References:
Abbatiello, S., Ackermann, B. L., Borchers, C., Bradshaw, R. A., Carr,
S. A., Chalkley, R., Choi, M., Deutsch, E., Domon, B., Hoofnagle, A. N.,
Keshishian, H., Kuhn, E., Liebler, D. C., MacCoss, M., MacLean, B.,
Mani, D. R., Neubert, H., Smith, D., Vitek, O., & Zimmerman, L. (2017).
New Guidelines for Publication of Manuscripts Describing Development and
Application of Targeted Mass Spectrometry Measurements of Peptides and
Proteins. Molecular & Cellular Proteomics : MCP , 16 (3),
327–328.
Amoudi, M. A., El‐Sayed, A.-F. M., & El‐Ghobashy, A. (1996). Effects of
Thermal and Thermo-Haline Shocks on Survival and Osmotic Concentration
of the Tilapias Oreochromis mossambicus and Oreochromis aureus ×
Oreochromis niloticus Hybrids. Journal of the World Aquaculture
Society , 27 (4), 456–461.
https://doi.org/10.1111/j.1749-7345.1996.tb00630.x
Avella, M., Berhaut, J., & Bornancin, M. (1993). Salinity tolerance of
two tropical fishes, Oreochromis aureus and O. niloticus. I. Biochemical
and morphological changes in the gill epithelium. Journal of Fish
Biology , 42 (2), 243–254.
https://doi.org/10.1111/j.1095-8649.1993.tb00325.x
Basiao, Z. U., Eguia, R. V., & Doyle, R. W. (2005). Growth response of
Nile tilapia fry to salinity stress in the presence of an ‘internal
reference’ fish. Aquaculture Research , 36 (7), 712–720.
https://doi.org/10.1111/j.1365-2109.2005.01283.x
Bazil, J. N., Beard, D. A., & Vinnakota, K. C. (2016). Catalytic
Coupling of Oxidative Phosphorylation, ATP Demand, and Reactive Oxygen
Species Generation. Biophysical Journal , 110 (4), 962–971.
https://doi.org/10.1016/j.bpj.2015.09.036
Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery
rate: A practical and powerful approach to multiple testing.Journal of the Royal Statistical Society. Series B
(Methodological) , 57 (1), 289–300.
Blackburn, J. (1987). Revised procedure for the 24-hour seawater
challenge test to measure seawater adaptability of juvenile.Canadian Technical Report of Fisheries and Aquatic Sciences ,1515 . https://ci.nii.ac.jp/naid/10005103917/
Bœuf, G., & Payan, P. (2001). How should salinity influence fish
growth? Comparative Biochemistry and Physiology Part C: Toxicology
& Pharmacology , 130 (4), 411–423.
https://doi.org/10.1016/S1532-0456(01)00268-X
Brett, J. R. (1956). Some Principles in the Thermal Requirements of
Fishes. The Quarterly Review of Biology , 31 (2), 75–87.
https://doi.org/10.1086/401257
Choi, M., Chang, C. Y., Clough, T., Broudy, D., Killeen, T., MacLean,
B., & Vitek, O. (2014). MSstats: An R package for statistical analysis
of quantitative mass spectrometry-based proteomic experiments.Bioinformatics , 30 (17), 2524–2526.
https://doi.org/10.1093/bioinformatics/btu305
Christensen, E. A. F., Grosell, M., & Steffensen, J. F. (2019). Maximum
salinity tolerance and osmoregulatory capabilities of European perch
Perca fluviatilis populations originating from different salinity
habitats. Conservation Physiology , 7 (1), coz004.
https://doi.org/10.1093/conphys/coz004
Clarke, B. (1971). Natural Selection and the Evolution of Proteins.Nature , 232 (5311), 487. https://doi.org/10.1038/232487a0
Cui, Y.-W., Zhang, H.-Y., Ding, J.-R., & Peng, Y.-Z. (2016). The
effects of salinity on nitrification using halophilic nitrifiers in a
Sequencing Batch Reactor treating hypersaline wastewater.Scientific Reports , 6 (1), 24825.
https://doi.org/10.1038/srep24825
Davis, B. E., Hansen, M. J., Cocherell, D. E., Nguyen, T. X., Sommer,
T., Baxter, R. D., Fangue, N. A., & Todgham, A. E. (2019). Consequences
of temperature and temperature variability on swimming activity, group
structure, and predation of endangered delta smelt. Freshwater
Biology , 64 (12), 2156–2175. https://doi.org/10.1111/fwb.13403
Ebhardt, H. A., Root, A., Sander, C., & Aebersold, R. (2015).
Applications of targeted proteomics in systems biology and translational
medicine. Proteomics , 15 (18), 3193–3208.
https://doi.org/10.1002/pmic.201500004
Edet, U. O., & Antai, S. P. (2018). Correlation and Distribution of
Xenobiotics Genes and Metabolic Activities with Level of Total Petroleum
Hydrocarbon in Soil, Sediment and Estuary Water in the Niger Delta
Region of Nigeria. Asian Journal of Biotechnology and Genetic
Engineering , 1–11.
Elliott, M., & Quintino, V. (2007). The Estuarine Quality Paradox,
Environmental Homeostasis and the difficulty of detecting anthropogenic
stress in naturally stressed areas. Marine Pollution Bulletin ,54 (6), 640–645. https://doi.org/10.1016/j.marpolbul.2007.02.003
Elumalai, P., Rubeena, A. S., Arockiaraj, J., Wongpanya, R., Cammarata,
M., Ringø, E., & Vaseeharan, B. (2019). The Role of Lectins in Finfish:
A Review. Reviews in Fisheries Science & Aquaculture ,27 (2), 152–169. https://doi.org/10.1080/23308249.2018.1520191
Evans, Piermarini, P. M., & Choe, K. P. (2005). The Multifunctional
Fish Gill: Dominant Site of Gas Exchange, Osmoregulation, Acid-Base
Regulation, and Excretion of Nitrogenous Waste. Physiological
Reviews , 85 (1), 97–177.
https://doi.org/10.1152/physrev.00050.2003
Fiol, D. F., Sanmarti, E., Lim, A. H., & Kültz, D. (2011). A novel
GRAIL E3 ubiquitin ligase promotes environmental salinity tolerance in
euryhaline tilapia. Biochimica et Biophysica Acta (BBA) - General
Subjects , 1810 (4), 439–445.
https://doi.org/10.1016/j.bbagen.2010.11.005
Fridman, S., Rana, K. J., & Bron, J. E. (2013). Morphological and
ultrastructural characterization of ionoregulatory cells in the teleost
oreochromis niloticus following salinity challenge combining
complementary confocal scanning laser microscopy and transmission
electron microscopy using a novel prefixation immunogold labeling
technique. Microscopy Research and Technique , 76 (10),
1016–1024. https://doi.org/10.1002/jemt.22262
Fuadi, A. A., Hasly, I. R. J., Azkia, L. I., & Irham, M. (2021).
Response of tilapia (Oreochromis niloticus) behaviour to salinity
differences: A laboratory scale study. IOP Conference Series:
Earth and Environmental Science , 674 (1), 012060.
https://doi.org/10.1088/1755-1315/674/1/012060
Gardell, A. M., Yang, J., Sacchi, R., Fangue, N. A., Hammock, B. D., &
Kültz, D. (2013). Tilapia (Oreochromis mossambicus) brain cells respond
to hyperosmotic challenge by inducing myo-inositol biosynthesis.Journal of Experimental Biology , 216 (24), 4615–4625.
https://doi.org/10.1242/jeb.088906
Goss, G. G., Adamia, S., & Galvez, F. (2001). Peanut lectin binds to a
subpopulation of mitochondria-rich cells in the rainbow trout gill
epithelium. American Journal of Physiology-Regulatory, Integrative
and Comparative Physiology , 281 (5), R1718–R1725.
https://doi.org/10.1152/ajpregu.2001.281.5.R1718
Hiroi, J., McCormick, S. D., Ohtani-Kaneko, R., & Kaneko, T. (2005).
Functional classification of mitochondrion-rich cells in euryhaline
Mozambique tilapia (Oreochromis mossambicus) embryos, by means of triple
immunofluorescence staining for Na+/K+-ATPase, Na+/K+/2Cl- cotransporter
and CFTR anion channel. Journal of Experimental Biology ,208 (11), 2023–2036. https://doi.org/10.1242/jeb.01611
Hirose, S., Kaneko, T., Naito, N., & Takei, Y. (2003). Molecular
biology of major components of chloride cells. Comparative
Biochemistry and Physiology Part B: Biochemistry and Molecular Biology ,136 (4), 593–620. https://doi.org/10.1016/S1096-4959(03)00287-2
Inokuchi, M., Hiroi, J., Watanabe, S., Hwang, P.-P., & Kaneko, T.
(2009). Morphological and functional classification of ion-absorbing
mitochondria-rich cells in the gills of Mozambique tilapia.Journal of Experimental Biology , 212 (7), 1003–1010.
https://doi.org/10.1242/jeb.025957
Inokuchi, M., & Kaneko, T. (2012). Recruitment and degeneration of
mitochondrion-rich cells in the gills of Mozambique tilapia Oreochromis
mossambicus during adaptation to a hyperosmotic environment.Comparative Biochemistry and Physiology Part A: Molecular &
Integrative Physiology , 162 (3), 245–251.
https://doi.org/10.1016/j.cbpa.2012.03.018
Iwama, G. K., Takemura, A., & Takano, K. (1997). Oxygen consumption
rates of tilapia in fresh water, sea water, and hypersaline sea water.Journal of Fish Biology , 51 (5), 886–894.
https://doi.org/10.1111/j.1095-8649.1997.tb01528.x
Kammerer, B. D., Cech, J. J., & Kültz, D. (2010). Rapid changes in
plasma cortisol, osmolality, and respiration in response to salinity
stress in tilapia (Oreochromis mossambicus). Comparative
Biochemistry and Physiology Part A: Molecular & Integrative
Physiology , 157 (3), 260–265.
https://doi.org/10.1016/j.cbpa.2010.07.009
Karnaky. (1986). Structure and Function of the Chloride Cell of Fundulus
heteroclitus and Other Teleosts1. American Zoologist ,26 (1), 209–224. https://doi.org/10.1093/icb/26.1.209
Karnaky, K. J., Jr, Ernst, S. A., & Philpott, C. W. (1976). Teleost
chloride cell. I. Response of pupfish Cyprinodon variegatus gill
Na,K-ATPase and chloride cell fine structure to various high salinity
environments. Journal of Cell Biology , 70 (1), 144–156.
https://doi.org/10.1083/jcb.70.1.144
Keerthikumar, S., & Mathivanan, S. (2017). Proteotypic Peptides and
Their Applications. Methods in Molecular Biology (Clifton, N.J.) ,1549 , 101–107. https://doi.org/10.1007/978-1-4939-6740-7_8
Kültz, D., Fiol, D., Valkova, N., Gomez-Jimenez, S., Chan, S. Y., &
Lee, J. (2007). Functional genomics and proteomics of the cellular
osmotic stress response in “non-model” organisms. The Journal of
Experimental Biology , 210 (Pt 9), 1593–1601.
https://doi.org/10.1242/jeb.000141
Kültz, D., Jürss, K., & Jonas, L. (1995). Cellular and epithelial
adjustments to altered salinity in the gill and opercular epithelium of
a cichlid fish (Oreochromis mossambicus). Cell and Tissue
Research , 279 (1), 65–73. https://doi.org/10.1007/BF00300692
Kültz, D., Li, J., Gardell, A., & Sacchi, R. (2013). Quantitative
Molecular Phenotyping of Gill Remodeling in a Cichlid Fish Responding to
Salinity Stress. Molecular & Cellular Proteomics , 12 (12),
3962–3975. https://doi.org/10.1074/mcp.M113.029827
Kültz, D., Li, J., Paguio, D., Pham, T., Eidsaa, M., & Almaas, E.
(2016). Population-specific renal proteomes of marine and freshwater
three-spined sticklebacks. Journal of Proteomics , 135 ,
112–131. https://doi.org/10.1016/j.jprot.2015.10.002
Kültz, D., & Onken, H. (1993). Long-term acclimation of the teleost
Oreochromis mossambicus to various salinities: Two different strategies
in mastering hypertonic stress. Marine Biology , 117 (3),
527–533. https://doi.org/10.1007/BF00349328
Langston, J. N., Schofield, P. J., Hill, J. E., & Loftus, W. F. (2010).
Salinity Tolerance of the African Jewelfish Hemichromis letourneuxi, a
Non-native Cichlid in South Florida (USA). Copeia ,2010 (3), 475–480. https://doi.org/10.1643/CP-09-069
Laskar, A. A., & Younus, H. (2019). Aldehyde toxicity and metabolism:
The role of aldehyde dehydrogenases in detoxification, drug resistance
and carcinogenesis. Drug Metabolism Reviews , 51 (1),
42–64. https://doi.org/10.1080/03602532.2018.1555587
Leary, S., Pharmaceuticals, F., Underwood, W., Anthony, R., Cartner, S.,
Johnson, C. L., & Patterson-Kane, E. (2020). AVMA Guidelines for
the Euthanasia of Animals: 2020 Edition . 121.
Lee, T. H., Hwang, P. P., Shieh, Y. E., & Lin, C. H. (2000). The
relationship between ‘deep-hole’ mitochondria-rich cells and salinity
adaptation in the euryhaline teleost, Oreochromis mossambicus.Fish Physiology and Biochemistry , 23 (2), 133–140.
https://doi.org/10.1023/A:1007818631917
Lewis, E. L., & Perkin, R. G. (1978). Salinity: Its definition and
calculation. Journal of Geophysical Research: Oceans ,83 (C1), 466–478. https://doi.org/10.1029/JC083iC01p00466
Li, J., Levitan, B., Gomez-Jimenez, S., & Kültz, D. (2018). Development
of a Gill Assay Library for Ecological Proteomics of Threespine
Sticklebacks ( Gasterosteus aculeatus ). Molecular &
Cellular Proteomics , 17 (11), 2146–2163.
https://doi.org/10.1074/mcp.RA118.000973
Mularoni, L., Ledda, A., Toll-Riera, M., & Albà, M. M. (2010). Natural
selection drives the accumulation of amino acid tandem repeats in human
proteins. Genome Research , 20 (6), 745–754.
https://doi.org/10.1101/gr.101261.109
Panfili, J., Mbow, A., Durand, J. D., Diop, K., Diouf, K., Thior, D.,
Ndiaye, P., & Lae, R. (2004). Influence of salinity on the life-history
traits of the West African black-chinned tilapia (Sarotherodon
melanotheron): Comparison between the Gambia and Saloum estuaries.Aquatic Living Resources , 17 (1), 65–74.
https://doi.org/10.1051/alr:2004002
Pino, L. K., Searle, B. C., Bollinger, J. G., Nunn, B., MacLean, B., &
MacCoss, M. J. (2017). The Skyline ecosystem: Informatics for
quantitative mass spectrometry proteomics. Mass Spectrom Rev ,39 (3), 229–244. https://doi.org/10.1002/mas.21540
Pörtner, H.-O. (2010). Oxygen- and capacity-limitation of thermal
tolerance: A matrix for integrating climate-related stressor effects in
marine ecosystems. Journal of Experimental Biology ,213 (6), 881–893. https://doi.org/10.1242/jeb.037523
Reiter, L., Rinner, O., Picotti, P., Huttenhain, R., Beck, M., Brusniak,
M. Y., Hengartner, M. O., & Aebersold, R. (2011). mProphet: Automated
data processing and statistical validation for large-scale SRM
experiments. Nat Methods , 8 (5), 430–435.
https://doi.org/10.1038/nmeth.1584
Richards, J. G., Semple, J. W., Bystriansky, J. S., & Schulte, P. M.
(2003). Na+/K+-ATPase α-isoform switching in gills of rainbow trout
(Oncorhynchus mykiss) during salinity transfer. Journal of
Experimental Biology , 206 (24), 4475–4486.
https://doi.org/10.1242/jeb.00701
Ronkin, D., Seroussi, E., Nitzan, T., Doron-Faigenboim, A., & Cnaani,
A. (2015). Intestinal transcriptome analysis revealed differential
salinity adaptation between two tilapiine species. Comparative
Biochemistry and Physiology Part D: Genomics and Proteomics , 13 ,
35–43. https://doi.org/10.1016/j.cbd.2015.01.003
Root, L., Campo, A., MacNiven, L., Con, P., Cnaani, A., & Kültz, D.
(2021a). Nonlinear effects of environmental salinity on the gill
transcriptome versus proteome of Oreochromis niloticus modulate
epithelial cell turnover. Genomics , 113 (5), 3235–3249.
https://doi.org/10.1016/j.ygeno.2021.07.016
Root, L., Campo, A., MacNiven, L., Con, P., Cnaani, A., & Kültz, D.
(2021b). A data-independent acquisition (DIA) assay library for
quantitation of environmental effects on the kidney proteome of
Oreochromis niloticus. Molecular Ecology Resources , 21 (7),
2486–2503. https://doi.org/10.1111/1755-0998.13445
Rosen, M. B., Schmid, J. R., Corton, J. C., Zehr, R. D., Das, K. P.,
Abbott, B. D., & Lau, C. (2010). Gene Expression Profiling in Wild-Type
and PPARα-Null Mice Exposed to Perfluorooctane Sulfonate Reveals
PPARα-Independent Effects. PPAR Research , 2010 , 794739.
https://doi.org/10.1155/2010/794739
Sardella, B. A. (2004). Physiological, biochemical and morphological
indicators of osmoregulatory stress in ‘California’ Mozambique tilapia
(Oreochromis mossambicus x O. urolepis hornorum) exposed to hypersaline
water. Journal of Experimental Biology , 207 (8),
1399–1413. https://doi.org/10.1242/jeb.00895
Sardella, B. A., & Brauner, C. J. (2007). The Osmo-respiratory
Compromise in Fish: The Effects of Physiological State and the
Environment. In Fish Respiration and Environment (p. chapter 8).
CRC Press.
Schultz, E., & McCormick, S. (2012). Euryhalinity in an Evolutionary
Context. In Euryhaline Fishes (Vol. 32, pp. 477–533).
https://opencommons.uconn.edu/eeb_articles/29
Sokolova, I. M., Frederich, M., Bagwe, R., Lannig, G., & Sukhotin, A.
A. (2012). Energy homeostasis as an integrative tool for assessing
limits of environmental stress tolerance in aquatic invertebrates.Marine Environmental Research , 79 , 1–15.
https://doi.org/10.1016/j.marenvres.2012.04.003
Somero, G., Lockwood, B., Tomanek, L. (2016). Biochemical
Adaptation, Response to Environmental Challenges from Life’s Origins to
the Anthropocene . Sinauer Associates, an imprint of Oxford University
Press.
//global.oup.com/ukhe/product/biochemical-adaptation-9781605355641
Speare, D. J., MacNair, N., & Hammell, K. L. (1995). Demonstration of
tank effect on growth indices of juvenile rainbow trout (Oncorhynchus
mykiss) during an ad libitum feeding trial. American Journal of
Veterinary Research , 56 (10), 1372–1379.
Szklarczyk, D., Gable, A. L., Lyon, D., Junge, A., Wyder, S.,
Huerta-Cepas, J., Simonovic, M., Doncheva, N. T., Morris, J. H., Bork,
P., Jensen, L. J., & Mering, C. von. (2019). STRING v11:
Protein–protein association networks with increased coverage,
supporting functional discovery in genome-wide experimental datasets.Nucleic Acids Research , 47 (D1), D607–D613.
https://doi.org/10.1093/nar/gky1131
Tipsmark, C. K., Breves, J. P., Seale, A. P., Lerner, D. T., Hirano, T.,
& Grau, E. G. (2011). Switching of Na+, K+-ATPase isoforms by salinity
and prolactin in the gill of a cichlid fish. The Journal of
Endocrinology , 209 (2), 237–244.
https://doi.org/10.1530/joe-10-0495
Tsai, J. C., & Hwang, P. P. (1998a). The wheat germ agglutinin binding
sites and development of the mitochondria-rich cells in gills of tilapia
(Oreochromis mossambicus). Fish Physiology and Biochemistry ,19 (1), 95–102. https://doi.org/10.1023/A:1007766531264
Tsai, J. C., & Hwang, P. P. (1998b). Effects of wheat germ agglutinin
and colchicine on microtubules of the mitochondria-rich cells and Ca2+
uptake in tilapia (Oreochromis mossambicus) larvae. Journal of
Experimental Biology , 201 (15), 2263–2271.
https://doi.org/10.1242/jeb.201.15.2263
Watanabe, W. O., Kuo, C.-M., & Huang, M.-C. (1985). The ontogeny of
salinity tolerance in the tilapias Oreochromis aureus, O. niloticus, and
an O. mossambicus × O. niloticus hybrid, spawned and reared in
freshwater. Aquaculture , 47 (4), 353–367.
https://doi.org/10.1016/0044-8486(85)90220-0
Whitfield, A. K., Taylor, R. H., Fox, C., & Cyrus, D. P. (2006). Fishes
and salinities in the St Lucia estuarine system—A review.Reviews in Fish Biology and Fisheries , 16 (1), 1–20.
https://doi.org/10.1007/s11160-006-0003-x
Yamaguchi, T., Gi, M., Fujioka, M., Tago, Y., Kakehashi, A., &
Wanibuchi, H. (2019). A chronic toxicity study of diphenylarsinic acid
in the drinking water of C57BL/6J mice for 52 weeks. Journal of
Toxicologic Pathology , 32 (3), 127–134.
https://doi.org/10.1293/tox.2018-0067
Zeng, L., Li, X., Preusch, C. B., He, G. J., Xu, N., Cheung, T. H., Qu,
J., & Mak, H. Y. (2021). Nuclear receptors NHR-49 and NHR-79 promote
peroxisome proliferation to compensate for aldehyde dehydrogenase
deficiency in C. elegans. PLOS Genetics , 17 (7), e1009635.
https://doi.org/10.1371/journal.pgen.1009635