 
allele to represent the individual’s allele frequency at this site (as either 0 or 1) and then 392 
calculate the covariance and distance between every pair of individuals from these allele 393 
frequencies. This simple approach has been shown to work well for datasets with very low 394 
sequencing depth and uneven coverage across samples  (see section 4.2 and ANGSD 395 
manual). PCAngsd (Meisner & Albrechtsen, 2018), in contrast, estimates the covariance matrix 396 
from posterior genotype probabilities while correcting for potential violation of the Hardy-397 
Weinberg equilibrium.   398 
 399 
Model-based clustering methods that estimate admixture proportions of each sample assuming 400 
a model of discrete ancestral populations are also implemented in several software programs 401 
using GLs as input. These include NGSAdmix (Skotte, Korneliussen, & Albrechtsen, 2013) and 402 
Ohana (Cheng, Racimo, & Nielsen, 2019). They both adopt a maximum likelihood 403 
implementation of the classic STRUCTURE model, (Pritchard, Stephens, & Donnelly, 2000; 404 
Tang, Peng, Wang, & Risch, 2005), but differ in their optimization approaches. PCAngsd 405 
implements a different approach, which uses an intermediate output from its PCA analysis as a 406 
starting point for model-based clustering. PCAngsd has been shown to outperform NGSAdmix 407 
in runtime without strongly compromising its inference accuracy, making it potentially more 408 
suitable for larger datasets (Meisner & Albrechtsen, 2018).  409 
 410 
Selection scans: Several of these clustering programs also implement selection scan 411 
approaches that do not require a priori grouping of individuals, as their general strategy is to 412 
locate outlier loci that exhibit patterns of genetic variation among individuals that are highly 413 
different from the genome-wide average. For example, PCAngsd (Meisner & Albrechtsen, 2018; 414 
Meisner, Albrechtsen, & Hanghøj, 2021) implements the FastPCA method by (Galinsky et al., 415 
2016) in a GL framework and in Ohana, SNPs that exhibit a significantly different covariance 416 
structure can be identified as potentially under selection. 417 

 418 
Genome-wide association studies (GWAS): Multiple statistical frameworks have been 419 
developed to take genotype uncertainty into account in scans for genotype-phenotype 420 
associations. GWAS often require large sample sizes to gain sufficient power, and a lcWGS/GL-421 
based approach provides an opportunity to maximise the number of individuals studied in a 422 
cost-efficient way. Several GL-based GWAS approaches implemented in ANGSD have shown 423 
power to discover meaningful associations, including in the presence of population structure 424 
(Jørsboe & Albrechtsen, 2019; Skotte et al., 2012). These methods range from simple case / 425 
control associations for identifying variants associated with binary phenotypes (Kim et al., 2011) 426 
to the analyses of quantitative traits with incorporation of covariates (Skotte et al. 2012; Jørsboe 427 
& Albrechtsen 2019). The maximum likelihood approach recently developed by (Jørsboe & 428 
Albrechtsen, 2019) also explicitly estimates the effect size of each locus. 429 



 

 

 430 
Linkage disequilibrium (LD): LD estimation has many important applications, for example 431 
relating to inference of population size, demographic history, selection, and discovery of 432 
structural variants (Slatkin, 2008). In addition, since many downstream analyses make 433 
assumptions about the independence of genomic loci, LD estimation is essential for pruning lists 434 
of loci to avoid inclusion of strongly linked loci. Several approaches have been developed to 435 
estimate LD from GLs (i.e. taking genotype uncertainty into account), with examples being 436 
GUS-LD (Bilton et al., 2018) and ngsLD (Fox, Wright, Fumagalli, & Vieira, 2019). Unfortunately, 437 
the computational complexity of GUS-LD is too high for it to be practical for whole genome data, 438 
but ngsLD has a more efficient algorithm and has different built-in functionalities to limit its 439 
computational complexity (e.g. restricting LD estimation between SNPs within a set distance, 440 
setting a minor allele frequency filter, etc.), and comparative evaluation has indicated that 441 
ngsLD tends to show less bias at low read depths (1-2x) than GUS-LD (Bilton et al., 2018; Fox 442 
et al., 2019). 443 
 444 
Other types of analysis: In addition to the examples discussed above, many other specialized 445 
software packages have been developed to account for genotype uncertainty in various types of 446 
inference, including estimation of relatedness among individuals (Korneliussen & Moltke, 2015; 447 
Link et al., 2017), parentage inference (Whalen, Gorjanc, & Hickey, 2019) and pedigree analysis 448 
(Snyder-Mackler et al., 2016), estimation of individual inbreeding coefficients (Link et al., 2017; 449 
Vieira, Fumagalli, Albrechtsen, & Nielsen, 2013) and identity-by-descent tracts (Vieira, 450 
Albrechtsen, & Nielsen, 2016), tests for introgression such as computation of ABBA-BABA/D-451 
statistic (Korneliussen et al., 2014), and construction of linkage maps (Rastas, 2017). More 452 
examples are listed in Table 2. It is also important to note that samples sequenced to low-453 
coverage of the nuclear genome typically have very high sequencing depth across the 454 
mitochondrial genome due to its much higher copy number in each cell, enabling recovery of 455 
high-confidence full mitochondrial genome sequences for each individual (see e.g. Therkildsen 456 
& Palumbi 2017). LcWGS thus provides a cost-effective way to generate full mitochondrial 457 
genome sequences for hundreds of individuals, enabling unprecedented resolution for 458 
phylogeographic analysis (Lou et al., 2018; Margaryan et al., 2020). 459 
 460 
 461 
3.4. Population-level analyses  462 
When individual samples can be grouped into discrete populations or categories based on 463 
either prior information (e.g. sampling location or experimental treatment) or results from 464 
individual-level population structure analyses (e.g. model-based clustering), analyses can be 465 
conducted at the population level.  466 

 467 
Allele frequency estimation: The estimation of population-specific allele frequencies is 468 
essential for most population genomic studies as it is a required input for many downstream 469 
analyses. Many programs, such as ANGSD or ATLAS, can estimate minor allele frequencies for 470 
each site using a maximum-likelihood or Bayesian approach (Kim et al., 2011; Kousathanas et 471 
al., 2017). Since population-specific estimates are obtained by running the program, e.g. 472 
ANGSD, on each population separately, it is crucial for users to explicitly define the same alleles 473 



 

 

as major and minor in each population to avoid inadvertently computing the frequency of 474 
opposite alleles in different populations.  475 
 476 
Site frequency spectrum (SFS): The population-specific SFS is another population genomic 477 
parameter essential for many downstream analyses. A challenge in estimating the SFS with 478 
low-coverage data is that low-frequency SNPs are less likely to be identified as polymorphic and 479 
therefore an SFS directly estimated from allele frequencies at identified SNP positions can be 480 
biased towards intermediate frequencies. To get around this issue, ANGSD estimates the SFS 481 
by using the sample allele frequency (SAF) likelihoods to formulate the likelihood function of the 482 
SFS, which the program then optimizes (Nielsen et al., 2012). Depending on the availability of 483 
an outgroup or ancestral reference genome, the inferred SFS can either be folded or unfolded 484 
and ANGSD can estimate the SFS jointly for up to four populations (Nielsen et al., 2012). This 485 
approach can correct for the bias caused by low-coverage data, but its performance can be 486 
sensitive to the choice of underlying GL model (Korneliussen et al., 2014), also see Section 487 
4.1). Another important limitation is that the runtime of the algorithm currently implemented in 488 
ANGSD grows quadratically with the number of samples and it can become impractical to run 489 
across the whole genome if the sample size is very large. One strategy is to estimate SFS by 490 
chromosomes or in smaller windows and sum them up in the end. Implementation of a faster 491 
algorithm (Han, Sinsheimer, & Novembre, 2015) may also be included in future ANGSD 492 
releases (Fumagalli, personal communication). 493 
 494 
Genetic diversity and neutrality test statistics within a single population: Derived 495 
estimators for genome-wide genetic diversity θ,  such as nucleotide diversity π and Watterson’s 496 
estimator, can be directly calculated from the population-specific SFS. These estimators of θ 497 
can also be computed within genomic windows from window-specific SFS and subsequently, 498 
different neutrality test statistics (e.g. Tajima’s D) that evaluate the skewness of SFS in each 499 
genomic window can be calculated. Individual heterozygosity estimates can be obtained by 500 
estimating the SFS for individuals (rather than populations). All these diversity statistics can be 501 
computed based on an infinite sites model implemented in ANGSD. In contrast, ATLAS 502 
(Kousathanas et al., 2017) bases its θ estimation on a model that allows for back mutations 503 
(Felsenstein, 1981), which can be more appropriate when working with ancient samples. 504 
Regardless of the method used, it is important to note that when generating diversity estimates, 505 
non-variable sites should be included in the calculation, and therefore minimum minor allele 506 
frequency filters or SNP p-value filters should not be used. 507 

 508 
Genetic differentiation between populations: In addition to estimates of within-population 509 
diversity, the genetic differentiation between populations can be estimated with a variety of 510 
different statistics, from simply quantifying the allele frequency difference to more complex 511 
statistics such as relative genetic differentiation (FST) and absolute genetic divergence (dxy). 512 
Various estimators of FST can be computed from GL data using ANGSD, ngsTools (Fumagalli et 513 
al., 2013), or vcflib (see Supplementary text for more detail). vcflib can also estimate pFST, which, 514 
contrary to what the name suggests, is not an FST estimator, but a statistic that quantifies the 515 
significance of allele frequency differences between populations in face of genotype uncertainty 516 
(Domyan et al., 2016). In contrast to FST, no established method to estimate dxy from GLs has, to 517 



 

 

our knowledge, been included in major software packages. Various custom scripts have been 518 
shared (see e.g. https://github.com/mfumagalli/ngsPopGen/tree/master/scripts, 519 
https://github.com/marqueda/PopGenCode/blob/master/dxy_wsfs.py). Note, however, that dxy may 520 
be over-estimated with these scripts so they should be used only for inspecting the relative 521 
distribution of dxy across the genome (Foote et al., 2016) and not to make inferences based on its 522 
absolute values. 523 
 524 
Other analyses based on derived statistics: In addition to the methods that work directly with 525 
the GLs, many other types of population-level analysis can be conducted based on the derived 526 
statistics mentioned above. For example, several commonly used software tools can use allele 527 
frequency matrices as input to infer population relationships and potential gene flow (e.g. 528 
Treemix (Bradburd, Coop, & Ralph, 2018; Pickrell & Pritchard, 2012) and conStruct (Bradburd 529 
et al., 2018; Pickrell & Pritchard, 2012)), perform selection scans (e.g BayPass or WFABC (Foll 530 
& Gaggiotti, 2008; Foll, Shim, & Jensen, 2015; Gautier, 2015)), association analyses (e.g. 531 
BayPass) or variance partitioning analyses (e.g. RDA (Forester, Lasky, Wagner, & Urban, 532 
2018)). To run these programs, population-level allele frequencies are estimated as explained 533 
above (e.g. using ANGSD), but have to be transformed into the appropriate input format using 534 
custom scripts. Similarly, the population-specific or multi-dimensional SFS estimated from 535 
ANGSD can be used to infer demographic history (e.g. δaδi (Excoffier & Foll, 2011; Gutenkunst, 536 
Hernandez, Williamson, & Bustamante, 2009), fastsimcoal2 (Excoffier & Foll, 2011; Gutenkunst 537 
et al., 2009)), or to explicitly control for the effect of demography in selection scans (e.g. 538 
SweepFinder2 (DeGiorgio, Huber, Hubisz, Hellmann, & Nielsen, 2016)). Both locus-specific 539 
neutrality test statistics and FST values can be used in selection scans (e.g. outFlank (Whitlock & 540 
Lotterhos, 2015)), and genome-wide FST estimates can be used, for example, to test for 541 
isolation by distance (Mantel test) or to estimate effective migration surfaces (e.g. EEMS 542 
(Petkova, Novembre, & Stephens, 2016)). Furthermore, Ancestry_HMM (Medina, Thornlow, 543 
Nielsen, & Corbett-Detig, 2018) and ancestryinfer (Schumer, Powell, & Corbett-Detig, 2020) can 544 
infer local ancestry across the genome without called genotypes, although they require detailed 545 
SNP information for reference populations. Using derived statistics as input data can be a 546 
powerful approach to expand the available toolbox for lcWGS. However, unlike the GL-based 547 
programs listed in the rest of this section and Table 2, this approach does not carry uncertainty 548 
about parameter estimation downstream. Accordingly, if summary statistics rather than GLs are 549 
used as input for analysis, p-values etc. should be interpreted with caution and in light of the 550 
expected precision given the sample size and sequencing depth (see section 4). 551 
 552 
 553 
4. Experimental design: The tradeoffs between sequencing depth per 554 
sample and total number of samples analyzed 555 
 556 
With a finite sequencing budget, do we learn more about a population from adding more 557 
sequencing depth to each individual or stretching the sequencing effort over more individuals? 558 
Several previous studies have used simulated data to address this question (e.g. Buerkle & 559 
Gompert, 2013; Fumagalli, 2013; Nevado et al., 2014). In general, these studies have found that 560 



 

 

sampling many individuals at 1x or 2x read depth provides more accurate estimates of many 561 
population parameters than higher read depth for fewer individuals. However, both the 562 
simulation (e.g. Haller & Messer, 2019; Huang, Li, Myers, & Marth, 2012) and the GL-based 563 
data analysis toolboxes (e.g. Fumagalli, Vieira, Linderoth, & Nielsen, 2014; Korneliussen et al., 564 
2014; Meisner & Albrechtsen, 2018) have evolved rapidly since these studies were conducted, 565 
and a more up-to-date evaluation is now needed. Here, we used simulated data to compare 566 
common types of population genomic inference under a wide range of sample size and 567 
sequencing depth combinations, including depths<1x, which were not explicitly evaluated in 568 
earlier studies. Full details about all the simulations and analyses can be found in the 569 
supplementary methods and Table S2, and our entire simulation and analysis pipeline is 570 
available on GitHub (https://github.com/therkildsen-lab/lcwgs-simulation).  571 
 572 
 573 
4.1. Population genomic inference for single populations 574 
We simulated an isolated population that has reached mutation-drift equilibrium, and evaluated 575 
the accuracy of lcWGS in inferring key population genomic parameters, including allele 576 
frequencies, the SFS, θ, Tajima’s D, and linkage disequilibrium (LD) under different 577 
experimental designs (Fox et al., 2019; Haller & Messer, 2019; Huang et al., 2012; Korneliussen 578 
et al., 2014). As expected, more sequencing data is always better and the accuracy in allele 579 
frequency estimation consistently increases with both higher sample size and coverage (as 580 
measured by the r2 values in Figure 3). The number of false negative SNPs (i.e. true SNPs in 581 
the population that fail to be identified) similarly decreases with higher sample size and higher 582 
coverage (Figure S1). Importantly, however, distributing the same total sequencing effort (i.e. 583 
the product of sample size and coverage) across more samples, with each sample receiving 584 
lower coverage (i.e. going from bottom left to top right in Figure 3) also consistently improves 585 
allele frequency estimation, even when each sample is sequenced at a coverage as low as 586 
0.25x. This is because each allele is less likely to be sequenced more than once with lower per-587 
sample coverage, and thus the effective sample size is higher. 588 
  589 
Consistent with what the authors of ANGSD have previously shown (Korneliussen et al., 2014), 590 
we found that the GL model used for SFS-based inference can strongly influence its result. With 591 
the Samtools GL model, Watterson’s θ is systematically underestimated when the average 592 
coverage is low (≤4x), although Tajima’s θ (π) estimates are more robust (Figure S2). 593 
Consequently, Tajima’s D tends to be overestimated (Figure S3). In contrast, when the GATK 594 
GL model is used, Watterson’s θ, Tajima’s θ, and Tajima’s D can all be accurately estimated 595 
even at coverage as low as 0.5x (Figure S2, S3). The two GL models differ in performance 596 
because both the GATK model and our simulation model assume that each base quality score 597 
reflects an independent and unbiased measurement of the probability of sequencing error 598 
(Huang et al., 2012; McKenna et al., 2010), whereas the Samtools model assumes that if one 599 
sequencing error occurs at a certain locus, subsequent errors are more likely (Li, 2011; Li et al., 600 
2009). As a result, with the Samtools model, lower-frequency mutations are less likely to be 601 
identified as polymorphic sites and more likely to be interpreted as sequencing errors when the 602 
coverage is low. This leads to an underestimation of the number of singleton mutations, and 603 
therefore Watterson’s θ tends to be underestimated, at least for our simulated data. We note 604 



 

 

that these low-frequency SNPs have minimal impact on many other population genomic 605 
analyses and, in fact, are often filtered out, so we do not expect strong discrepancies between 606 
the two GL models in most types of analysis. We also stress that the sequencing errors 607 
modeled in our simulations may not accurately represent the sequencing error profile in real life, 608 
so our result should not be interpreted as a recommendation of one GL model over the other.  609 
 610 
Lastly, we found that although relative estimates of LD (which may be adequate for many uses, 611 
e.g. for the identification of LD blocks or LD pruning) could reliably be obtained with per-sample 612 
coverage of 1-2x, higher per-sample coverage (e.g. ≥4x) would be required to get precise and 613 
accurate estimates of LD (e.g. for demographic inference) even with sample size as large as 614 
160 (Figure S4, S5, Fox et al. 2019).  615 
  616 
 617 
Box 2. Performance of lcWGS vs. Pool-seq in allele frequency 618 
estimation 619 
A key advantage of lcWGS over Pool-seq is that each sequencing read can be assigned to an 620 
individual so we can detect uneven sequencing coverage and account for it in parameter 621 
estimation. But does it matter in practice when the contribution of each individual to the 622 
sequencing pool is roughly equal? With our simulated data, we found that a lcWGS analysis 623 
approach that accounts for individual-level GLs consistently provides slightly more accurate 624 
allele frequency estimates than Pool-seq analysis (which ignores individual-level information), 625 
even when the total amount of sequence is exactly equal for all individuals (Figure 4). This is 626 
because the sampling variance inherent to next-generation sequencing creates stochastic 627 
variation in the sequencing depth for each individual at each locus. In practice, inaccuracies due 628 
to measurement and pipetting errors, variation in DNA quality, and sequencing biases make it 629 
almost impossible to ensure the optimal scenario of even amounts of sequence among samples 630 
(Figure S6, Schlötterer, Tobler, Kofler, & Nolte, 2014), further enhancing the value of being able 631 
to account for sample overrepresentation with individually barcoded reads (Figure S7-S8). 632 
 633 
 634 
4.2. Inference of spatial structure 635 
To evaluate the power of different lcWGS sampling designs in detecting population structure, 636 
we simulated a metapopulation consisting of nine subpopulations located on a three-by-three 637 
grid that have reached mutation-drift-migration equilibrium. We first examined a scenario in 638 
which gene flow among subpopulations is low (0.25 effective migrants between neighboring 639 
subpopulations per generation). In this scenario, the spatial structure among subpopulations 640 
can be correctly inferred from PCA even with extremely low sample size (5 samples per 641 
subpopulation) and coverage (0.125x coverage per sample; Figure 5A). In addition, migrant 642 
individuals and hybrids, when included in the sample, can be identified in the PCA (Figure 5A), 643 
which would not be possible with a Pool-seq design. 644 
 645 
We then increased the level of gene flow (1 effective migrant between subpopulations every 646 
generation). As expected, the power of PCA to resolve the weaker spatial structure slightly 647 
declines, but interestingly, small sample size causes a greater loss of power than low coverage 648 



 

 

does (Figure 5B). Subpopulations fail to form discrete clusters in the PCA space when the 649 
sample size per population is 5, unless the coverage is 2x or higher per sample. On the other 650 
hand, with a sample size of 10, the correct spatial structure can be inferred with a coverage as 651 
low as 0.125x (i.e. a per-population coverage of only 1.25x; Figure 5B). The reason we can 652 
push the per-sample coverage so low is that PCA depends on reliable covariance estimation 653 
between some, but not all pairs, of samples in the dataset. To get reliable covariance estimates 654 
in a sample pair, both samples need to have at least 1x coverage at some informative SNPs. As 655 
sample size increases, the number of all available sample pairs increases quadratically, and the 656 
number of sample pairs for which enough informative SNPs are shared also increases 657 
quadratically. Therefore, the overall population structure is more likely to be correctly 658 
extrapolated from these sample pairs. We also note that, due to computational limitations, our 659 
simulations are based on only a single 30Mb chromosome. Since the power of PCA depends on 660 
the number of informative SNPs shared between pairs of samples, with a larger genome size, 661 
even lower sequencing depth and/or sample size would be required to resolve the spatial 662 
structure among subpopulations, given the same SNP density as simulated here (see Figure S9 663 
for an example of this). Lastly, we found that ANGSD (Korneliussen et al., 2014), the results of 664 
which are presented here, outperforms PCAngsd (Meisner & Albrechtsen, 2018) in scenarios 665 
with low sample size (e.g. ≤10 samples per population) or very low coverage (e.g. ≤0.25x per 666 
sample) (Figure S10-11). 667 
 668 
 669 
4.3. Scans for divergent selection in the face of gene flow 670 
A primary advantage of lcWGS compared to reduced-representation sequencing approaches is 671 
the increased resolution for genome scans for signatures of selection, for example in the form of 672 
outlier SNPs that show elevated levels of differentiation between populations. To evaluate how 673 
experimental design affects our ability to detect outliers, we simulated two populations 674 
connected by gene flow that are strongly affected by divergent selection. We estimated FST 675 
between the two populations from lcWGS data to identify the loci under selection (details in the 676 
supplementary material). 677 
 678 
We first examined a scenario where the size of each population is large (Ne = 5x104) and gene 679 
flow is high (5 effective migrants per generation). In this scenario, seven SNPs under divergent 680 
selection, along with their neighboring neutral SNPs, show highly elevated FST values compared 681 
to the genome-wide background, creating a distinct pattern of narrow genomic islands of 682 
divergence (Figure 6) (Turner, Hahn, & Nuzhdin, 2005). This FST landscape can be recovered 683 
from lcWGS data with a total sequencing coverage ≥10x in each population (e.g. 40 samples 684 
per population and 0.25x coverage per sample, Figure 6). For a given total sequencing effort, 685 
however, we observe an increase in background FST when fewer samples are sequenced (e.g. 686 
40 samples each at 0.25x vs. 5 samples per population and 2x coverage per sample), which 687 
can lead to more false positive signals in the outlier detection (Figure 6). The same conclusions 688 
hold in a scenario with smaller Ne (Ne = 104) and lower gene flow (2.5 effective migrants per 689 
generation) (Figure S12, S13).  690 
 691 
 692 



 

 

4.4. The optimal experimental design depends on study goals 693 
Perhaps unsurprisingly, our simulation results suggest that there is not a single lcWGS 694 
experimental design that is ideal for all purposes. Instead, the optimal design depends on the 695 
goals, system, and budget of a study. For many common types of population genomic inference 696 
(e.g. allele frequency estimation, population structure analysis, genetic differentiation between 697 
populations), higher accuracy can be achieved by spreading a given sequencing effort thinly 698 
across more samples (Figure 3, 5, 6). There are, however, some notable exceptions. For 699 
example, inference that depends heavily on low-frequency alleles (e.g. Watterson’s θ, Tajima’s 700 
D) can be very sensitive to the chosen GL model when per-sample sequencing coverage is low, 701 
so until we have a better understanding of which GL models best fit the empirical data, 702 
sequencing each sample with relatively higher coverage (e.g. >4x) might generate more robust 703 
results for these types of analyses (Figure S2, S3). Similarly, the methods that are currently 704 
available for LD estimation with lcWGS data can generate biased estimates when the coverage 705 
is lower than 4x (Figure S4, S5), but note that reliable relative estimates of LD can be obtained 706 
at lower coverage.  707 
 708 
It is important to keep in mind that tradeoff exists between sample size and per-sample depth: 709 
with a given budget, the higher per-sample sequencing depth needed for robust estimation of 710 
the SFS (e.g. for demographic inference using δaδi) or absolute values of e.g. Tajima’s D or LD 711 
will likely compromise the accuracy for other estimates, e.g. of allele frequencies or FST outliers. 712 
Accordingly, researchers must carefully consider what types of inference are most essential to 713 
their study goals and strike an appropriate balance. Based on our results here and those from 714 
previous studies, we provide some general guidelines to lcWGS experimental design in Table 4. 715 
For more targeted guidance, we also encourage researchers to build on our simulation pipeline 716 
(https://github.com/therkildsen-lab/lcwgs-simulation) to optimize the experimental design for 717 
their specific studies.  718 
 719 
 720 
Box 3. Performance of lcWGS vs. RAD-seq in selection scans 721 
Compared to lcWGS, RAD-seq has the advantage of being able to generate high-confidence 722 
genotype calls, but suffers from a sparser coverage of the genome, which can result in missed 723 
signals in selection scans (Lowry et al., 2017). Here, we simulated RAD-seq data for our two 724 
divergent selection scenarios with a range of realistic sample sizes and RAD tag densities. In 725 
the scenario with larger population size and higher gene flow, we found that even with a large 726 
sample size and a much higher marker density than typically used (128 RAD tags per Mb), 727 
RAD-seq picked up some, but tended to miss several of the narrow FST peaks. With a lower, 728 
much more commonly used marker density (e.g. 8 tags per Mb), the majority of the selection-729 
induced peaks would be missed, regardless of sample size (Figure 7). In the scenario where the 730 
population size is smaller and gene flow is lower, RAD-seq is more likely to sample SNPs within 731 
the true FST peaks due to the stronger linked selection, but because of the higher background 732 
noise in these scenarios, it still struggles to detect distinct FST peaks (Figure S14). These 733 
findings are consistent with a growing number of empirical examples where RAD-seq missed 734 
signatures of selection clearly detected with WGS data (see introduction). 735 
 736 



 

 

 737 
5. Application to empirical data 738 
 739 
To supplement our simulation-based evaluation of lcWGS inference with an exploration of how 740 
sequencing depth affects the identification of polymorphic sites, population structure analysis 741 
and detection of outlier loci in empirical data, we subsampled and re-analysed previously 742 
published whole genome sequencing data from the Neotropical butterfly Heliconius erato (Van 743 
Belleghem et al., 2017). The H. erato radiation comprises several subspecies that show a vast 744 
visual diversity in Müllerian mimicry related to wing patterns, and many of the underlying 745 
candidate genes have been identified (Reed et al., 2011; Van Belleghem et al., 2017). For 746 
example, the optix gene has been shown to control the red band phenotype in multiple 747 
Heliconius species and accordingly shows strong differentiation among subspecies with 748 
different band patterns (Reed et al., 2011; Van Belleghem et al., 2017). We subsampled 749 
resequencing data (originally average coverage of 11x ± 2.3x per individual) mapped to the H. 750 
erato demophoon (v1) to coverage depths of 8x, 4x, 2x, 1x, 0.5x and 0.25x (see supplementary 751 
text) and analysed them in a GL framework. For simplicity, we focus on results for 8x, 2x and 752 
0.5x coverage, as results from 4x and 1x are very similar to 8x and 2x, respectively (see 753 
supplementary Figure S15).  754 
 755 
First, we found a positive correlation between the number of variable sites identified during SNP 756 
identification in ANGSD and the mean genome-wide sequencing coverage (Figure 8a; quadratic 757 
function: r2 = 0.98, p=0.00099). Across all 51 individuals used in the final analyses, the number 758 
of SNPs identified with a p-value threshold of 1e-6 ranged from 12,266 at 0.5x coverage to 759 
14,851,731 at a mean coverage depth of 8x. It has to be noted though, that the number of 760 
detected SNPs depends on the p-value threshold, and for a dataset with a mean per-individual 761 
coverage of 0.25x a lower p-value threshold would have to be used to identify any SNPs at all  762 
(Figure 8).  763 
 764 
Second, we reconstructed the population structure using PCA, performed on covariance 765 
matrices estimated using random read sampling in ANGSD (see supplementary methods). The 766 
PCA showed a very similar clustering pattern for all datasets regardless of coverage level, with 767 
populations grouping into three distinct clusters corresponding to the geographic origin of 768 
samples (Central America, East of Andes, West of Andes; Figure 8b). One subspecies (H. erato 769 
hydara) sampled from two geographic regions was split over two clusters. On a finer population 770 
structure scale, we observed a slightly wider spread of data points at the lowest coverage 771 
(0.5x), although the general clustering was comparable to higher coverages. 772 
 773 
Lastly, comparing the genetic differentiation between H. erato subspecies with (n=28) and 774 
without (n=23) the red bar phenotype (Van Belleghem et al., 2017), we recovered the well-775 
characterized FST peak around the optix gene at per-individual coverages as low as 1x (Figure 776 
8c) (Van Belleghem et al., 2017). At 0.5x coverage, we were restricted  to estimating FST within 777 
fewer genomic windows compared to higher coverages (112 50kb windows at 0.5x vs 255 50kb 778 
windows at >1x along scaffold 1801), leading to much sparser window coverage across the 779 
scaffold and therefore a noisier signal (Figure 8c). However, even at this low resolution, we 780 



 

 

detected one differentiated genomic window in the optix region, albeit the estimated FST was 781 
elevated at 0.5x (FST ~0.6) compared to higher coverages (FST ~0.4).  782 
 783 
Overall, these results suggest that even at a comparatively low individual sequencing coverage 784 
of 0.5-1x and moderate sample sizes of 20-30 per population, we can detect population 785 
structure and recover distinct peaks of differentiation across the genome in empirical data. 786 
 787 
 788 
Box 4. Using imputation to bolster genotype estimation from lcWGS  789 
 790 
The majority of current population genomic inference methods, including all the lcWGS methods 791 
discussed in this paper so far, consider data on a SNP-by-SNP basis and accordingly ignore all 792 
the information contained in the surrounding haplotype structure. Imputation can be used to 793 
boost genotyping accuracy by leveraging LD patterns between variants to identify shared 794 
stretches of chromosome and incorporate information from flanking alleles to infer missing or 795 
low-confidence genotypes (Li et al., 2011; Pasaniuc et al., 2012). Imputation has been used 796 
extensively to obtain genotype calls from low-coverage data in humans and agricultural species, 797 
but has seen limited application in non-model species because most imputation methods, such 798 
as Beagle and findhap (Browning & Yu, 2009; VanRaden, Sun, & O’Connell, 2015), rely on 799 
externally generated haplotype reference panels, which are unavailable for most species. In 800 
contrast, the more recently developed program STITCH imputes directly from sequence read 801 
data without reference panels, and has been shown to perform well when sample sizes are 802 
large (n>2000; (Davies, Flint, Myers, & Mott, 2016). However, sample sizes of this magnitude 803 
are not achievable in many studies, especially for rare or elusive species. To evaluate the utility 804 
of imputation without reference panels with sample sizes more typical of studies of non-model 805 
species, we simulated three populations with varying levels of genetic diversity and LD, tested 806 
combinations of sequencing depths and sample sizes, and identified the conditions under which 807 
reference panel-free imputation is likely to bolster genomic analyses of lcWGS data. 808 
 809 
Imputed genotype accuracy 810 
We simulated three populations characterized by 1) low diversity, high LD (Ne = 1,000, r = 0.5 811 
cM/Mb); 2) medium diversity, medium LD (Ne = 10,000, r = 0.5 cM/Mb); and 3) medium 812 
diversity, low LD (Ne = 10,000, r = 2.5). For each population, we subsampled 25, 100, 250, 500 813 
or 1000 individuals and simulated sequence reads to average depths of 1x, 2x and 4x per 814 
sampled individual. We compared genotype dosages for all SNPs with minor allele 815 
frequency>0.05 imputed without reference panels in Beagle v.3.3.2 and STITCH v.3.6.2, to 816 
those estimated without imputation in ANGSD v.0.931 (see the supplementary text and Table 817 
S2 for details on simulations, genotype dosage estimation and imputation).   818 
 819 
Our analysis suggests that using imputation without reference panels does improve population 820 
genomic inference under certain circumstances. Imputation was most effective under the low 821 
diversity, high LD scenario (Figure 9A). Under this scenario, genotype dosages imputed in 822 
STITCH from large sample sizes (n≥500) sequenced at 1x coverage were highly correlated with 823 
true genotypes (r2>0.94), and all experimental designs with sample sizes ≥100 showed a 824 



 

 

substantial improvement in genotype estimation (Figure 9A). In the medium diversity and 825 
medium LD population, larger sample sizes were necessary to achieve similar imputation 826 
accuracy (e.g.,  n=1000 was needed for r2=0.95; Figure 9B). Performance was markedly worse 827 
in the populations with medium diversity, low LD, but there was nonetheless an improvement 828 
when imputing from large sample sizes (n≥250) or greater sequencing depths (≥2x) compared 829 
to genotypes called without imputation (Figure 9C). 830 
 831 
Considerations for using imputation in non-model systems 832 
Choosing whether to apply imputation to real-world data will depend on the details of the study 833 
system and the experimental design. In general, imputation accuracy increases with SNP 834 
density and LD between SNPs (de Bakker, Neale, & Daly, 2010; Shi et al., 2018), and our 835 
results suggest that populations with lower LD (even those with greater SNP density) require 836 
greater sample sizes and/or coverage to achieve the same imputation accuracy. For 837 
populations with higher LD, STITCH can substantially boost genotype accuracy for samples 838 
sequenced at 1x coverage, provided sample sizes are adequate (n≥100). When coverage is 839 
higher (≥2x), Beagle tends to perform similarly to or even outperform STITCH. However, for 840 
populations with lower LD, the improvement in genotype accuracy by imputation may be small 841 
unless sample sizes are ≥1000 and/or coverage is ≥2x for the conditions tested here; at smaller 842 
sample sizes or lower coverage, the potential benefit of imputation for low LD populations may 843 
not warrant the computational time.  844 
 845 
Imputation provides another potential benefit for spreading sequencing effort thinly among many 846 
individuals in some circumstances. As our results have shown, by leveraging LD information 847 
from all samples, imputation can to some extent make up for the genotype uncertainty inherent 848 
in lcWGS data. For example, in the high LD population, genotypes imputed in STITCH from 849 
1000 samples sequenced at 1x coverage were only slightly lower in accuracy (r2=0.975) than for 850 
500 samples at 2x coverage (r2=0.981) and 250 samples at 4x coverage (r2=0.982). For many 851 
questions where a large sample size is necessary to achieve adequate power, such as GWAS, 852 
what can be gained from increased sample size could readily outweigh the minimal loss in 853 
genotype accuracy. In addition, for some GWAS methods, the remaining genotype uncertainty 854 
can be incorporated directly into the analysis (Skotte et al., 2012; Jørsboe & Albrechtsen, 2019).  855 
 856 
Because the performance of imputation varies with the LD and diversity of populations, a priori 857 
information on population history may help researchers anticipate how well imputation will 858 
perform. A set of “true genotypes” (e.g. from high-depth samples) and quality metrics output by 859 
the imputation programs (Browning & Yu, 2009; Davies et al., 2016) can also be used. 860 
Populations with small Ne or that have experienced recent bottlenecks, such as threatened or 861 
endangered species, will have higher genome-wide LD (Hayes, Visscher, McPartlan, & 862 
Goddard, 2003; Waples & Do, 2010), making them potentially good systems for applying 863 
imputation if relatively large sample sizes (e.g. ≥100 for the scenarios simulated here) can be 864 
obtained. Where pedigree information is available, methods that incorporate the pedigree into 865 
imputation can be used (e.g. Ros-Freixedes, Whalen, Gorjanc, Mileham, & Hickey, 2020; 866 
Whalen, Ros-Freixedes, Wilson, Gorjanc, & Hickey, 2018). Finally, although imputation has 867 
been mainly applied to regular short-read data, the haplotype reconstruction step could be 868 



 

 

greatly simplified by long-read or linked-read data that is becoming increasingly available (see 869 
section 7).  870 
 871 
 872 
6. Current limitations and future developments 873 
 874 
Despite the many strengths of lcWGS, there are also clear limitations to this data type. Here, we 875 
outline key constraints that researchers should consider before adopting the approach and 876 
discuss prospects for overcoming these constraints in the future. 877 
 878 
Not suitable for analysis requiring genotype calls: It is important to stress that the potential 879 
for improved inference accuracy by spreading sequencing effort thinly over many individuals is 880 
only realized if the resulting uncertainty about individual genotypes is accounted for statistically 881 
in downstream analyses, with approaches such as those reviewed in section 3. As discussed, 882 
hard-calling genotypes from lcWGS data remains likely to bias inference regardless of how 883 
large the sample size is, so lcWGS data is not well-suited for analysis types or downstream 884 
software that require genotypes as input, unless imputation can provide more accurate 885 
genotype calls (see Box 4 for details). However, as outlined in section 3, GL-based inference 886 
frameworks are available for most major types of population genomic analysis and many 887 
additional approaches are under development.  888 
 889 
Lack of user-friendly interface and documentation: Unfortunately, a key barrier to the wider 890 
adoption of lcWGS has been a lack of user-friendly interfaces and sparse documentation for 891 
programs that handle GL data. Accordingly, these tools are only accessible to users with prior 892 
expertise in bioinformatics, and the development of workflows often requires a substantial time 893 
investment. We hope that this beginner’s guide can be part of the effort to increase the 894 
accessibility of lcWGS We are also aware that efforts are underway to develop a graphical front-895 
end to ANGSD, which should make this powerful and versatile software package accessible to a 896 
broader set of researchers (Fumagalli, pers. comm). 897 
 898 
Computational demands: Another practical limitation is the often much greater computational 899 
cost of GL-based methods compared to genotype-based methods. For example, SFS 900 
estimation from GLs in ANGSD is computationally intensive with very large sample sizes, which 901 
may be prohibitive for researchers without access to high-performance computational 902 
resources. New, more efficient algorithms (e.g. Han et al., 2015) and strategies for analyzing 903 
smaller sections of the genome in turn (see section 3) may alleviate some of these constraints, 904 
but the computational demands for analysis should definitely be considered, especially for 905 
researchers transitioning to lcWGS after working with much smaller datasets such as RADseq. 906 
 907 
Flaws and gaps in the current toolbox: Although tremendous progress has been made in the 908 
development of methods and tools  for the analysis of lcWGS data over the past decade, some 909 
key analytical challenges remain. One important issue is the potential sensitivity to the choice of 910 
GL model in some types of analyses (see sections 4.1 and Box 4 in Fuentes-Pardo & Ruzzante, 911 
2017). A better understanding of which GL models best match the real error structures 912 



 

 

generated by different sequencing platforms is essential for more robust inference from low-913 
coverage data. In addition, alignment error is not taken into account in any of the current GL 914 
models, which could be problematic for genomes with high repeat content or for poor-quality 915 
reference genomes. The current analysis framework implemented in most software packages is 916 
also centered on the analysis of diploid organisms; extension to an arbitrary ploidy level would 917 
expand its usefulness for working with haploid and polyploid organisms, and key parts of this 918 
framework have already been developed (Blischak et al., 2018). There also remain types of 919 
analysis for which GL-based methods are not yet available. However, new analytical 920 
approaches for lcWGS data also continue to emerge. GL-based equivalents to some 921 
established approaches, such as implementation of the Pairwise Sequentially Markovian 922 
Coalescent (PSMC) model, are currently under development (ngsPSMC 923 
[https://github.com/ANGSD/ngsPSMC]).  924 
 925 
Analysis susceptible to batch artifacts: LcWGS data have great potential for reusability 926 
because the possibility to combine different datasets does not depend on the selection of the 927 
same restriction enzyme or markers. However, lcWGS could be particularly susceptible to batch 928 
effects when different datasets are combined. As mentioned earlier, some GL-based 929 
approaches are heavily dependent on the accurate modeling of the error structure in the data, 930 
which can vary between sequencing batches. For example, the sequencing error could be 931 
overestimated in one batch and underestimated in another (Lou et al. in prep), leading to 932 
artificial differences between batches that could confound real biological signals. Many of these 933 
batch effects can be mitigated with simple bioinformatic approaches, although extra care needs 934 
to be taken (Lou et al. in prep). 935 
 936 
Limited ability to phase lcWGS data: A major limitation is that no bioinformatic solution is yet 937 
available to allow accurate phasing of lcWGS data without a reference panel, therefore 938 
prohibiting haplotype-based analyses. Haplotype data are a rich source of information, e.g. for 939 
inference of local ancestry tracks across the genome, demographic histories, or ongoing 940 
selective sweeps (see Leitwein, Duranton, Rougemont, Gagnaire, & Bernatchez, 2020) for a 941 
detailed overview). Despite major technological advances, long-read sequencing that can 942 
recover haplotype information remains too costly for typical population genomic studies. 943 
However, the recent development of an affordable linked-read low-coverage sequencing 944 
approach (Meier et al., 2020) promises to open many new opportunities for haplotype-based 945 
inference on a population scale by enabling efficient phasing and imputation of low-coverage 946 
linked-read data without a reference panel. Phased haplotype data will provide substantial 947 
improvement in imputation performance compared to the short-insert lcWGS data explored in 948 
Box 4, and make completely new types of analysis possible with lcWGS data.  949 
 950 
Limitations for small sample sizes and very large genomes: LcWGS will not be an optimal 951 
solution for all study systems. In particular, for species that are rare or difficult to collect (e.g. 952 
endangered or elusive species), it may be impossible to obtain adequate sample sizes for 953 
accurately estimating population genomic parameters with lcWGS (see section 4). In these 954 
cases, many types of analysis, such as demographic history, diversity, selective sweeps and 955 
inbreeding levels, can be performed based on deep sequencing of the genome of a few or even 956 



 

 

just a single individual (e.g. Li & Durbin, 2011). For species with extremely large genomes (e.g. 957 
many amphibians and pine species), whole genome sequencing may also remain impractical at 958 
any sequencing depth from a cost or data storage/handling perspective, and reduced 959 
representation approaches such as RAD-seq or targeted sequence capture may be preferable 960 
(Burgon et al., 2020; McCartney-Melstad, Mount, & Shaffer, 2016). For targeted methods like 961 
sequence capture, low-coverage sequencing of larger sample sizes and associated GL-based 962 
analysis can, similar to WGS, confer distinct advantages over sequencing fewer individuals at 963 
higher depth (e.g. Snyder-Mackler et al., 2016; Nina O. Therkildsen et al., 2019; Warmuth & 964 
Ellegren, 2019; Wilder et al., 2020). 965 
 966 
 967 
7. Conclusion  968 
In conclusion, although some limitations still exist for the use of lcWGS, this approach offers 969 
many advantages over reduced-representation sequencing or pooled WGS approaches and is 970 
ripe for broader implementation. We are excited about how its cost-effectiveness democratizes 971 
population-scale whole genome analysis, which until recently was only available to well-funded 972 
research groups working on model species. The ability to obtain full genome data for hundreds 973 
of individuals even on modest research budgets, and the rapidly expanding toolbox for versatile 974 
analysis of lcWGS data now makes it an increasingly promising approach for molecular ecology, 975 
conservation and evolutionary biology research. We hope this guide will inspire broader 976 
adoption to expedite the exploration of genomic variation across the tree of life. 977 
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Table 1. Total cost per sample for both library preparation and sequencing based on 1317 
November 2020 price levels (rounded up to nearest dollar) 1318 
 1319 
Genome size 
(Gb) 

Cost per sample (USD)* Example organisms 
1x coverage 2x coverage   

0.2 11(3) 13(5) Fruit fly, Honeybee, Arabidopsis 
0.65 16(8) 24(16) Atlantic silverside, Stickleback, Eastern oyster 

1 20(12) 32(24) Zebra finch, Chicken, Purple sea urchin 
3 44(36) 79(71) Human, Atlantic salmon, African clawed frog 

 1320 
*Cost estimates do not include labor and assume that samples are sequenced efficiently on a HiSeq X 1321 
Ten system. The assumed costs break down to 8 USD per library (Therkildsen & Palumbi, 2017) and 1322 
1,300 USD per lane generating 110 Gb sequence data (see supplementary methods for estimates of 1323 
initial investment costs). The numbers in brackets show the cost of sequencing only (i.e. the approximate 1324 
total cost with a cheap homebrew library preparation method (see section 2.2)).  1325 
  1326 



 

 

Table 2. List of published software for the analysis of lcWGS data. References for each 1327 
software can be found in the main text (Section 3) or in the supplementary material.  1328 
 1329 

Analysis type Software 
Analysis  Method ANGSD Atlas MAPGD vcflib ngsTools† PCAngsd Specialised 

software 
SNP 
identification 

 
✓ ✓ 

    
BaseVar, EBG, 
Freebayes, GATK, 
Reveel, etc. 

Population 
structure 

PCA ✓ 
   

✓ ✓ 
 

 
Individual genetic 
distance ✓ ✓ 

  
✓ 

 
skmer 

 
Local PCA       

lostruct* 
 

Admixture      
✓ Entropy, evalAdmix, 

ngsAdmix, Ohana  
Selection scan PCA-based; 

ancestry-
corrected 

     
✓ Ohana 

Association 
analysis 

 
✓ 

     
SNPTEST 

Linkage 
disequilibrium 

   
✓ 

 
✓ 

 
GUS-LD, PopLD 

Individual 
relatedness 

Relatedness   
✓ 

  
✓ ngsRelate 

 
Parentage       

AlphaAssign 
 

Pedigree 
analysis 

      
WHODAD 

Inbreeding Inbreeding 
coefficient 

 
✓ 

 
✓ ✓ ✓ ngsRelate 

 
IBD tracts     

✓ 
  

 
Runs of 
homozygosity 

      
bcftools roh 

Ancestry 
relationships 

D-
statistics/ABBA-
BABA 

✓ ✓ 
 

✓ 
   

Linkage map 
construction 

       
Lep-MAP3 

Allele frequency 
estimation 

 
✓ ✓ ✓ 

    

Site frequency 
spectrum 

 
✓ 

   
✓ 

  

Within 
population 
genetic 
diversity 

θ estimators (e.g. 
Watterson’s, π) ✓ ✓ 

  
✓ 

  

Within 
population 
neutrality stats 

e.g. Tajima's D, 
Fay & Wu's H ✓ 

      

Individual level 
genetic 
diversity 

Individual 
heterozygosity ✓ ✓ ✓ 

   
heterozygosity-em 

Population 
differentiation 

FST ✓ 
  

✓ ✓ 
  

 
dxy     

✓ 
  

Allele frequency 
differentiation 

pFst    
✓ 

   

Hardy-Weinberg 
equilibrium 

 
✓ 

 
✓ 

  
✓ 

 

Structural 
variants 

       
svgem 

Quality score 
recalibration  

 
✓ ✓ 

     



 

 

Ploidy inference        
HMMploidy 

Genotype 
imputation 

       
Beagle, LB-Impute, 
LinkImput, loimpute, 
NOISYmputer, 
STITCH, etc. 

 1330 
† ngsTools is a collection of loosely-connected programs including ngsSim, ngsF, ngsPopGen, ngsUtils, 1331 
ngsDist, ngs-HMM, and ngsLD 1332 
* lostruct can be used together with custom scripts that perform the PCA e.g. in PCAngsd. 1333 
  1334 



 

 

Table 3. Key data filters to consider in the analysis of lcWGS data 1335 
 1336 
Category Filter Recommendation 
General filters Base quality Base quality scores are factored into the calculation of 

genotype likelihoods, so if they accurately reflect the 
probability of sequencing error, bases with low scores also 
carry useful information. However, base quality scores are 
sometimes miscalibrated, so noise may be reduced if 
bases with scores below a threshold, e.g. 20, are either 
trimmed off prior to analysis or ignored. 

 Mapping quality Mapping quality is not considered in genotype likelihood 
estimation in currently available tools, so it is often 
advisable to remove low-confidence and/or non-uniquely 
mapped reads prior to analysis. Filtering out reads that do 
not map in proper pairs should also further increase 
confidence in reads being mapped to the correct location, 
but could cause biases in regions with structural variation 

 Minimum depth and/or 
number of individuals 

To avoid sites with low or confounding data support in 
downstream analysis, minimum depth and/or minimum 
individual filters can be used to exclude sites with much 
reduced sequencing coverage compared to the rest of the 
dataset (e.g. regions with low mapping rates, such as 
repetitive sequences). Appropriate thresholds will vary 
between data sets, but could e.g. be to exclude sites with 
read data for <50% of individuals (globally or within each 
population), or with <0.8x average depth across 
individuals. 

 Maximum depth Maximum depth filters are used to exclude sites with 
exceptionally high coverage (e.g. regions that are 
susceptible to dubious mapping, such as copy number 
variants or paralogs). Common maximum depth thresholds 
are one or two standard deviations above the median 
genome-wide depth. 

 Duplicate reads PCR duplicates can give inflated impressions of how many 
unique molecules have been sequenced, which - 
particularly in the presence of preferential amplification of 
one allele - could bias genotype likelihood estimation. We 
therefore recommend removing duplicate reads prior to 
any analysis.  

 Indels Reads mapped to indels are frequently misaligned, 
especially if the ends of reads span an indel. To avoid 
false SNPs, we recommend either realigning reads 
covering an indel or excluding bases flanking indels 



 

 

Filters on 
polymorphic 
sites* 

p-value The significance threshold (often in the form of maximum 
p-value) can be adjusted to fine-tune the sensitivity of 
polymorphism detection, with lower p-values leading to 
fewer, but higher-confidence, SNP calls. A commonly used 
cut-off is 10-6 

 SNPs with more than two 
alleles 

Most software programs for downstream analyses assume 
that all SNPs are biallelic, so SNPs with more than two 
alleles can be filtered out in the SNP identification step to 
avoid violation of such assumptions.  

 Minimum minor allele 
frequency (MAF) 

For many types of analysis, e.g. PCA, admixture analysis, 
detection of FST outliers and estimation of LD, low-
frequency SNPs are uninformative and can even bias 
results. For those types of analysis, imposing a minimum 
MAF filter of 1-10% can substantially speed up 
computation time. Appropriate thresholds depend on 
coverage, sample size (how many copies does a MAF 
threshold correspond to) and the type of downstream 
analysis.  

Restrict analysis 
to a predefined 
site list 

List of global SNPs For comparison of parameter estimates for multiple 
populations, it is important to ensure that data are obtained 
for a shared set of sites and that SNP polarization (which 
allele we track the frequency of) is consistent. For 
programs like ANGSD where population-specific estimates 
are obtained by analyzing the data from each population 
separately, a good strategy is to first conduct a global SNP 
calling with all samples and restrict population-specific 
analysis to those SNPs with consistent major and minor 
allele designations and no MAF or SNP p-value filter 
(because that would give “missing data” if a site is fixed in 
a particular population). 

 1337 
* Note that no SNP significance or minimum MAF threshold should be used to estimate genetic diversity 1338 
(e.g. theta and the SFS) as all sites contain relevant information. This also applies to the estimation of the 1339 
absolute values of dxy.  1340 
  1341 



 

 

 1342 
Table 4. Experimental design recommendations for different types of population genomic 1343 
analyses using lcWGS data 1344 
 1345 

Type of analyses Examples Recommendations on experimental design 

Allele frequency 
and differentiation  

Allele frequency 
trajectory,  
BayPass,  
FST (as implemented in 
vcflib),  
pFst 

Prioritize larger sample sizes,  
≥10 samples per population, 
≥10x coverage per population 
(Figure 3, 4)  

SFS-based 
analyses  
(absolute estimation 
of rare-allele-
dependent metrics) 

Absolute estimation of 
Watterson’s θ, Tajima’s 
D,  
individual heterozygosity 
 
δaδi 

Prioritize higher coverage per sample,  
>4x coverage per sample, 
≥5 samples per population 
(Figure S2, S3) 

SFS-based 
analyses  
(relative estimation 
of rare-allele-
dependent metrics, 
or non-rare-allele-
dependent metrics) 

Relative estimation of 
Watterson’s θ and 
Tajima’s D (e.g. for 
outlier scan) 
 
π, dxy, FST (as 
implemented in ANGSD) 

Prioritize larger sample sizes,  
≥10 samples per population, 
≥10x coverage per population 
(Figure 6, S2-3, S10-11) 

Population structure PCA,  
admixture 
 

Prioritize larger sample sizes,  
≥10 samples per population, 
extremely low per-sample coverage (e.g. 0.125x, 
Figure 5, S9) or highly uneven per-sample coverage 
(e.g. 0.5-6x, Skotte et al. 2013) could be viable  

Absolute estimation 
of linkage 
disequilibrium 

LD decay rate, 
demographic inference 

Prioritize higher coverage per sample, 
≥4x coverage per sample,  
≥20 samples per population  
(Figure S4, S5; Bilton et al., 2018; Fox et al., 2019; 
Maruki & Lynch, 2014) 

Relative estimation 
of linkage 
disequilibrium 

LD pruning,  
LD block identification 

Per-sample coverage as low as 1x could be viable,  
≥20x coverage per population 
(Figure S4, S5) 

Genotype 
imputation without 
reference panels 

STITCH,  
Beagle 

STITCH: prioritize larger sample size (≥500) over 
per-sample coverage (1x could be sufficient) 
Beagle: prioritize higher per-sample coverage (≥2x) 
over sample sizes (≤250 could be sufficient) 
(Figure 9) 
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1347 
Figure 1. Diagram showing the distribution of sequencing reads mapped to a reference genome 1348 
under (A) a RAD-seq, (B) a Pool-seq, and (C) a lcWGS design. 1349 
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1351 
Figure 2. Diagram showing a typical computational pipeline for lcWGS data. Top: the data 1352 
processing part of the pipeline, which is similar to the pipeline for other types of NGS data. 1353 
Bottom: the data analysis part of the pipeline, which is based on a probabilistic framework 1354 
using genotype likelihood to account for genotype uncertainty. 1355 
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1357 
Figure 3. The estimated vs. true allele frequencies at all called SNPs (i.e. true positives + false 1358 
positives) with lcWGS. Across the different facets, sample size increases from left to right, and 1359 
coverage increases from top to bottom. The total sequencing effort remains the same along the 1360 
diagonal from bottom left to top right. The color indicates the density of points in the area, with 1361 
yellow corresponding to the highest density and dark blue corresponding to the lowest density. 1362 
r2 and the number of SNPs called (SNP count) are shown in each facet. The black line in each 1363 
facet indicates the positions where the estimated allele frequency is equal to the true allele 1364 
frequency. False negative SNPs are not included in this figure; their distribution is shown in 1365 
Figure S1. 1366 
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1369 
Figure 4. The error in allele frequency estimation with lcWGS (yellow) and Pool-seq (blue) data. 1370 
The distribution of absolute errors (|estimated frequency - true frequency|) is shown with the box 1371 
plots along the x-axis. The lower and upper hinges of the box plots show the interquartile ranges 1372 
of absolute errors, and the whiskers extend to the largest or smallest values no further than 1.5 1373 
times the interquartile range. Outlier points are hidden. Across the different facets, sample size 1374 
increases from left to right, and coverage increases from top to bottom. The total sequencing 1375 
effort remains the same along the diagonal from bottom left to top right. The root mean squared 1376 
error (RMSE) for the two sequencing designs are shown in each facet; note the differences in 1377 
scale of the x-axes. False negative SNPs are not included in this figure; their distribution is 1378 
shown in Figure S1. 1379 
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1382 
Figure 5. Patterns of spatial population structure inferred through principal component analysis 1383 
(PCA) with lcWGS data. (A) A scenario with lower gene flow (an average of 0.25 effective 1384 
migrants per generation). (B) A scenario with higher gene flow (an average of 1 effective 1385 
migrant from one population to another every generation). Left: the true population structures 1386 
being simulated; each node corresponds to a simulated population. Right: the first two principal 1387 
components from the PCA with simulated lcWGS data; each point corresponds to an individual 1388 
sample and its color corresponds to the population it is sampled from. Sample size per 1389 
population increases across panels from left to right, and coverage per sample increases from 1390 
top to bottom. 1391 
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1394 
Figure 6. Genome-wide scan for divergent selection with lcWGS data. (A) The true per-SNP 1395 
FST values along the chromosome between the two simulated populations. (B) The FST values 1396 
inferred from lcWGS data in 1kb windows along the chromosome. Sample size per population 1397 
increases from left to right, and coverage per sample increases from top to bottom. In (A), the 1398 
red points mark the position of SNPs under selection and the black points mark the neutral 1399 
SNPs. In (B), the black points mark both the selected and neutral SNPs, and the red asterisks 1400 
only mark the positions of the selected SNPs (not their inferred FST values).  1401 
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1404 
Figure 7. Genome-wide scan for divergent selection with RADseq data. The per-SNP FST 1405 
values inferred from RADseq data are shown on the y axis and the SNP positions are shown on 1406 
the x axis. Sample size per population increases from left to right, and RAD tag density 1407 
increases from top to bottom. The black points mark both the selected and neutral SNPs, and 1408 
the red asterisks only mark the positions of the selected SNPs (not their inferred FST values).  1409 
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 1412 
Figure 8. Application of genotype likelihoods to empirical data. (A) Correlation between the 1413 
number of identified SNPs (in millions) with variation in depth of sequencing coverage in the 1414 
downsampled Heliconius dataset. (B) Principal components analysis for three different 1415 
coverages (8x, 2x and 0.5x) of 51 samples. Estimates of population structure are highly 1416 
concordant across coverages. Subspecies are pooled and colored by their broader region of 1417 
origin. (C) Estimates of genetic differentiation (FST) between pooled Heliconius subspecies with 1418 
the red-bar phenotype (n=23) and without the red-bar phenotype (n=28) along the scaffold 1419 
containing the causal optix candidate genes in 50kb sliding windows with 20kb steps. FST 1420 
estimates are highly concordant between 8x and 2x coverage, but more sparse at 0.5x due to 1421 
the lower number of identified variant sites.  1422 
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 1426 
Figure 9. Genotype imputation in STITCH and Beagle compared to posterior genotypes 1427 
estimated without imputation in three in populations with varying diversity and linkage 1428 
disequilibrium. r2 between true genotypes and estimated genotype dosages are shown for 1429 
combinations of sample size (n; with increasing n indicated by more contiguous lines), 1430 
sequencing coverage (x-axis) and method (line colors). 1431 
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