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Supplementary methods  
 
Section 4: Population genomic inference from lcWGS data under different experimental 
designs 
 

In short, we created in silico populations under a diploid Wright-Fisher model using 
forward genetic simulation, and then simulated the low-coverage whole genome sequencing 
(lcWGS) process with a subset of individuals in these populations. We performed genotype-
likelihood-based analyses on these simulated sequencing reads, and tested their power in 
population genetic inference. In addition, we simulated other high-throughput sequencing 
strategies, including pool-seq and RAD-seq, and compared their performance with that of 
lcWGS. Our entire simulation and analysis pipeline is available on GitHub 
(https://github.com/therkildsen-lab/lcwgs-simulation). 

First, we tested the accuracy of lcWGS in allele frequency estimation with different 
sequencing strategies in a single simulated population with stable population size and no 
selection. We used SLiM3 (Haller & Messer, 2019) to randomly generate a starting 
nucleotide sequence on a 30Mb chromosome, and then created a diploid population with all 
individuals initially having this same starting sequence. We aimed to simulate a large 
population with effective population size (Ne) on the order of 105. However, it is 
computationally expensive to directly simulate large population sizes with forward genetic 
simulation methods, since all individuals in the population need to be tracked in every 
generation, and more time is required to reach mutation-drift equilibrium. Therefore, we 
chose to scale down our simulated population size (N) by a factor of 100, and scale up the 
mutation rate (μ) and recombination rate (r) by a factor of 100. Because the most important 
parameters of the simulated population (e.g. nucleotide diversity, linkage disequilibrium, site 
frequency spectrum) depends on products in the form of Nμ, Nr, and etc., this scaling 
approach can generate a realistic population with a reasonable computational cost. 
Specifically, we set N to be 1,000, and ran the simulation with μ = 1x10-6 per bp per 
generation and r = 250 cM/Mb for 10,000 generations, resulting in a population that has 
achieved mutation-drift equilibrium with population genetic parameters similar to what we 
find in natural diploid animal populations with Ne on the order of 105 (Allio, Donega, Galtier, 
& Nabholz, 2017; Stapley, Feulner, Johnston, Santure, & Smadja, 2017). All mutations are 
neutral in this simulation. We outputted the entire haplotype sequences at the last 
generation in fasta format. We also output the true allele frequency for each site. Next, for 
each haplotype sequence, we used ART-MountRainier (W. Huang, Li, Myers, & Marth, 
2012) to simulate the sequencing process on an Illumina platform with 150-base paired-end 
reads and 10x coverage for each haplotype. We then sorted the resulting bam files and 
merged the two bam files originating from the two haplotypes of each individual. We 
selected a combination of sample size (5, 10, 20, 40, 60, 80, 160) and coverage per sample 
(0.25x, 0.5x, 1x, 2x, 4x, 8x) by randomly subsampling these merged bam files. For each of 
these different combinations of sample size and coverage, we called SNPs and performed 
genotype likelihoods (using Samtools’s genotype likelihood model) and allele frequency 
estimation using ANGSD-0.931 with the following options -GL 1 -doGlf 2 -doMaf 1 -
doMajorMinor 5 -doCounts 1 -doDepth 1 -dumpCounts 3 -SNP_pval 1e-6 -rmTriallelic 1e-6 -
setMinDepth 2 -minInd 1 -minMaf 0.0005 -minQ 20. We were then able to compare the inferred 
allele frequencies with the true allele frequencies in the simulated population, and quantify 
the accuracy in allele frequency estimation by calculating the coefficient of determination 
(R2) and root-mean-square error (RMSE) using custom R scripts. We also estimated the 
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sample allele frequency likelihoods (SAF) and subsequently the site frequency spectrum 
(SFS) using ANGSD. For SAF, we found that a more stringent depth filter has better 
performance, so we used the following options -doSaf 1 -GL 1 -doCounts 1 -setMinDepth 
sample_size*coverage. For SFS, we found that extending the number of iterations can 
improve its performance, and thus used realSFS with the following options  -tole 1e-08 -
maxIter 1000. From the estimated SFS, we calculated different estimators of theta (e.g. 
Watterson’s estimator, Tajima’s estimator) and performed some neutrality tests (e.g. 
Tajima’s D), also using ANGSD with the following options: -GL 1 -doSaf 1 -doThetas 1 -
doCounts 1 -setMinDepth sample_size*coverage. Lastly, to compare the performance between 
different genotype likelihood models, we replicated the entire analysis pipeline using GATK’s 
genotype likelihood model (-GL 2). 

Then, we tested the power of lcWGS in resolving the genetic structure of spatially 
distributed populations. Again, we began by randomly creating a starting sequence on a 
30Mb chromosome, but this time we created nine populations, each with N of 500. These 
nine populations are distributed on a three-by-three grid, with a constant bidirectional 
migration rate (m) equal to 0.002 connecting each pair of adjacent populations (Figure x). 
Similarly, we scaled up the neutral mutation rate (μ) to 2x10-7 per bp per generation, and 
recombination rate (r) to 50cM/Mb. We ran the simulation for 10,000 generations, resulting in 
a metapopulation that has achieved mutation-drift-migration equilibrium. This 
metapopulation consists of nine populations, each with population genetic parameters 
resembling a diploid animal population with effective population size (Ne) on the order of 
104. We used ART to simulate the sequencing process, and subsampled the bam files to 
create different combinations of sample size (5, 10, 20, 40, 60, 80) and coverage per sample 
(0.125x, 0.25x, 0.5x, 1x, 2x, 4x). We called SNPs and estimated genotype likelihoods with 
the nine populations combined using -GL 1 -doGlf 2 -doMaf 1 -doMajorMinor 5 -doCounts 1 -
doDepth 1 -dumpCounts 1 -doIBS 2 -makematrix 1 -doCov 1 -P 6 -SNP_pval 1e-6 -rmTriallelic 1e-6 -
setMinDepth 2 -minInd 1 -minMaf 0.05 -minQ 20 in ANGSD. This step outputs a covariance 
matrix (-doCov 1) and a distance matrix (-doIBS 2) among individuals, and in addition to 
these, we also used PCAngsd (Meisner & Albrechtsen, 2018) to generate another 
covariance matrix using the estimated genotype likelihoods. Using the eigen() function and 
the cmdscale() function in R, we conducted principal component analysis (PCA) and principal 
coordinate analysis (PCoA) with these covariances matrices and distance matrix, 
respectively, plotted the samples on the first two principal components / principal 
coordinates, and compared these with the true spatial structure that was simulated. Also, we 
performed PCA with the true sample genotypes using PLINK2 as an additional comparison. 

Lastly, we tested the power of lcWGS in detecting signatures of divergent selection 
between two populations connected by gene flow. This simulation consists of two stages: a 
neutral burn-in stage and a selection stage. Two populations under mutation-drift-migration 
equilibrium are created in the burn-in stage, and then selection is imposed on these 
populations in the selection stage. In the burn-in stage, we began by randomly creating a 
starting sequence on a 30Mb chromosome and two populations, each with a population size 
(N) of 500, and with a constant bidirectional migration rate (m) between them. We used a 
scaled-up recombination rate (r) and neutral mutation rate (μ), ran the simulation for 5,000 
generations, and outputted the entire populations. In the first generation of the selection 
stage, we read the output from the burn-in stage into SLiM, selected 11 evenly distributed 
positions on the chromosome, and at each of these positions we added a non-neutral 
mutation to one randomly sampled genome in the first population. These mutations were set 
to be beneficial in the first population with a certain selection coefficient (s) and deleterious 
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in the second population with a selection coefficient of (1/s). Despite this, since these non-
neutral mutations each exist in a single copy, a majority of them are likely to get lost in the 
first few generations of the selection due to drift, in which case the simulation needs to be 
reset. To avoid resetting the simulation too many times (which can take a long time), we 
instantly expanded the population size by a factor of 10 (to 5,000) in each population after 
introducing the non-neutral mutations, which would then exist in multiple copies. 
Correspondingly, we scaled down the original m, r, and μ by a factor of 10, in order to 
preserve the key population genomic parameters of the simulated populations. We ran the 
simulation for an additional 200 generations. If more than half of the selected alleles become 
lost due to drift or Hill-Robertson interference during the process, we restart from the 
beginning of the selection stage with a different random seed (the same burn-in is always 
used). After the selection stage is completed, the SNP density is mainly determined by the 
mutation rate (μ), the background level of differentiation between the two populations is 
mainly determined by the migration rate (m), the level of differentiation at the selected locus 
is mainly determined by both the selection coefficient (s) and the migration rate (m), and the 
width of the genomic region that shows high differentiation between the two populations is 
mainly determined by the recombination rate (r). We were therefore able to create 
population pairs with different genomic landscapes of differentiation by reiterating this 
process with different combinations of mutation rate (μ), selection coefficients (s), migration 
rates (m), and recombination rates (r) (Table S2). Then, we again subsampled each 
population, and used ART to simulate the sequencing process with the same combinations 
of sample size (5, 10, 20, 40, 60, 80, 160) and coverage per sample (0.25x, 0.5x, 1x, 2x, 4x, 
8x) as in our neutral model. Using ANGSD, we called SNPs with the two populations 
combined through -dosaf 1 -GL 1 -doGlf 2 -doMaf 1 -doMajorMinor 5 -doCounts 1 -doDepth 1 -
dumpCounts 1 -SNP_pval 1e-6 -rmTriallelic 1e-6 -setMinDepth 2 -minInd 1 -minMaf 0.0005 -minQ 20, 
estimated genotype likelihoods and allele frequencies for each population through -dosaf 1 -
GL 1 -doGlf 2 -doMaf 1 -doMajorMinor 5 -doCounts 1 -doDepth 1 -dumpCounts 1 -setMinDepth 1 -
minInd 1 -minQ 20, and finally estimated per-SNP Fst between the population pair from the 
two-dimensional site frequency spectrum estimated from realSFS using the default option. 
Using custom R scripts, we visualized and compared the Fst landscape under different 
simulation scenarios and sequencing strategies.  

In addition to these investigations on different sequencing designs of lcWGS, we 
have also compared lcWGS with two other commonly used high-throughput sequencing 
strategies, namely Pool-seq and RAD-seq. With Pool-seq, we were mainly interested in its 
accuracy in allele frequency estimation (in comparison to the estimation with individually 
barcoded lcWGS samples), particularly when the sequencing yield from different individuals 
in the pool is uneven. Therefore, we simulated Pool-seq with our neutral model under two 
different scenarios. In the first scenario, we assumed that the sequencing yield is equal 
among individuals. In this case, the simulation and analysis is exactly the same as in lcWGS 
until the last step, where instead of using the allele frequency estimates outputted by 
ANGSD, we calculated allele frequencies based on the allele counts in the population 
instead (this was generated by -doCounts 1 -dumpCounts 1). In the second scenario, we kept 
the total sequencing yield to be the same, but added variation in the contribution of each 
individual to the pool. To do this, we sampled each individual’s sequencing yield from an 
empirical distribution, which we obtained by subsampling and rescaling the individual 
sequencing yield from three of our lcWGS projects where we tried our best effort to generate 
even yield among samples by pooling by DNA molarity. These empirical sequencing yields 
have a right-skewed distribution with a standard deviation that is 60% of the mean (Figure 
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S7). We subsampled each individual bam file according to its target yield, and inputted these 
subsampled bam files to the same ANGSD pipeline for SNP calling, genotype likelihoods 
estimation, and allele frequency estimation. Allele frequency estimates outputted by the 
pipeline would represent the result from lcWGS, and allele frequencies calculated from allele 
counts would represent the estimates from Pool-seq. We again calculated R2 and RMSE 
from these allele frequency estimates as a measure of their accuracy. 

With RAD-seq, we were mainly interested in its power in identifying genomic islands 
of differentiation. Therefore, we simulated RAD-seq with our divergent selection model. We 
assumed that with the high coverage of RAD-seq, genotypes can always be called correctly, 
so we used true genotypes instead of simulating the sequencing process. We used R to 
randomly sample 150-bp fragments on our 30Mb genome as our RAD tags at a range of 
different densities (4, 8, 16, 32, 64, and 128 per Mb), obtained each sample’s true genotype 
at these fragments, and calculated sample allele frequencies. We used these allele 
frequencies to estimate per-SNP Fst (Fst = 1 - HS / HT), visualized and then compared these 
Fst results with those from lcWGS simulation. 
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Section 5: Analysis of down-sampled Heliconius data 
 
To determine the effect of sequencing coverage on our ability to detect local 

signatures of differentiation and global population structure we re-analysed Heliconius spp. 
whole-genome data from (Van Belleghem et al., 2017). Raw whole-genome data for 70 H. 
erato individuals were downloaded from NCBI (Supplementary Table Sx) and mapped to the 
H. erato demophoon reference genome (Heliconius_erato_demophoon_v1) using BOWTIE2 
(Langmead & Salzberg, 2013) using the --very-sensitive setting. Reads with mapping 
qualities (MAPQ) below 20 were filtered out and the remaining reads sorted using 
SAMTOOLS v.1.9 (Heng Li et al., 2009). Duplicated reads were removed using 
MARKDUPLICATES v.2.9.0 from PICARD TOOLS and reads realigned around indels using 
PICARD.  

Subsequently, we subsampled each filtered bam file based on the fraction of reads to 
an approximated coverage of 8x (30M reads per individual), 4x (15M reads), 2x (7.5M 
reads), 1x(3.75M reads) and 0.5x(1.625M reads) using SAMTOOLS. Individuals with 
insufficient coverage for a mean of 8x were filtered out (2 individuals).  

To determine how the ability to detect local signatures of differentiation differs with 
coverage, we estimated Fst between individuals with red-bar and no red-bar along the 
genomic scaffold containing the underlying gene optix (scaffold Herato1801:) (Van 
Belleghem et al., 2017). Individuals with the same phenotypes were pooled across sampling 
sites and subspecies to achieve sample sizes of 23 red-barred individuals (H. e. 
demophoon, H. e. favorinus; H. e. hydara and  H. e. notabilis) and 28 non-barred individuals 
(H. e. amalfreda, H. e. emma; H. e. erato; H. e. lativitta and H. e. etylus). Using each set of 
subsampled bam file, we identified variant sites across scaffold Herato1801 using ANGSD 
v.0.28 with the following criteria: SNP_p-val=1e-6; minDepth = Number of individuals * 0.1x; 
maxDepth = coverage * N.ind + (2 * coverage *N.ind); minInd=75% of individuals (= 40); 
minQ = 30; and minMAF=0.05 (Korneliussen, Albrechtsen, & Nielsen, 2014). Fst values 
were estimated based on these variant sites (-sites option) in ANGSD based on genotype 
likelihoods in 50kb sliding windows with a 20kb step size to make them comparable to 
results in (Van Belleghem et al., 2017).  

To understand how the sequencing coverage affects the ability to detect global 
population structure in Heliconius, we performed a principal components analysis for all 
individuals at each coverage based on covariance matrices estimated in ANGSD. 
Covariance matrices were estimated using a random-read sampling procedure in ANGSD 
and PCA was performed using the eigen function in R. All results were plotted in R using 
ggplot. 
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Section 6: Genotype imputation analysis 
 
To explore imputation performance under different scenarios, we simulated a 30Mb 

chromosome for three neutrally evolving populations that have reached mutation-drift 
equilibrium, as described above. We set the mutation rate (μ) to be 1x10-8/bp/generation for 
all three populations, and altered their effective population size (Ne) and recombination rate 
(r) to create three different scenarios with different levels of genetic diversity and linkage 
disequilibrium (LD). (Note that in a neutral population, genetic diversity is proportional to the 
product of effective population size and mutation rate, whereas LD is inversely proportional 
to the product of effective population size and recombination rate.) The three scenarios 
include the following: 1) a low diversity, high LD scenario (r = 0.5 cM/Mb, Ne = 1,000); 2) a 
medium diversity, medium LD scenario (r = 0.5 cM/Mb, Ne = 10,000); and 3) a medium 
diversity, low LD scenario (r = 2.5, Ne = 10,000). In order to generate a large sample from a 
single, neutrally evolving population of stable size, we sampled with replacement 2n 
haplotypes (n diploid individuals) from the offspring of the final generation of the simulation, 
for sample sizes n=25, 100, 250, N=500 and N=1000. Bamfiles were simulated using ART-
MountRainier as described above to average depths of 1x, 2x and 4x. For each dataset (five 
sample sizes x three depths x three population scenarios = 45 datasets), we first called 
SNPs in ANGSD using the settings (-GL 1 -doGlf 2 -doMaf 1 -doMajorMinor 5 -doCounts 1 -
doDepth 1 -dumpCounts 3 -P 6 -SNP_pval 1e-6 -rmTriallelic 1e-6 -setMinDepth 2 -minInd 1 
-minMaf 0.0005 -minQ 20).  

For each scenario, we evaluated the accuracy of genotype dosages and genotypes 
called using imputation without a reference panel in the programs Beagle v.3.3.2 and 
STITCH v.3.6.2. We compared the imputed results with called genotypes and estimated 
genotype dosages without imputation in ANGSD. (Although ANGSD recommends basing 
downstream analyses on genotype likelihoods rather than called genotypes, we use it as a 
baseline for evaluating any improvement of genotype calls by imputation.) 

We called genotypes at variable sites using the three methods (no imputation, 
imputation in Beagle, and imputation in STITCH). We called non-imputed genotypes directly 
from the posterior genotype probability in ANGSD, using minor allele frequencies as a prior 
and a posterior probability cutoff of 0.90 (-postCutoff 0.90 -doPost 1 -doMaf 1 -GL 2 -dogeno 
5 -doMajorMinor 3). Because ANGSD does not directly output genotype dosages, we 
converted posterior genotype probabilities using the formula genotype dosage=P(AA | 
data)*0 + P(AB | data)*1 + P(BB | data)*2. For imputation in STITCH, we explored 
performance under varying settings of the parameter K (K=25, 30 and 35), and examined 
output plots as well as r2 values between simulated genotypes and imputation dosages. In 
most cases K=30 performed best or very close to best; thus, we used the settings K=30, 
nGen=10, and S=4, and called genotypes with posterior probability ≥ 0.90. For imputation in 
Beagle, we passed genotype likelihoods estimated in ANGSD directly to Beagle for 
imputation under default settings. We called genotypes from posterior genotype probability 
threshold of 0.9 using the script gprobs2beagle.jar 
(https://faculty.washington.edu/browning/beagle_utilities/utilities.html). We evaluated the 
performance of each method in the following ways, by the proportion of correct genotype 
calls (genotype concordance), the proportion of genotypes actually called, and by the r2 
between allelic dosage and true genotypes within allele frequency bins of size 0.05. We 
report average values for all sites with MAF>0.05, excluding variant sites that were not 
identified (false negatives) or non-variant sites called as SNPs (false positives) in the 
ANGSD SNP-calling step. 
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Sensitivity of population genomic inference power to simulation assumptions 
 
 In Section 4 of this paper, we have tested the performance of different types of 
population genomic inference under different lcWGS experimental designs using forward 
genetic simulation. We found that for most of these analyses, distributing the same amount 
of sequencing effort across more samples can consistently improve inference power. This 
conclusion should be relatively robust regardless of the parameter settings in our simulation 
model, although the power of inference under each combination of sample size and 
coverage can be strongly affected by these model assumptions. Here, we briefly present a 
qualitative discussion on how the power of different types of population genomic inference 
could be impacted by different parameter choices in the simulation.  

 Section 4.1: Given the same true allele frequency, the accuracy of allele frequency 
estimation at a single SNP should be largely independent of simulation parameters other 
than sample size and coverage. The values of RMSE and r2 genome-wide, however, will be 
sensitive to the site frequency spectrum (SFS) in the simulated data, since errors are 
strongly affected by the true allele frequencies (Figure 2). As a result, any processes that 
can skew the SFS (e.g. demographic expansion and contraction, selection) could affect the 
values of RMSE and r2, although the directionality of the change is context dependent.  

Section 4.2: For the inference of spatial structure, higher migration rate is an obvious 
driver for lower inference power (Figure 4). We have also shown that with more SNPS 
(which can result from a larger genome, larger population size, or higher mutation rate), 
inference power can improve (Figure S9). On the other hand, stronger LD (caused by lower 
population size or lower recombination rate) should decrease the power of inference, since 
SNPs can become highly correlated with each other, resulting in fewer independent SNPs 
that are informative. 

Section 4.3: Similarly, a larger number of SNPs in the dataset due to higher mutation 
rate can also lead to higher power to locate the region under divergent selection, as a 
window-based approach can have more information to work with. Stronger LD due to lower 
recombination rate generates more distinct patterns of linked selection, therefore also 
enhances the power to locate the general region of interest. Both factors, however, have a 
more complex effect on the power to locate the causal SNPs due to the higher number of 
linked neutral SNPs that potentially become false positives. Stronger divergent selection 
should be able to more reliably increase the detection power of both the general region of 
interest and the causal SNPs. Lastly, the effects of population size and migration rate is also 
complex. On the one hand, higher population size leads to more SNPs in the dataset. On 
the other hand, it can result in narrower peaks that are more difficult to detect due to 
reduced LD. Lower migration rate increases the Fst values of the selected SNPs, but also 
increases the background noise. A more quantitative power analysis is therefore warranted 
to better understand the effect of these simulation parameters.  
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References for software in Table 2 of the main text 
 

Angsd (Korneliussen et al., 2014) 
Atlas (Link et al., 2017) 
MAPGD (Maruki & Lynch, 2015) 
GPAT (Domyan et al., 2016) 
ngsTools (Fumagalli, Vieira, Linderoth, & Nielsen, 2014) 
PCAngsd (Meisner & Albrechtsen, 2018) 
GATK (McKenna et al., 2010) 
Freebayes (Garrison & Marth, 2012) 
Reveel (L. Huang, Wang, Chen, Bercovici, & Batzoglou, 2016) 
EBG (Blischak, Kubatko, & Wolfe, 2018) 
BaseVar (Liu et al., 2018) 
Heterozygosity-em (Bryc, Patterson, & Reich, 2013) 
(https://github.com/kasia1/heterozygosity-em) 
ngsF (Vieira, Fumagalli, Albrechtsen, & Nielsen, 2013) 
ngsRelate (Korneliussen & Moltke, 2015) 
ngsF-HMM (Vieira, Albrechtsen, & Nielsen, 2016) 
Bcftools/ROH (Narasimhan et al., 2016) 
skmer (Sarmashghi, Bohmann, P Gilbert, Bafna, & Mirarab, 2019) 
ngsDist (Vieira, Lassalle, Korneliussen, & Fumagalli, 2016) 
lostruct (Han Li & Ralph, 2019) 
ngsAdmix (Skotte, Korneliussen, & Albrechtsen, 2013) 
Entropy (Gompert et al., 2014) 
Ohana (Cheng, Mailund, & Nielsen, 2017; Cheng, Racimo, & Nielsen, 2019) 
evalAdmix (Garcia-Erill & Albrechtsen, 2020) 
AlphaAssign (Whalen, Gorjanc, & Hickey, 2019) 
WHODAD (Snyder-Mackler et al., 2016) 
ngsLD (Fox, Wright, Fumagalli, & Vieira, 2019) 
GUS-LD (Bilton et al., 2018) 
PopLD (Maruki & Lynch, 2014) 
SNPTEST (Marchini, Howie, Myers, McVean, & Donnelly, 2007) 
svgem (Lucas-Lledó, Vicente-Salvador, Aguado, & Cáceres, 2014) 
HMMploidy (https://github.com/SamueleSoraggi/HMMploidy)  
loimpute (Wasik et al., 2019) 
STITCH (Davies, Flint, Myers, & Mott, 2016) 
NOISYmputer (Lorieux, Gkanogiannis, Fragoso, & Rami, 2019) 
LB-Impute (https://github.com/dellaporta-laboratory/LB-Impute)  
LinkImpute (Money et al., 2015) 
LepMap3 (Rastas 2017) 
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Supplementary tables 
 
Table S1. Heliconius erato short read archive (SRA) IDs. Individuals used for the 
subsampling and genotype-likelihood-based analysis of H. erato subspecies, with SRA ID 
and subspecies names. Samples from (Van Belleghem et al., 2017). 

SRA ID H. erato subspecies 

SRS1618075 amalfreda 

SRS1618086 amalfreda 

SRS1618008 amalfreda 

SRS1618009 amalfreda 

SRS1618010 amalfreda 

SRS1618033 emma 

SRS1618034 emma 

SRS1618062 emma 

SRS1618063 emma 

SRS1618065 emma 

SRS1618066 emma 

SRS1618067 emma 

SRS1618069 erato 

SRS1618070 erato 

SRS1618071 erato 

SRS1618072 erato 

SRS1618073 erato 

SRS1618084 erato 

SRS1618014 etylus 

SRS1618015 etylus 

SRS1618016 etylus 

SRS1618017 etylus 

SRS1618018 etylus 

SRS1618053 lativitta 

SRS1618044 lativitta 
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SRS1618045 lativitta 

SRS1618046 lativitta 

SRS1618047 lativitta 

SRS1618002 demophoon 

SRS1618093 demophoon 

SRS1618094 demophoon 

SRS1618098 demophoon 

SRS1618100 demophoon 

SRS1617995 demophoon 

SRS1618032 favorinus 

SRS1618057 favorinus 

SRS1618056 favorinus 

SRS1618058 favorinus 

SRS1618059 favorinus 

SRS1618060 favorinus 

SRS1618083 favorinus 

SRS1618102 hydara 

SRS1617999 hydara 

SRS1618068 hydara 

SRS1618074 hydara 

SRS1618087 hydara 

SRS1618101 hydara 

SRS1618005 notabilis 

SRS1618012 notabilis 

SRS1618090 notabilis 

SRS1618091 notabilis 
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Table S2. Parameter settings for the simulation of divergent selection  
 

Scenario N μ (per bp per generation) r (cM/Mb) m (per generation) s 
High Ne,  
high gene 
flow 

500 10-6 250 0.01 0.08 

Low Ne,  
low gene flow 500 2*10-7 50 0.005 0.08 
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Supplementary figures 
 

 
Figure S1. Histogram of the allele frequencies of false negative SNPs with lcWGS. Across 
the different facets, sample size increases from left to right, and coverage increases from top 
to bottom. The total sequencing effort remains the same along the diagonal from bottom left 
to top right.   
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Figure S2. Tajima’s θ (aka π) and Watterson’s θ estimated using Samtool’s genotype 
likelihood model with ANGSD in 10kb windows. Across the different facets, sample size 
increases from left to right, and coverage increases from top to bottom. The total sequencing 
effort remains the same along the diagonal from bottom left to top right. The true 
chromosome-average values for both statistics should be 0.004. 
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Figure S3. Tajima’s D estimated using Samtool’s genotype likelihood model with ANGSD in 
10kb windows. Across the different facets, sample size increases from left to right, and 
coverage increases from top to bottom. The total sequencing effort remains the same along 
the diagonal from bottom left to top right. The true chromosome-average Tajima’s D should 
be 0, which is marked by a black line.  
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Figure S4. Tajima’s θ (aka π) and Watterson’s θ estimated using GATK’s genotype 
likelihood model with ANGSD in 10kb windows. Across the different facets, sample size 
increases from left to right, and coverage increases from top to bottom. The total sequencing 
effort remains the same along the diagonal from bottom left to top right. The true 
chromosome-average values for both statistics should be 0.004. 
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Figure S5. Tajima’s D estimated using GATK’s genotype likelihood model with ANGSD in 
10kb windows. Across the different facets, sample size increases from left to right, and 
coverage increases from top to bottom. The total sequencing effort remains the same along 
the diagonal from bottom left to top right. The true chromosome-average Tajima’s D should 
be 0, which is marked by a black line.  
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Figure S6. An empirical example from one of our lcWGS projects of the distribution of raw 
sequencing yield from individual samples when they are repooled based on the first round of 
sequencing. This is to demonstrate that equal distribution of sequencing effort can be 
approximated by such a sequencing design. (The type specimens were designed to have 
higher sequencing yield then other samples.) 
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Figure S7. The sequencing coverage distribution that we sampled from when simulating 
uneven sequencing coverage among samples. This distribution is obtained by merging the 
distributions of coverage among samples from three of our lcWGS projects where we pooled 
samples by molarity. 
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Figure S8. The error in allele frequency estimation with Pool-seq when sequencing effort is 
evenly distributed among samples. Derived alleles are binned according to their true 
frequencies on the x axis, and their absolute errors (|estimated frequency - true frequency|) 
are shown on the y-axis. Across the different facets, sample size increases from left to right, 
and coverage increases from top to bottom. The total sequencing effort remains the same 
along the diagonal from bottom left to top right. The root mean squared error (RMSE) and 
the number of SNPs called (SNP count; this includes the true positives and the false 
positives) are shown in each facet.  
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Figure S9. The spatial population structures inferred through principal component analysis 
(PCA) with lcWGS data using PCA. The first two principal components are shown. This 
result is from our higher gene flow scenario (an average of 1 effective migrant from one 
population to another every generation), but a longer chromosome is simulated (300Mb, or 
10 times longer than the scenarios shown in Figure 4). Sample size remains five per sample, 
and coverage increases from top to bottom. 
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Figure S10. The true per-SNP FST values along the chromosome between the two simulated 
populations in a scenario with smaller Ne (Ne = 104) and lower gene flow (an average of 2.5 
effective migrants from one population to the other every generation). Neutral SNPs (m1) 
are shown in red and selected SNPs (m2) are shown in blue. 
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Figure S11. Genome-wide scan for divergent selection with lcWGS data in a scenario with 
smaller Ne (Ne = 104) and lower gene flow (an average of 2.5 effective migrants from one 
population to the other every generation). The FST values inferred from lcWGS data in 1kb 
windows along the chromosome are shown on the y axis. Sample size increases from left to 
right, and coverage increases from top to bottom. The black points mark both the selected 
and neutral SNPs, and the red points only mark the positions of the selected SNPs (not their 
inferred Fst values).  
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Figure S12. Genome-wide scan for divergent selection with RAD-seq data in a scenario with 
smaller Ne (Ne = 104) and lower gene flow (an average of 2.5 effective migrants from one 
population to the other every generation). The per-SNP FST values inferred from RAD-seq 
data are shown on the y axis and the SNP positions are shown on the x axis. Sample size 
increases from left to right, and RAD-tag density increases from top to bottom. The black 
points mark both the selected and neutral SNPs, and the red points only mark the positions 
of the selected SNPs (not their inferred Fst values).  
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Figure S13. Genotype estimation accuracy (r2) by minor allele frequency (MAF) for 
imputation in STITCH and Beagle compared to posterior genotypes estimated without 
imputation. Combinations of sample size (n; with increasing n indicated by more contiguous 
lines) and sequencing coverage (plots in rows correspond to 1x, 2x and 4x coverage) were 
tested for each method (line colors) under different diversity and linkage disequilibrium 
scenarios. Note the different y-axis scales. 
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Figure S14. Genotype concordance by minor allele frequency (MAF) for imputation in 
STITCH and Beagle and without imputation. Genotypes were called with minimum posterior 
genotype probability of 0.9. Combinations of sample size (n; with increasing n indicated by 
more contiguous lines) and sequencing coverage (plots in rows correspond to 1x, 2x and 4x 
coverage) were tested for each method (line colors) under different diversity and linkage 
disequilibrium scenarios. Note the different y-axis scales. 
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Figure S15. Proportion of genotypes called by minor allele frequency (MAF) for imputation 
in STITCH and Beagle and without imputation. Genotypes were called with minimum 
posterior genotype probability of 0.9. Combinations of sample size (n; with increasing n 
indicated by more contiguous lines) and sequencing coverage (plots in rows correspond to 
1x, 2x and 4x coverage) were tested for each method (line colors) under different diversity 
and linkage disequilibrium scenarios. Note the different y-axis scales.  
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