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1 Abstract13

Microbiome composition data collected through amplicon sequencing are count data on taxa in which14

the total count per sample (the library size) is an artifact of the sequencing platform and as a result such15

data are compositional. To avoid library size dependency, one common way of analyzing multivariate16

compositional data is to perform a principal component analysis (PCA) on data transformed with the17

centered log-ratio, hereafter called a log-ratio PCA. Two aspects typical of amplicon sequencing data are18

the large differences in library size and the large number of zeroes. In this paper we show on real data and19

by simulation that, applied to data that combines these two aspects, log-ratio PCA is nevertheless heavily20

dependent on the library size. This leads to a reduction in power when testing against any explanatory21

variable in log-ratio redundancy analysis. If there is additionally a correlation between the library size22

and the explanatory variable, then the type 1 error becomes inflated. We explore putative solutions to23

this problem.24

25

Keywords: Microbiome, Multivariate statistics, Zero-inflation, Log-ratio analysis.26
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2 Introduction28

Microbiome composition data collected through amplicon sequencing are count data on taxa in which29

the total count per sample (the library size) is a technical, ill-understood artifact which carries no bi-30

ological information and as a result such data are compositional. Some people have advocated the use31

of compositional data analyses in analyzing such data (Tsilimigras & Fodor, 2016; Gloor et al., 2017).32

For multivariate analysis this implies transforming the data with the centered log-ratio transformation33

(clr) followed by a standard least-squares method such as principal component analysis (PCA). Equiv-34

alently, the data (counts or proportions) are logarithmically transformed and double centered, followed35

by a PCA. This is often called log-ratio PCA or log-ratio analysis (Aitchison, 1983; Greenacre, 2018).36

Mathematically this is a solid approach when there are no zeroes, as it takes care of the arbitrary total37

per sample by only analyzing log-ratios (Greenacre, 2018). However, with zeroes, a pseudo-count must38

be added before taking the log-transformation.39

40

Two aspects typical for amplicon sequencing data complicate the use of log-ratio PCA: the high amount41

of zeroes combined with a large variability in the library size. In this paper we show that using log-ratio42

PCA on such data has the unexpected and unwanted consequence that the library size again influences43

the analysis. In an unconstrained analysis (PCA) it is possible that the 1st or 2nd axes primarily display44

the library size. In an constrained analysis (e.g. log-ratio redundancy analysis (RDA) (van den Wollen-45

berg, 1977; ter Braak, 1994) this effect complicates the assessment of significance of explanatory variables.46

47

The primary aim of this paper is to make people aware of this problem of using log-ratio analysis and the48

clr transformation on amplicon sequencing data. We provide a mathematical explanation and illustrate49

the issue with simulated data and two amplicon sequencing data examples. We additionally explore some50

putative solutions.51

3 Materials and methods52

3.1 Log-ratio PCA53

With the aim to compare samples, log-ratio PCA decomposes Y, a matrix that contains compositional54

data with I samples (rows) and J taxa (columns), to a set of principal axes (Aitchison, 1983; Greenacre,55

2018). We define L = {lij} as the log of Y, r as the marginal mean of the rows of L, and c as the56
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marginal mean of the columns of L. The log-ratio transformation (clr) is defined as log(yi/g(yi)) (where57

yi is the i-th row of Y and g() is the geometric mean), which is equivalent to lij − ri. Given that in58

a decomposition to principal axes we also need to center by taxa (columns), a log-ratio PCA involves59

double centering of L.60

sij = lij − ri − cj + l.. (1)

where l.. stands for the global mean of L. The centered matrix S = {sij} can be decomposed with a61

singular value decomposition (SVD):62

S = UΣVT (2)

Matrix U, of size I×K, contains the ”sample scores” where K stands for the number of latent dimensions.63

Matrix V is of size J ×K and contains the ”taxon scores”. Matrix Σ is diagonal matrix with singular64

values (Greenacre, 2018, 2012). The main focus in our analyses is on comparing the sample scores.65

3.2 Zeroes lead to library size dependence: mathematical explanation66

A large number of zeroes combined with a large variability in library size, and thus in r, creates a problem67

for log-ratio PCA. For count data it is common to add a pseudo count of 1. This preserves the zeroes and68

the sparsity of the data, and avoids needing to take the log of zero, but it destroys the proportionality69

to the library size which is key to log-ratio analysis, particularly for low count values, including zeroes.70

After row centering (i.e. deducting r), taxa with many zeroes (and/or many ones and/or twos) will now71

primarily contain elements of r, in particular, for zero counts sij ≈ −rij . All taxa with many zero values72

(taxa with a low prevalence, rare taxa, for short) or with very low counts are therefore positively corre-73

lated among one another and all are negatively correlated to r. If many such taxa exists, and there is a74

substantial variability in r, a considerable part of the variance of S is related to r. Both the variance in S75

that is explained by r and the correlation between r and S for rare taxa increases as both the variability76

in r and the number of zeroes increase.77

78

Given enough variability in r and enough zeroes in the data, a log-ratio PCA identifies this artifact as79

a prominent effect. In this situation the effect of r is in competition with other effects, and may either80

influence any of the principal axes or even completely dominate the first axis. In a constrained analysis,81

e.g. log-ratio RDA, an explanatory variable that happens to be correlated with r is likely to be judged82

significant in permutation testing, even if it is unrelated to the taxa data (Type 1 error inflation). By83

contrast, there will be little power to detect explanatory variables that are uncorrelated with r, but do84
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influence the microbiome.85

86

We call the problem informally ”library size dependence” and the cause ”variability in library size”,87

although the formal cause is variability in r. It is important to note that data with an equal library size88

or equalized library size (rarefaction), may also show variability in r (Fig. S1). In most cases the library89

size and r are correlated, and if a correlation exists between S and the library size, there is likely also90

correlation between S and r. Note that the problem we describe is not purely related to the amount of91

zeroes; it can also be ascribed to a lack of variability in taxon abundance, which violates the assumption92

in log-ratio analysis of proportionality to the library size. If the variance of a particular taxon is low,93

then, after double centering, its variance is largely explained by r. In practice, a low variance is primarily94

observed for rare taxa.95

3.3 Diagnostics96

We propose two diagnostics to assess library size dependency in log-ratio PCA of sparse data. We cannot97

exclude that other data characteristics can cause the patterns described below, but in the context of a98

log-ratio PCA applied to amplicon sequencing data it is likely that a fit is influenced by the library size99

via row-centering if these patterns arise.100

101

The first diagnostic is to calculate the correlation between each column of S and r (hereafter the correla-102

tions are collectively denoted by ρSr) and to plot this correlation against the log of the mean abundance103

per taxon (i.e. the log of marginal column mean of Y). A negative value of ρSr for a low abundance taxon104

suggests that this taxon primarily contains elements of −r. If S contains the effect of r, we expect that105

the low abundance taxa have a strong negative correlation with r. Library size dependence is diagnosed106

if the graph of ρSr against the log taxon mean shows an increasing trend starting from a low y-axis value107

(e.g. -0.5, see examples). This does not necessarily mean the 1st or 2nd PCA axis is influenced by r, its108

effect may also be expressed on a subsequent axis. If this trend is absent then there is no dependence109

on r or the library size. Note that the correlation diagnostics can be used on any clr transformed matrix110

and is not specific for log-ratio PCA.111

112

The second diagnostic we suggest is specific for log-ratio PCA; it is a plot of the (log) contribution of113

each taxon to a particular principal axis against the log of the mean abundance per taxon (i.e. the log of114

marginal column mean of Y). The contribution of a taxon to an axis can be quantified with the square115

of its value in V (Greenacre, 2013a,b), which is output of the earlier described SVD (equation 2). A116

PCA axis is suspicious if all low abundance taxa have a relatively high and about equal contribution.117
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In such a case, these low abundance taxa are likely contributing due to their negative correlation with118

r and they are contributing to an axis that primarily contains the effect of r. As taxon abundance and119

variance increase, the correlation with r reduces and the contribution drops. The most abundant taxa120

tend to have few zero values and are thus unaffected by r. In extreme cases the resulting pattern is121

V-shaped. By contrast, if the mean contribution is either a gradually increasing (on the log scale) with122

taxon abundance or highly variable around a constant, the PCA axis is unsuspected.123

124

Another possible diagnostic is to fit a log-ratio RDA with r as the constraining variable and estimate how125

much variance in S is related to r. The problem with this diagnostic is that it is unclear what percentage126

of r related variance is low or high, i.e. we have nothing to compare with. It it also possible to quantify127

the amount of variance in S per taxon that can be explained by r (with ρ2Sr); this is addressed with the128

first diagnostic.129

3.4 Examples130

One example in this paper is based on simulation and two examples are based on amplicon sequencing131

data. The aim of the simulation is to illustrate what may go wrong with log-ratio PCA. To make132

transparent how the row centering problem arises, we opt for a relatively simple simulation setting that133

allows us to asses the effect of a large number of zeroes with a large variation in the library size and,134

optionally, a correlation between x and r. The two data examples demonstrate how the row centering135

problem manifests itself in amplicon sequencing data.136

3.4.1 Simulation137

In the simulation we draw a matrix of counts, Y, with I samples and J taxa. By default we set I = 50138

and J = 500. As microbiome data commonly show overdispersion compared to the Poisson distribution139

(McMurdie & Holmes, 2014), Matrix Y is sampled from a negative binomial distribution with mean µij140

and variance µij+µ2
ij . We set the expectation µij with a log-linear model: log(µij) = ai+tj+bjxi, where141

ai reflects the library size and is drawn according to ai ∼ N(0, σa), tj reflects the overall abundance of142

taxon j and is drawn according to tj ∼ N(0, σt), and xi represents a binary (0/1) variable representing143

two treatment groups of equal size with bj the treatment effect on taxon j. By default we set σt = 2, and144

we set σa to either 0, 0.5 or 1 so as to study the effects of library size. At random, 100 out of 500 taxa are145

made differentially abundant which are at random with equal probability either up or down regulated by146

setting bj equal to b and −b, respectively; for the remaining taxa bj = 0. Unless stated otherwise, taxa147

present in less than 5 samples are removed.148

149
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It is of interest to see how log-ratio PCA performs if the library size is correlated with the treatment,150

for example if the samples from one treatment group tend to have a higher library size than the samples151

from the other treatment group. We simulate such scenario by incorporating a correlation between x152

and r. This is achieved by modelling x with a logistic function, according to xi ∼ Bernoulli(g
eγai

1 + eγai
).153

With parameter γ we can set strength of the correlation (ρxr). Parameter g is set for each simulated154

draw to ensure that the treatments groups are equal in size.155

156

We first use the simulation model to demonstrate the diagnostics by simulating one data set per level157

of library size variability, i.e. σa = 0, 0.5, and 1, in the situation without correlation between x and r,158

i.e. γ = 0. This results in example data sets with library sizes of, respectively, 2731 to 5842, 1215 to159

13256, and 349 to 34907. After removing taxa that with less than 5 occurrences, these examples contain160

445, 441, and 458 taxa and 42%, 42% and 44% zeroes, respectively. The fold change for the differentially161

abundant taxa in these simulations is set to 3 (b = log(3)).162

163

Next, we repeatedly simulate new data to estimate the type 1 error and power of a log-ratio RDA to164

detect the effect of the treatment x at the nominal significance level of 0.05. Here we explore two sce-165

narios. First, we assess how variability in r affects the type 1 error and power by varying the fold change166

(in four steps from 1 to 2) for three levels of σa. In this scenario there is no correlation between x and r167

(γ = 0). In a second scenario, we explore what effect the correlation between x and r has on the type 1168

error by varying γ between 0 and 3. As this scenario concerns type 1 error, there is no treatment effect169

(fold change = 1, b = log(1)). With γ = 2, the average (Pearson’s) correlation across 2000 simulations170

between x and r is 0.23, 0.41, 0.58 for, respectively, σa 0.25, 0.5, and 1. For a visualization of ρax and171

ρrx for various values of γ we refer to supplemental figure S18. In the power and type 1 error simulations172

we also explore some putative solutions and asses how robust these are to the studied data charactersics.173

These solutions consist of alternative versions of log-ratio PCA and closely related methods. Details on174

these methods are available in the supplementary information.175

176

3.4.2 Biting midges data177

In the first real data example we examine a data set of 191 observations on laboratory reared biting178

midges. Each observation contains the pooled abdomens of 5 adult female biting midges that were fed for179

a period of time after hatching on sugar water supplemented with or without antibiotics to affect the gut180

microbiome. In total, 86 pools contained biting midges that received antibiotics and 105 pools received181

no antibiotics. Per pool fragment DNA was isolated, fragments of 16S were (amplified and) sequenced182
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(Illumina MiSeq), and grouped into Amplicon Sequence Variants (ASVs). For more information we refer183

to original publication (Möhlmann et al., 2020).184

185

The original publication analyzed multiple biting midge species; here we only use the Culicoides nubecu-186

losus samples. In the original study, only the samples were used with biting midges fed on sugar water for187

a period of 6 days, as this gave the best indication of the effect of antibiotics. For illustration purpose, we188

use all sequenced samples for this species that were collected during the course of the experiment (data189

from 2nd to 11th day feeding on sugar water with and without antibiotics). Analogous to the simulated190

example, we call the treatment variable x.191

192

We removed ASVs that were absent in 10 or more samples, leaving 155 taxa, containing 85% zeroes.193

The library size varies from 335 to 128.175 reads. Both the library size and r are correlated with the194

treatment variable (Figure 1), but with opposite signs. The (Pearson’s) correlation between x and r is195

0.54 in absolute value.196

3.4.3 Rice data197

In the second real data example we examine a data set about the root associated microbiome of 296 rice198

cultivars cultivated under field conditions. Each cultivar was grown with sufficient (control) and insuffi-199

cient water (drought), giving 592 observations. Each observation contains the material of three pooled200

replicates. Per observation DNA was isolated, fragments of 18S were (amplified and) sequenced (Illumina201

MiSeq), and clustered into operational taxonomic unit (OTUs). Analogous to the simulated example, we202

call the treatment variable x. For further details we refer to Andreo-Jiménez (x); Andreo-Jiménez et al.203

(2019).204

205

Taxa that were absent in 10 or more samples were removed, leaving 650 taxa which together contained206

92% zeroes. The library size varies from 651 to 92.224 reads. Both the library size and r are correlated207

with the treatment variable (Figure 1). The (Pearson’s) correlation between x and r is 0.40 in absolute208

value.209

3.5 Software210

Log-ratio PCA was carried out using the function dudi.pca from R package ade4 Dray & Dufour (2007)211

using a double centered log transformed counts matrix as input. For the log-ratio RDA (constrained212

analysis) we subsequently used the function pcaiv, and testing was done with randtest (both ade4),213

which performs a Monte Carlo permutation test (999 permutations). The testing was done on the214
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percentage of explained variance, i.e. constrained inertia in ade4.215

4 Results216

4.1 Diagnostics217

4.1.1 Simulated examples218

The simulated data examples illustrate how log-ratio PCA is influenced by variability in library size in219

the presence of zeroes (Figure 2). If the variation is low (σa = 0), the samples of the two treatment groups220

are clearly separated along the 1st PCA axis. There is no strong trend in ρSr against the log taxon mean221

(Figure 2A-C) and the taxon contribution increases on average with taxon abundance. This demonstrates222

that for this scenario log-ratio PCA performs well, despite the presence of a large number of zeroes (42%).223

224

If the variation in library size is increased (σa = 0.5, Figure 2D-F), the effect of r starts to compete with225

x. The first axis still largely contains the effect of x, but r is affecting the 2-d sample configuration. We226

see a clear trend in ρSr with taxon abundance and the contributions to the 2nd axis display relatively227

high contributions for the low abundance taxa. If we further increase the variation in library size (σa = 1,228

Figure 2G-I), the effect of x is pushed to the 2nd axis. The 1st axis now reflects r and, thus the library229

size. The trend in correlations is more pronounced, with many abundunt taxa having positive correlation230

(up to 0.5), so that the contribution plot shows a V-shaped pattern.231

232

4.1.2 Data examples233

In both real data examples we see a good separation of the treatment groups in a two-dimensional log-234

ratio PCA, suggesting the treatment has a strong effect (Figure 3A & D). For the biting midges example235

this effect is on the 1st axis. For the rice example this effect seems to be tilted. For both data examples236

we see a clear trend in ρSr against taxon abundance (Figure 3 B & E) and a relatively high and about237

equal contribution amongst the low abundance taxa (3 C & F). These patterns are similar to what we238

observed in the simulated example. These results suggests that the 1st axis, at least partly, contains the239

effect of r.240

241

Given the correlation between x and r in these data sets (Figure 1), it is likely that in both data examples242

the 1st axis contains both the effect of x and r. In the rice example it is possible that the tilting of the243

effect is caused by the effect of r (similar to the simulated example with σa = 0.5, Figure 2D). For the244

8



diagnostics, it is clear that the log-ratio PCA results are, at least partly, influenced by the library size.245

4.2 Power and Type 1 error246

Without treatment effect (fold change = 1, b = 0) and with a treatment that is independent of the li-247

brary size, log-ratio RDA yields the correct type 1 error rate (0.05), irrespective of library size variability248

(σa)(Figure 4A). With low to moderate library size variability (σa ≤ 0.5), log-ratio RDA has good power249

to detect the treatment effect. With a larger library size variability (σa = 1) the power strongly decreases,250

e.g. with a fold change of 1.5 it decreases from about 0.75 at σa = 0.5 to about 0.25 at σa = 1. If the251

treatment is correlated with the library size (γ > 0), log-ratio RDA reasonably controls the type 1 error252

rate, if there is low library size variability (σa = 0.25). If the library size variability is moderate to large253

(σa = 0.5 or 1), log-ratio RDA shows strong type 1 error rate inflation, with error rates running close to254

1 whereas the nominal level is 0.05 (Figure 4 B).255

256

Figure 5 compares type 1 error and power of some putative solutions (see supplementary information257

for details) with those of log-ratio RDA. In the absence of correlation between treatment and library258

size (ρxr = 0, γ = 0), all methods (including log-ratio RDA) have a good control of the type 1 error,259

irrespectively of the amount of variation in library size (σa)(Figure 5A & B, Figure 6A & B). However,260

the power of most putative solutions do not decrease as much with increasing library size variation (σa) as261

log-ratio RDA does (Figure 5C & D). The methods log-ratio RDA with geometric Bayesian multiplicative262

zero imputation (GMB), log proportions RDA, and canonical correspondence analysis (CCA) on square263

rooted data are high-ranked in terms of power with both low and high library size variation. After an264

additional filtering step, the drop in power for an increased σa is minor or absent for all methods (6 C &265

D). The improvement here is most notable for log-ratio RDA.266

267

With a correlation between treatment and library size (γ = 2), the putative solutions control the type 1268

error for moderate library size variation (Figure 5E), but show moderate to large type 1 error inflation269

(> 0.10) for large library size variation (σa = 1 (Figure 5F), with the exceptions of CCA on counts and270

RCM that both perform badly in having a type 1 error rate that is too low (Figure 5F). Notably, log-ratio271

RDA with GBM imputation on proportions shows less type 1 error inflation than log-ratio RDA with272

GBM imputation on counts (Figure 5F). Part of the type 1 error inflation for all methods is caused by a273

difference in the number of zeroes between treatment groups of x that can occur as a result of ρxr. In274

this scenario, the performance of all methods, but in particular of log-ratio RDA, can be improved by275

filtering out low abundance taxa (Figure 6 E & F).276
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5 Discussion277

Log-ratio PCA is designed to give results that are library-size independent. However, as we demonstrated278

mathematically and with examples based on simulated and real data, log-ratio PCA becomes library-size279

dependent, if there are many infrequent taxa (many zeroes) and library sizes differ largely. In this situa-280

tion, the row centering used in log-ratio PCA brings an effect of r (the row mean of the log-transformed281

counts) in the clr transformed matrix. Note that this effect is irrespectively of whether or not these282

infrequent taxa are genuine or due to sequencing noise or allocation error. This library-size dependence283

is unexpected in the sense that, after applying the clr, the transformed matrix is free of the effect of the284

row totals for strictly positive data (yij > 0 for all i and j). We additionally demonstrate that library size285

variability causes a loss in power in detecting an effect of x with log-ratio RDA. If there is additionally286

a correlation between treatment and the library size, the type 1 error for detecting the effect of x can be287

seriously inflated.288

289

How serious is the issue in practice? It is important to note that we focus on fairly extreme scenarios in290

this paper. Both example data sets have a high proportion of zeroes, large variation in library size, and a291

correlation between treatment and library size. To some extent this can be seen as a worst case scenario,292

but at the same time this is a realistic situation that may occur frequently with amplicon sequencing293

data. These data characteristics may also occur outside the field of amplicon sequencing, although we are294

unaware of such data. Note that RNASeq data are closely related, but have less zeroes and less variabil-295

ity in the library size. Our simulated data are also extreme, aimed at describing the issues that may arise.296

297

Our main message is that one has to be careful when analyzing data with the described characteristics298

with log-ratio PCA. We provide two diagnostics. If these diagnostics display the patterns described in299

this paper, additional actions are required. The most straightforward solution is stringent filtering out300

low abundance or infrequent taxa. Note that, if a particular data set is less extreme in the described301

data characteristics than the data in this paper, log-ratio PCA will likely work and, in these cases, it is a302

powerful tool in analyzing compositional data. We additionally explored various putative solutions (see303

also the supplementary information), some of which can also increase performance under the described304

circumstances.305

306

There is a feature in the diagnostics that we do not fully understand mathematically, namely that many307

abundant taxa in situations with extreme library size variability show positive correlation (ρSr up to 0.5)308

in the correlation diagnostic, resulting in extreme cases in a V-shaped pattern in the contribution plot.309
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These positive correlation occur in both the simulation and data examples (Figures 2 and 3) showing310

that the feature is real and not an artefact of our simulation. One possible explanation is that an effect of311

−r in low abundance taxa has to be compensated elsewhere, due the zero-sum constraint of the centered312

log-ratio, resulting in positive correlations amongst high abundance taxa.313

314

Although the focus of this paper is on multivariate methods, there also consequences for other methods315

based on the clr. With high variation in library size and correlation between treatment and library size,316

low abundance clr transformed taxa will likely test significant in univariate analysis, even if there is no317

treatment effect, leading to type 1 error inflation. In case of graphical modelling with clr transformed318

taxa, we may detect spurious edges between low abundance taxa. The correlation diagnostic described319

in this paper can also be used prior to such analyses.320

321

To some extent the large variability in library size and/or r and the large amount of zeroes are related322

to data quality. Currently the variation in library size is ill-understood, often not random, and it may323

even be correlated to a treatment variable, as in our examples. Future developments may lead to a better324

understanding of this variation and possibly, to more equal library sizes, which will reduce the problems325

we described.326
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Figure 1: The library size (A & C) and the mean r (B & D) per treatment for both example data sets.
In both examples, the library size and r are correlated with the treatment (x).
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Figure 2: Simulated data. Log-ratio PCA and diagnostics (columns) for three levels of library size
variability (rows: σa=0, σa=0.5, σa=1). The first column (A, D, G) displays the simulated observations
on the 1st and 2nd principal axes, colors indicate treatment groups. The second column (B, E, H) displays
the correlation between S (clr transformed abundances) and r, and the third column (C, F, I) displays
the contribution of a taxon versus its log mean abundance. For σa = 1, the 1st axis contains the effect of
r and the effect of x is pushed to the 2nd axis.
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Figure 3: Log-ratio PCA and diagnostics (columns) for the real data examples. The first column (A &
D) displays the observations on the 1st and 2nd principal axes, colors indicate treatment groups. The
second column (B & E) displays the correlation between S (transformed abundances) and r. The third
column (C & F) displays the log contribution to the 1st axis per taxon versus its log mean abundance.
The negative correlations and the relatively high and similar contributions amongst the low abundance
taxa suggest there is an issue with row centering (and thus with log-ratio PCA) for both data examples.
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Figure 4: Rejection rate (number of p-values < 0.05 across 2000 simulations) in testing the treatment
effect using log-ratio RDA. In (A) the fold change is increased for several levels of σa under independence
of the treatment with the library size (γ = 0). The type 1 error is controlled, but the power is reduced
as σa increases. In (B) there is no treatment effect (fold change is 1, b = 0), but there is an increasing
correlation between treatment and library size (set with γ ≥ 0) for three levels of σa. The type 1 error
is controlled for γ = 0, but increases for higher values of γ and σa.
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Figure 5: Type 1 and power for a set of methods closely related to log-ratio RDA for two levels of σa.
(A) and (B) display the type 1 error without correlation between x and r (γ = 0). (C) and (D) display
the power (Fold change = 1.5) without correlation between x and r (γ = 0). (E) and (F) display the type
1 error when there is a correlation between x and r (γ = 2). For all methods (expect RCM) the type 1
error and power were determined by counting the number of p-values below 0.05 across 2000 simulations.
For RCM we did between 200-250 simulations, expect for (F) where most estimations failed.
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(F) Type 1 ; σa = 1 ; γ = 2
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Figure 6: Type 1 and power for a set of methods closely related to log-ratio RDA for two levels of σa.
Compared to 4, the simulated data were subject to an additional filtering step (see supplement for more
information). (A) and (B) display the type 1 error without correlation between x and r (γ = 0). (C) and
(D) display the power (Fold change = 1.5) without correlation between x and r (γ = 0). (E) and (F)
display the type 1 error when there is a correlation between x and r (γ = 2). For all methods (expect
RCM) the type 1 error and power were determined by counting the number of p-values below 0.05 across
2000 simulations. For RCM we did between 500 simulations.
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