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Abstract

The Klein Krames equation (KKE) stands for the probabil-
ity distribution function (PDF) that describes the diffusion
of particles subjected an external force. It is shown that
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the conformable fractional derivative (CFD) KKE can be re-
duced to the classical one’s by using similarity transforma-
tions. Here, the objective of this work is to find the exact
solutions of CFD-KKE.. To this issue, an approach is pre-
sented. It is based on transforming the KKE to a system of
first order PDEs. The solutions are found by implementing
extended unified method. It is found that, the integrability
condition is that the external force is constant. The numeri-
cal results of the solutions are calculated and the are shown
graphically.

2020 Mathematics Subject Classification: 34A08; 35A22; 41A30; 65N22.

Key Words: Time Conformable Fractional Klein Kramer Equation; Uni-
fied method; Similarity transformations

1. Introduction

The KKE is a diffusion equation with velocity dependence advection and
with variables coefficients in velocity and space. In [1,2] the diffusion de-
scription, is fully systematized, as it is an interesting and successful method
complementary to transition state theory. The position and the velocity of
the diffused particles are not deterministic as they are Brownian particles.
The KKE has a wide applications in biological science, biophysics and chem-
ical kinetics. It describes the cell migration as the paths of migrating cells
resemble those of thermally driven Brownian particles [3].

In this respect experimental work revealed a precise spatial and relax-
ation time of multiple components of the cellular migration processes. In
this context, immune defense, and the formation of tumor metastases are
well known phenomena that rely on cell migration. In biophysics, anoma-
lous diffusion processes have been observed in bacterial cytoplasm motion [5]
and fluorescence indeterminacy in single enzymes [6-8].In chemistry reaction
diffusion systems and autocatalytic reactions in chemical kinetics and in bio-
chemistry are described by diffusion equations with advection and variable,
or constant, coefficients. Stochastic or random states may be more relevant
whenever the KKE is applicable.

Also, it serves as a mechanical approach to molecular interactions and re-
action dynamics. It can be introduced to describe the diffusive-stochastic ap-
proach to reaction dynamics. The stochastic-diffusion description of chemi-
cal dynamics involves in theoretical and computational chemistry. A super
diffusion increase of the mean squared displacement, non-Gaussian spatial
probability distributions, and decays of the velocity auto correlations can
help in interpreting phenomena [4]. Also it arises in many different physical
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system such as those which are generated by the presence of anomalously
large particle displacements [9-18].

The KKE reads

∂

∂t
K(t, x, v) = (−v

∂

∂x
+

∂

∂v
(ηv − r(x)

m
) +B0

∂2

∂v2
)K(t, x, v), B0 =

η T KB

m
,

(1)
where W (z, v, t) is the distribution density function of particles, r(x) is an
external force field , T is the absolute temperature, KB is the Boltzmann
constant, , m is the particle mass , v its velocity andη stands for the friction
coefficient. We proceed the by introducing to the CFD.

2. Conformable fractional derivative

In this section, we present the definitions and their properties that will
be used in this work, [25].
Definition Let f : (0,∞) → R be a function, then its conformable fractional
derivative of order β is defined as

CFD
0 Dβ

t f(t) = lim
ε→0

f
(
t+ εβ−1t1−β

)
− f (t)

ε
, t > 0. (2)

If fϵC1(R+), then CFD
0 Dβ

t f(t) = β−1t1−βf ′(t). Then KKE can be rewritten
in the CFD sense as

CFD
0 Dβ

t K(t, x, v) =

(
−v

∂

∂x
+

∂

∂v
(ηv − r(x)

m
) +B0

∂2

∂v2

)
K (t, x, v) , (3)

which is rewritten

p(t)Kt(t, x, v) =

(
−v

∂

∂t
+

∂

∂v
(ηv − r(x)

m
) +B0

∂2

∂v2

)
K(t, x, v) , (4)

where p(t) = β−1t1−β. Indeed (4) can takes two forms. By using the simi-

larity transformations K(t, x, v) = K̃(τ0, x, v) and τ0 =
∫ t
0

1
p(s)ds = tβ, (4)

turns to be (1), where (W (z, v, t), t) → (W̃ (z, v, τ), t → τ). The second form
of (4) is

∂
∂τ K̃(z, v, τ) =

(
−v ∂

∂z + ∂
∂v (ηv −

r(x)
m ) +B0

∂2

∂v2

)
K̃(τ0, x, v), (5)

which is an autonomous equation.

3. Solutions of the KKE.

In this section, we present the outlines of the method to find the exact
solution of (1) (or (5)) as follows. We use the transformations:

K̃v(τ0, x, z) = F0(τ0, x, v) K̃(τ0, x, v),

K̃τ0(v, z, t) = G0(τ0, x, v)W (τ0, x, z),

K̂x(τ0, x, z) = K0(τ0, x, z) K̃(τ0, x, v).
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Therefore (1) is written in the form

G0(τ0, x, v) + vK0(τ0, x, z)− ηvF0(τ0, x, v)− η +
r(x)

m
F0(τ0, x, v)

−B0(F0v(τ0, x, v) + F0(τ0, x, v)
2) = 0. (6)

Now, in the following subsections, we investigate the exact solutions of (6)
with the case of linear auxiliary equations (AE)and the case of quadratic
auxiliary equation (AE)

3.1. When AE is linear. Here we use the extended unified method, where
solutions are expressed in the form of rational function in an auxiliary func-
tion that satisfy an auxiliary equation [22-25].

Thus we assume that the solution of (6), takes the form

K̃(τ0, x, v) =
w1(v)g(τ0, x, v) + w0(v)

α1(v)g(τ0, x, v) + 0(v)
, (7)

F0(τ0, x, v) =
β1(v)g(τ0, x, v) + β0(v)

w1(v)g(τ0, x, v) + w0(v)
, (8)

G0(τ0, x, v) =
γ1(v)g(τ0, x, v) + γ0(v)

w1(v)g(v, z, t) + w0(v)
, (9)

K0(τ0, x, v) =
r1(v)g(τ0, x, v) + r0(v)

w1(v)(τ0, x, v) + w0(v)
, (10)

together with the linear auxiliary equation

gτ0(τ0, x, v) = µ (c1g(τ0, x, v) + c0), (11)

gv(τ0, x, v) = h(v) (c1g(τ0, x, v) + c0), (12)

gx(τ0, x, v) = k(x) (c1g(τ0, x, v) + c0). (13)

It is worth noticing that in (11)–(13), the compatibly equations, gτ0v(τ0, x, v) =
gvτ0(τ0, x, v) , gxv(τ0, x, v) = gvx(v, z, t) and gτ0x(τ0, x, v) = gxτ0(τ0, x, v)
hold.
By inserting (7)–(10) into (6), and by using (11)–(13), we obtain a system
of coupled PDEs of first order in ai, bi, di, ri, i = 1, 2.

We have to use the compatibility equation β′
j(v) − (βj(v))

′ = 0, due to
the calculations are not direct and also the obtained equations are nonlin-
ear, and it appears that two equations can be obtained, for example, aj(v)
and a′j(v), j = 0, 1. On other hand, we found that, the equations are not

consistent unless r(x)′ = 0. So that, this last condition of integrability of
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(1). In this case q(z) = q0 and also, we find that k(z) = k0. After some
simplifications, we obtain the following system of equations

α′
0(v) =

1

s0(v)

(
α0(v)

(
−β0(v) + p(v)w1(v)c0 + w′

0(v)
)

− w0(v)p(v)α1(v)c0

)
, (14)

w′
0(v) = β0(v) + p(v) (w0(v)c1 − s1(v)c0) , s

′
1(v) = b1(v), (15)

b′0(v) =
1

mB0

(
b0(v) (B0mp(v)c1 + r0 −mv η)

−m
(
B0p(v)c0b1(v)− (µ+ k0v)w1(v)c0

+ (η + c1µ+ c1k0v)w0(v)
))

, (16)

b′1(v) =
1

mB
(b1(v) (q0 −mv η)−mηs1(v)) , (17)

γ0(v) =
c1µ

α1(v)
(w1(v)− w0(v)α1(v)) , γ1(v) = 0, (18)

r1(v) = 0, α0(v) = 1, α1(v) = c1/c0, (19)

r0(v) = ko (w1(v)co − w0(v)c1) . (20)

By rewriting the equation (15) as β1(v) = w′
1(v), the compatibly equation

β′
1(v)− (β1(v))

′ = 0 gives rise to

mηw1(v) + (−r0 +mvη)w′
1(v) +Bmw′′

1(v) = 0, (21)

where (21) solves to

w1(v) = A2e
q0v
mB

− v2η
2B +A1

√
π B

2η
e

(
r0v
mB

− v2η
2B

− r20
2Bm2η

)
erfi(

−r0 +mv η]√
2B0ηm

),

(22)

where erfi(x) = 2√
π

∫ x
0 ey

2
dy.

Taking into account (22), we can solve β1(v) = w′
1(v). Similarly, it can

be rewritten (16) as follows:

β0(v) = p(v) (w0(v)c1 − w1(v)c0)− w′
0(v). (23)

According to the compatibly equation β′
0(v)− (β0(v))

′ = 0 , we can get the
following

r0η (mv η − r0)w0(v) +mB0

(
2A1B0mc0k0 + r0ηw

′
0(v)

)
+B0k0m(mηw0(v) + (mv η − r0)w

′
0(v) +B0mw′′

0(v) = 0, (24)

(mv η − r0)p(v) +B0c1mp(v)2 +m(k0v + µ−B0p
′(v)) = 0. (25)
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By using

µ = − 2B0k0
4mF0η3

(r20η
2 + 4B0m

2 nη3), c1 = − r0η

2B0k0m
, (26)

the solutions of (??)–(25) are given by

w0(v) = e
q0v

mB0
− v2η

2B (2r0η
3/2C − 2A1B

3/2
0 c0e

−q20
2B0m

2η

× (k0m
√
πerfi(

−r0 +mv η]√
2B0ηm

)

+
√
B0e

−(k0+η v)2

2Bk20m
2η r0

√
2πηC2erfi(

−r0 +mv η]√
2B0ηm

)), (27)

p(v) =
P1(v)

Q1
, P1(v) = −ko

(
− 2mn

√
2B0ηC0Hn−1

(
v

√
η

2B

)
+ r0C0Hn

(
v

√
η

2B

)
+ 2mnv η 1F1

(
1− n

2
,
3

2
,
ηv2

2B

)
+ r01F1

(
−n

2
,
1

2
,
ηv2

2B

))
, (28)

Q1(v) = r0η

(
1F1

(
−n

2
,
1

2
,
ηv2

2B

)
+ C0Hn

(
v

√
η

2B

))
, (29)

where 1F1

(
−n

2 ,
1
2 ,

ηv2

2B

)
and Hn

(
v
√

η
2B

)
are the hyper- geometric and the

Hermite functions respectively. The solution of the auxiliary equations is
given by

g(τ0, x, v) = −c0
c1

+ C3 e
c1

∫
p(v)dv+χ, (30)

where

χ = k0x− B0k0
2mq0η3

(
r20η

2 + 4B0m
2 nη3

)
τ0.

We can not evaluate
∫
h(v)dv directly, so we assume that (see (28))

(m(v) +Q1(v))
′ = P1(v), (31)
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and after some calculations we obtain

m(v) = − 1

B0

(
−B0 (−B0q0η + 2B0k0mC0)Hn

(
v

√
η

2B

)

+
B

3/2
0 C0q0k0

(1 + n)
√
2η

Hn+1

(
v

√
η

2B

)
− 2B2

0k0m

(
−1 +P FQ

(
{−n

2
}, {1

2
}, ηv

2

2B

))
+B0vq0k0 PFQ

(
{−n

2
}, {3

2
}, ηv

2

2B

))
, (32)

where PFQ is the generalized-hyper-geometric function. Finally, we obtain∫
p(v)dv = log(| m(v) + P1(v) |). (33)

In view of (18)-(33) and substituting for si(v), ai(v) into (7), we obtain the
required solution. It is too lengthy to be produced here.

3.2. When the AE is quadratic. In this subsection we investigate the
exact solution of (6) in the case of quadratic auxiliary equation. We assume
that the solution of (6), by using (7)–(10), have the form together with
quadratic auxiliary equation

gt(τ0, x, v) = µ (c2g(τ0, x, v)
2 + c1), (34)

gv(τ0, x, v) = h(v) (c2g(τ0, x, v)
2 + c1), (35)

gt(τ0, x, v) = k(z) (c2g(τ0, x, v)
2 + c2). (36)

By inserting (7)–(10) into (6), and using (34)–(36), we get a system of
coupled PDEs of first order in ai, b, di, ri, i = 1, 2. Now, we have use the
compatibly equation, a′j(v)− (aj(v))

′ = 0 for the same reason that we men-
tioned above. On the other hand, we found the equations are not consistent
unless r(x)′ = 0. Hence, this is the condition of integrability of (1). Thus,
we take r(x) = r0 and also, we find that k(x) = k0. Thus, we have the
following equations

α′
0(v) =

1

w0(v)
α0(v)(w

′
0(v)− β0(v)), (37)

w′
1(v) =

1

w0(v)

(
(b1(v)− c1p(v)w1(v))w0(v)− β0(v)w1(v)

+ c2hpv)w0(v)
2 + w1(v)w

′
0(v)

)
, (38)

β′
0(v) =

1

Bms0(v)
(−B0mβ0(v)

2 + β0(v)(−B0mw0(v)

+ ((r0 −mvη)w0(v) +B0mw′
0(v))) (39)
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β′
1(v) =

1

Bms0(v)
(mw0(v)(B0c2β0(v)p(v)

+ (c1k0v − η + c1µ)w1(v)− c2(kov + µ)w0(v))

− β1(v)(B0mβ0(v) + ((−r0 +mvη

+B0 c1mp(v))w0(v)−B0mw′
0(v)))), (40)

together with the equations

α1(v) =
c2α0(v)

c1
, γ0(v) = 0, r0(v) = 0, (41)

γ1(v) =
c1µ

α0(v)
(w1(v)α0(v)− α1(v)w0(v)), (42)

r1(v) = k0(c1w1(v)− c2w0(v)), c0 = 0. (43)

We mention that the equations in (37)–(40) can not be integrated, in general,
thus we are led to find particular solutions. To this end, we take

w′
0(v) = w0(v)(

−r0 +mvη

B0m
+ c1p(v)), (44)

β1(v) = −c2p(v)w0(v) + w′
1(v). (45)

By using (37)–(40), we find

w0(v) = A0e
v(−2q0+mv η)

2B
+c1

∫
hpv)dv, α0(v) =

P1

P2
, β0(v) =

P3

mBP2
(46)

P1 = A1e
v(−2q0+mv η)

2B0 , P2 = 2
√
ηe

q20
2B0m

2η +
√

B0C0

√
2πerfi(

−r0 +mv η√
2B0m

√
η
),

(47)

P3 = A0e
v(−2q0+mv η)

2B0

(
2
√
ηe

q20
2Bm2η (r0 −mv η)

+ (q0 −mv η)
√

B0C0

√
2πerfi(

−r0 +mv η√
2B0m

√
η
)

+mB0e
(q0−mv η)2

2B0m
2η )

)
(48)

The compatibly equation (β1(v))
′−β′

1(v) = 0, gives rise to

w1(v) =
Q1

Q2
,

Q1 = c2(−2B0mβ0(v)p(v) + w0(v)((r0 −mv η)p(v)−B0c1mp(v)2,

+m (k0v + µ−B0p
′(v)))),

Q2 = m (−η + c1(k0v + µ)). (49)
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The compatibly equation yields an ODE of nonlinear second of h(v) with
variable coefficients. It can not be solved in general. Detailed calculations
give rise to lengthy result to h(v). But when taking the following equations

µ =
(3Bc201k

2
0m+ 4c1r0k0η + 4mη3)

4c1mη2
,

r0 =
(−21B0c

2
1k

2
0mη − 16m η4)

32c1k0η2
,

k0 = − 4η3/2√
B0c1

. (50)

we obtain

p(v) = −R

Q
,

Q =
√

B0c1(551B
2
0 − 608B0v

2η − 256v4η2),

R = 8(
√

B0 − 4v
√
η)
√
η(31B

3/2
0 − 86B0 v

√
η + 112

√
B0v

2η − 32v3η3/2).
(51)

The solution of the auxiliary equations (34)–(36) is

g(v, z, t) = − c1e
(13+6S

√
3)t η+c1h1(v)+k0z

−1 + c2e
(13+6S

√
3)t η+c1h1(v)+k0z

, h1(v) = − Q2

76
√
551c1

, (52)

Q2 = (2

√
−19 + 4

√
57(−361 + 21

√
57)

×
√
B arctan(

4v
√
η√

19 + 4
√
57
√
B0

)

+ 2

√
19 + 4

√
57(361 + 21

√
57)

√
Barctanh(

4v
√
η√

−19 + 4
√
57

√
B
)

+ 19
√
29(−16

√
19v

√
η − 15(

√
3−

√
19)
√
B0

× log(−19B + 4
√
57B0 − 16v2η)

+ 15(
√
3 +

√
19)

√
B log(19B0 + 4

√
57B0 + 16v2η)). (53)

By substituting from (46)-(53) into the first equation in (7), we get the
required solution, W (v, z, t). The results are too lengthy to be produced
here.

4. Numerical Results

Numerical results are shown here for the solutions of the CFD- KKE,
where the similarity transformations are used (cf. sec.2). The PDF is dis-
played ,against v and t when z = const. in figures 1 (i) and (ii). In fig-
ures 1 (i) and (ii), the solution of (5) is displayed against vand t , where
.the parameters are taken, m = 2.6, F0 = 0.05, B = 0.7, η := 0.5, τ =
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tβ, A1 = −0.05, B0 = 0.05, B1 = 0.03, k0 = −0.5, c0 = 2.3, A2 = 0.07, B2 =
0.09, B3 := −0.09, z = 3, n = 10.

After this figure we remark that for small values of t, the PDF is Gaussian
in v and is exponential distribution in t. While it is zero otherwise. We
remark that there no significant effect of the CFD order. In in figures 2, (i)
and (ii),The PDF is displayed against z and t when v = const. Figures 2, (i)
and (ii), the solution of (5) is displayed against zand t when c1 = 0.05,m =
2.6, B = 7, c2 = 2, η = 0.5, τ = tβ; , A = 1.7, A1 := 1.3, v = 3, B0 = 0.05.
Here F0 is evaluated by using (19). Here F0 is evaluated by using (19)..
After this figure we find the PDF is exponential in t. In figures 3 (i) and
(ii) it is displayed against v and z when t = const. Figures 3, (i) and (ii),
the solution of (5) is displayed against zand t when c1 = 0.05,m = 2.6, B =
7, c2 = 2, η = 0.5, τ = tβ; , A = 1.7, A1 := 1.3, t = 3, B0 = 0.05. Here F0

is evaluated by using (19). Here F0 is evaluated by using (19).. After this
figure we find the PDF is Gaussian in v. The mean and mean square of the
velocity are shown in figure 4. Figure 4. The mean and the mean square of
the velocity are shown for the same caption as in Fig. 1.This figure shows
that the mean and mean square of the velocity are mainly constant. The
mean and mean square of the space variable are shown in figure 5. Figure 5
shows the mean and mean square of the space variable for the same caption
as in Fig. 3.This figure shows that the mean and mean square of the space
variable are mainly constant.
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Figure 1. Graph of the solution of (5) is displayed
against vand t for m = 2.6, F0 = 0.05, B = 0.7, η :=
0.5, τ = tβ, A1 = −0.05, B0 = 0.05, B1 = 0.03, k0 =
−0.5, c0 = 2.3, A2 = 0.07, B2 = 0.09, B3 := −0.09, z = 3, n =
10.
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Figure 2. Graph of the solution of (5) is displayed
against z and t when c1 = 0.05,m = 2.6, B = 7, c2 =
2, η = 0.5, τ = tβ; , A = 1.7, A1 := 1.3, v = 3, B0 = 0.05.
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Figure 3. Graph of the solution of (5) is displayed
against z and t when c1 = 0.05,m = 2.6, B = 7, c2 =
2, η = 0.5, τ = tβ; , A = 1.7, A1 := 1.3, t = 3, B0 = 0.05.
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Figure 4. Graph of the mean and the mean square
of the velocity are shown for the same caption as in
Figure 1.
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5. Conclusions

In this paper, a new approach is presented to solve linear PDEs with
variable coefficients. This approach is based on converting the PDEs into
a system of first-order PDEs. The exact solutions of the CFD-KKE are
obtained via using the extended unified method. A variety of exact solutions
are found by taking two cases for the auxiliary equations. The numerical
evaluation of the solutions are evaluated and the are shown in figures. These
figures show Gaussian or multiple Gaussian distributions.
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