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Abstract: Soil moisture plays a significant role in land-atmosphere interactions. Changing 

fractions of latent and sensible heat fluxes caused by soil moisture variations can affect near-

surface air temperature, thus influencing the cooling effect of the oasis in arid regions. In this 

study, the framework for the evaporative fraction (EF) dependence on soil moisture is used to 

analyze the impacts of soil moisture variation on near-surface air temperature and the oasis 

effect. The results showed that the contribution rate of soil moisture to EF was significantly 

higher than that of EF to temperature. Under the interaction of temperature sensitivity to EF and 

EF to soil moisture, the ∂T/∂ϴ presented a similar tempo-spatial variation with both of the 

above. It was most significant in oasis areas during summer (−1.676), while it was weaker in 

plain desert areas during the autumn (−0.071). In the study region, the effect of soil moisture 

variation on air temperature can reach 0.018–0.242 K for different land-cover types in summer. 

The maximum variation of soil moisture in summer can alter air temperature by up to 0.386 K. 

The difference in temperature variability between the oasis and desert areas promoted the 

formation of the oasis effect. For different oasis, the multi-year average oasis cold effect index 

(OCI) ranged from −1.36 K to −0.26 K, while average summer OCI ranged from −1.38 K to 

−0.29 K. The lower bound of the cooling effect of oasis ranged from −4.97 to −1.69 K. The 

analysis framework and results of this study will provide a new perspective for further research 

on the evolution process of the oasis effect and water-heat balance in arid areas.

Keywords: Evaporative fraction, near-surface air temperature, coupling relation, oasis and 

desert, arid region
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1. Introduction

Soil moisture plays a crucial role in the exchanges of water and energy on the land surface

(Koster et al., 2004; Feldman et al., 2019). The spatiotemporal variations of soil moisture closely

correlate with the variability of precipitation, evapotranspiration, and runoff (Wang et al., 2012; 

Sazib et al., 2020). Generally, there is a strong coupling between soil moisture and precipitation

(Koster et al., 2004). Precipitation events triggered by wet advantage conditions have larger 

accumulations than the similar events triggered under the dry advantage conditions during all 

seasons (Huggannavar and Indu, 2020). In addition, soil moisture also controlled 

evapotranspiration (ET), especially in the water-limited regions. Therefore, in Priestley Taylor 

Jet Propulsion Laboratory (PT-JPL) ET algorithm, soil moisture can be used as an important 

input variable to estimate actual evaporation (Purdy et al., 2018; Walker et al., 2019). 

Meanwhile, soil moisture is commonly used to estimate ET based on the water balance equation

(Gribovszki and Zoltan, 2018). In some cases, the complex correlation between soil moisture and

evapotranspiration affected the moisture-precipitation feedback in dry and wet regions (Yang et 

al., 2018). In the quantitative analysis of the coupling relationship between soil and evaporation, 

researchers proposed a simple schematic of ET/ soil moisture parameterizations, in which soil 

moisture and ET of forest presented a linear relationship (Brandes and Wilcox, 2000). A 

deterministic continuous simulation model of soil moisture was established using actual 

evapotranspiration as a function of potential evapotranspiration and soil moisture (a piecewise 

function of ET and soil moisture considering various soil moisture thresholds). The model was 

successfully verified by climate and field data from the Guelph lawn Research Institute and 

environmental research center in Ontario, Canada (Nishat et al., 2007). Recently, researchers 

have proposed a conceptual framework for the dependence of evaporative fraction (EF) on soil 
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moisture, in which using the EF ruled out the influence of variations in net radiation, so it is 

suitable to analyze the control of soil moisture on energy partitioning (Seneviratne et al., 2010; 

Schwingshackl et al., 2017). Soil moisture can affect surface air temperature by controlling the 

latent heat flux. Research has indicated that soil moisture feedback over North China contributes 

6% of the total air temperature variation from 1961–2012 and reaches 36% after the regional 

warming from 1994–2012 (Xu et al., 2019). While in the subtropical southwest of China, soil 

moisture contributed 10–50% of the total air temperature variance (Zhao et al., 2020). Over the 

monsoon-dominated region of India, the long-term decrease of soil moisture increased the 

incidence of temperature extremes (Ganeshi et al., 2020). 

  Generally, the strength of soil moisture control on the energy partitioning at the land surface 

depends on the geographical location and can over the year. Only in regions where soil moisture 

is the limiting factor for this partitioning can the dependence of water and energy fluxes on soil 

moisture be expected (Schwingshackl et al., 2017). Thus, for the arid region of Xinjiang, located 

in Central Asia’s inland region, with an annual temperature of 10–13°C and precipitation of 150 

mm, soil moisture may have stronger control on the surface air temperature. Several studies have

shown that, during the past 60 years, the temperature rise of the Xinjiang region was 0.32–

0.35℃/10a (Jiang et al., 2013; Xu et al., 2014), higher than the temperature rise in China and 

across the world. However, little is known about the role of soil moisture in the warming process

and the seasonal variation of the coupling strength between soil moisture and temperature in arid 

regions of Central Asia Also, there is a typical mountain-oasis-desert ecosystem in arid Central 

Asia. An oasis is a medium-sized or small-scale non-zonal landscape that occurs in an arid 

climate and is supported by natural or artificial rivers in the desert (Li et al., 2013; Yi et al., 

2015). Oases are characterized by comparatively high primary productivity and 
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evapotranspiration (Bruelheide et al., 2003; Zhao et al., 2010). The oasis cooling effect caused 

by strong evapotranspiration in the oasis area compared to the surrounding desert area exists in 

arid regions such as Northwest China and southern Israel (Taha et al., 1991; Saaroni et al., 2004;

Chu et al., 2005; Liu et al., 2011; Li et al., 2013; Wen, 2014). Although the oasis effect was 

studied using a numerical model and MODIS land surface temperature (LST) data (Su and Hu, 

1987; Hao et al., 2016), there is still a lack of research on the control mechanism of the oasis 

effect, primarily concerning how soil moisture controls evapotranspiration, which mutually 

affects the surface air temperature.

  Here, we focus our analysis on a typical arid region of Central Asia and address three questions 

through integrated site observation, simulated data and the conceptual framework for the 

coupling relation between evaporative fraction and soil moisture. (i) How does surface air 

temperature respond to the soil moistue variation in the arid region? (ii) Which landscape units 

have the greatest change in surface air temperature due to soil moisture variation? (iii) How does 

the negative feedback of soil moisture to air temperature promote the formation of the oasis 

effect and its seasonal variation?

2 Materials and Methods

2.1 Study area

In this study, the coupling relationship between soil moisture and evapotranspiration in the 

Xinjiang region, a provincial-level autonomous region of Northwest China, were analyzed. The 

Xinjiang region covered approximately 1.6 million km2 and bordered Mongolia, 

Russia, Kazakhstan, Kyrgyzstan, Tajikistan, Afghanistan, Pakistan, and India. The study region 

is bounded by the Altai and Kunlun (Karakorum) Mountains on the northern and southern 

borders, respectively (Fig. 1). The Tianshan Mountains are located in the middle of Xinjiang and 
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divide Xinjiang into two major basins, the Junggar basin and the Tarim Basin, the two largest 

inland basins of China. The study area has a typical landscape pattern of the mountain-oasis-

desert. Among them, the mountainous area is the formation area of water resources. Rivers 

in this region, similar to other rivers in Central Asia, all originate in mountainous areas and flow 

into or disappear in the basin. Natural and artificial oases are often formed in plain alluvial areas 

where rivers flow surrounded by a vast desert area. The climate of Xinjiang is a typical 

continental arid climate. The annual temperature is 10–13°C, and precipitation is 20–100 mm 

and 100–500 mm in the southern and northern parts of the study area, respectively. The land-

cover types of the study areas were predominantly desert, including sand (21.16%), Gobi desert 

(17.48%), and bare land (18.83%). The forest, grassland, and farming land accounted for 2.26%, 

28.61%, and 4.72% of the total study area, respectively (Fig. 1). 

Fig. 1 Sketch map of topography and primary land-use types in the study area.

2.2 Data

The surface energy balance algorithms for the land (SEBAL) model based on MODIS data 

estimated the ET data. In this study, MODIS LST, normalized difference vegetation index 

(NDVI), surface albedo, and land-use/cover (LUCC) data were used. These data were first 

processed by mosaic, band match, and re-projection methods and then resampled (using the 

nearest neighbor method) to 1 km resolution. We adopted the global vegetation classification 

system of the International Geosphere–Biosphere Program (IGBP) for the LUCC data. The 

primary land-use types (vegetation types) were reclassified into six categories: forest (FT), shrub 

(SH), grassland (GS), wetland (WL), cultivated land (CL), and desert (DS). In addition, the DEM

data were downloaded from U.S. Geological Survey. 
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  The classification data set of the soil texture (sand, silt, and clay content in 0–100 cm soil 

depth) was provided by the “National Tibetan Plateau Data Center” of China 

(http://data.tpdc.ac.cn). This data was developed based on the 1:1000000 scale soil map and 

8595 soil profiles from the second national soil survey, and the USDA regional land and climate 

simulation standard in China. The dataset of soil hydraulic parameters in China using 

pedotransfer functions for Land Surface Modeling (CDSHP) is also used in this study, which 

provided by “National Cryosphere Desert Data Center of China.” 

 Soil moisture data based on observed and microwave remote sensing were used in this study. 

The observed relative soil moisture data (0–100 cm) was obtained in 49 sites from 2000 to 2013, 

provided by the China Meteorological Data Service Center (CMDC). The soil moisture data of 

microwave sensing were provided by the National Tibetan Plateau Data Center of China, which 

used a high spatial and temporal resolution surface meteorological dataset and the improved land

surface assimilation system. These parameters were used to drive the land surface process model 

SiB2 and assimilate the brightness temperature observed by the AMSR-E satellite to obtain soil 

moisture data for China (Yang et al., 2007; Yang et al., 2020). The detailed information of these 

above datasets are shown in Table1.

Table 1 Overview of the data information used in this study

　 Dataset
Spatial 
resolution

Temporal 
resolution

Data sources

MODIS

 LST,MOD11A2 1 km
8 days, 
2000–2018

National Aeronautics and Space 
Administration 
(http://modis.gsfc.nasa.gov/)

NDVI,MOD13A1 500 m
16 days, 
2000–2018

Surface albedo, 
MCD43B3

1 km
8 days, 
2000–2018

LUCC,MOD12Q
1

1 km
yearly, 
2001–2018
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Observed, 
simulated 
or 
assimilate
d

DEM data, USGS 30 m /
U.S. Geological Survey (USGS; 
http://tahoe.usgs.gov/DEM.html, 
data

Soil texture
 (0–100 cm)

1 Km /
National Tibetan Plateau Data 
Center” of China 
(http://data.tpdc.ac.cn)

soil hydraulic 
parameters
 (0–100 cm)

30″ /
National Cryosphere Desert Data 
Center of China” 
(http://www.crensed.ac.cn/portal/)

observed relative 
soil moisture (0–
100 cm)

49 sites
monthly, 
2002–2013

China Meteorological Data Service 
Center (CMDC) website 
(http://data.cma.cn/data/cdcdetail/dat
aCode/AGME_AB2_CHN_TEN.htm
l)

soil moisture 
based on 
microwave 
sensing (0–100 
cm)

0.25°
monthly, 
2002–2011

National Tibetan Plateau Data 
Center” of China 
(http://data.tpdc.ac.cn)

near-surface air 
temperature (2 m)

1 km
monthly, 
2000–2018

Meteorological stations

The daily mean air temperature data were obtained from 68 national meteorological stations 

from 2000–2018. The gridded 1 km × 1 km monthly air temperature dataset was produced by 

Anusplin software (V4.3) using latitude, longitude, and elevation as independent variables. The 

Anusplin software is a professional interpolation software for meteorology data, which uses the 

thin-plate smoothing spline algorithm for interpolation (Qian, 2010).  

2.3 Methods

a. Theoretical background

A conceptual framework for the EF dependence on soil moisture was already assumed and 

applied well (Seneviratne et al., 2010; Schwingshackl et al., 2017). In this framework, the 

dependence of evaporative fraction (EF) on soil moisture (θ) expressed as:
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EF (θ ) {
0 ,if θ<θr

EFmax
θ−θr
θc−θr

, if θr≤θ≤θs

EFmax , if θ>θs

                                         (1)

where EF is the evaporative fraction, and θc is the soil moisture at the critical point. When θ > θc, 

soil moisture no longer is the limiting factor for evapotranspiration, dominated by the energy. θr 

is the saturated and residual soil moisture. The parameter EF can be calculated as follows:

EF= ¿
Rn                                                                           (2)

where LE is the latent heat flux, and Rn is the surface net radiation. The ET (LE) and Rn data were

estimated using the SEBAL model based on the MODIS dataset. The detailed calculation process

of the SEBAL model can be found in (Allen et al., 2011).

 However, when θ<θr, the EF is not always 0 because hygroscopic soil moisture can still 

maintain a soil evaporation level (Nishat et al., 2007). In addition, there is certain background 

noise in both NDVI and ET data in extremely arid desert areas. Thus, this study defined the EFmin

as the EF value corresponding to the percentage of EF’s cumulative frequency, which is 5% in 

each land-cover type of the study area. Similarly, the EF value corresponding to the cumulative 

frequency percentage of 95% is EFmax. Therefore, in formula (1), the EF is approximately equal 

to EFmin when θ < θr.

b. Downscaling and estimation of soil moisture data

 This study estimated the soil moisture mainly in the area of EF min ≤ EF ≤EF max. Based on the 

deformation of equation 1, the following equation can be obtained:

θ=
EF
EFmax

(θc−θr )+θr                                               (3)
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where θr is the wilting moisture. The gridded θr was estimated based on the China dataset of soil 

hydraulic parameters (CDSHP) and soil texture classification data (Wang et al., 2015). 

Generally, the critical soil moisture (θc) is larger than θr and smaller than the saturated soil 

moisture (θs) and has great spatial variation. This study obtained the gridded monthly θc by 

inverse operation of equation (3) based on the assimilated monthly soil moisture dataset of the 

AMSR-E satellite data. Then, the lower spatial resolution (0.25°) θc is interpolated by the IDW 

method to obtain the high-resolution (1 km) θc. After obtaining the above parameters (θc, θr, EF, 

and EFmax), the high-resolution (1 km) monthly soil moisture data for the Xinjiang region from 

2001 to 2018 were obtained using formula (3). Thus, the spatial downscaling application of the 

assimilated soil moisture dataset in Xinjiang was realized, and the data series was extended from 

2002–2011 to 2001–2018.

c. The impacts of soil moisture variation on near-surface air temperature

The sensitivity of surface air temperature to soil moisture can be divided into two 

contributions:

∂T
∂θ

=
∂T
∂ EF

∂ EF
∂θ

                                                               (3)  

where the first term on the right-hand side is the sensitivity∂T /∂EF , describes to what extent 

changes in energy portioning influence air temperature. Here, temperature anomalies were used 

for calculating this sensitivity through a statistical sensitivity analysis method (Hao et al., 2019). 

The second term on the right-hand side, the slope∂ EF /∂θ, represents the coupling between soil 

moisture and the EF and is directly obtained from the fitted equation (3).

Eventually, it is possible to estimate how strongly soil moisture variations influence the near-

surface air temperature: 
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∆T=|∂T∂θ |∆θ                                                                        (4)

where ∆θ is the linear slope of soil moisture in the respective seasons (March to May, MAM; 

June to August, JJA, and September to November, SON) from 2001 to 2018. ∆T  is a measure of 

the average effect of soil moisture variations on the near-surface temperature. 

Similarly, the maximum impact of soil moisture on temperature is estimated as follows:

∆T max=|∂T∂θ |∆θmax                                                                (5)                 

where ∆θmax is the maximum change rate of soil moisture in the respective seasons from 2001 to 

2018, calculated by the maximum and minimum soil moisture values.∆T max is the upper bound 

of the impact that soil moisture can have on temperature. 

d. Analysis framework of oasis cold effect index

In winter, the surface soil freezes, and the dependence of EF on soil moisture no longer 

exists. Without the influence of the evapotranspiration process, there should be no significant 

difference in temperature between the oasis and the surrounding desert area under the same 

external radiation conditions. Until the beginning of spring, the soil thaws, and the 

evapotranspiration process is gradually strengthened. At this time, soil moisture began to have a 

strong impact on temperature, and the oasis effect began to be highlighted. Based on this 

assumption, this study defined the oasis cold effect index (OCI) as follows:

T oasis=T 0+∆T oasis

T desert=T 0+∆T desert

OCI=∆Toasis−∆T desert

where OCI is the index of the oasis cold effect, which usually has a negative value and the 

smaller the value, the stronger the cold effect of the oasis. Toasis and Tdesert are the air temperatures 
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in the oasis and desert zones, respectively. T0 is the external temperature forcing, which changes 

with the time driven by net radiation. ΔToasis and ΔTdesert are the temperature variations caused 

by the change in soil moisture in the respective seasons (MAM, JJA, and SON) compared with 

winter (December to next February, DJF). Here, ΔToasis and ΔTdesert were no longer absolute values

but their original positive or negative values, which are often negative values.

3 Results

3.1 The sensitivity of temperature to soil moisture

The sensitivity of near-surface air temperature to the variation of soil moisture can be split into 

two components: sensitivity of temperature to EF and EF sensitivity to soil moisture. The results 

showed that the ∂T/∂EF generally ranged from −10 to 10 and have apparent tempo-spatial 

variations in the region (Fig2a-d). The average values of ∂T/∂EF were −0.053, −0.152, −0.047, 

and −0.028 in MAM, JJA, SON, and the entire warm season, respectively. The ∂T/∂EF in the 

whole region has a standard deviation of 0.17 in the warm season, while it was 0.36, 1.26, and 

0.35 in MAM, JJA, and SON, respectively. In the mountainous, plain desert, and plain oasis 

areas, the average values of ∂T/∂EF were −0.043, −0.008, and −0.083 during the entire warm 

season, while it was −0.101, −0.043, and −1.141 in the summer season, respectively. Thus, the 

sensitivity of temperature to EF has the highest spatial variation in summer, followed by spring 

and autumn. 

Fig. 2 The sensitivity of near-surface air temperature to evaporative fraction (EF) (

∂T /∂EF), EF to soil moisture (∂ EF /∂ϴ) and the near-surface air temperature to soil

moisture (∂T /∂ϴ). (a)-(d) was the ∂T /∂EF  in MAM (March to May, spring), JJA (June to

August, summer), SON (September to November, autumn) and entire warm season (from
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March to November), respectively. Similarly, (e)–(h) and (i)–(l) was the ∂ EF /∂ϴ and

∂T /∂ϴ in the MAM, JJA, SON and entire warm season, respectively.

The sensitivity of EF to soil moisture also has obvious seasonal and spatial variations (Fig2e-

h). In the MAM, JJA, SON, and the entire warm season, the average value of ∂EF/∂ϴ was 5.286,

5.061, 5.676, and 4.937, respectively. For the mountainous, plain desert and plain oasis areas, the

average value of ∂EF/∂ϴ was 4.860, 5.017, and 5.584 during entire warm season, while it was 

5.208, 4.891, and 6.141 in the summer season, respectively. Similar to the changing trend of ∂T/

∂EF, the sensitivity of EF to soil moisture also has the highest spatial variation in summer, 

followed by autumn and spring.

Under the interaction of temperature sensitivity to EF and EF to soil moisture, the ∂T/∂ϴ 

presented a similar tempo-spatial variation with both of the above. The negative coupling 

between temperature and soil moisture was obvious, and the average value of ∂T/∂ϴ was −0.281,

−0.338, −0.241, and −0.130 in MAM, JJA, SON, and entire warm season, respectively. The 

standard deviation of ∂T/∂ϴ was highest in JJA, with a value of 1.35, while it was lowest in 

MAM and with a value of 0.56. The ∂T/∂ϴ showed a higher spatial variation than ∂T/∂EF and 

∂EF/∂ϴ. Specifically, in the mountainous, plain desert and plain oasis areas, the average value of

∂T/∂ϴ was −0.184, −0.040, and −0.431 during the entire warm season, while it was −0.385, 

−0.094, and −1.676 in the summer season. The sensitivity of temperature to soil moisture was 

highest in oasis areas during summer, while it was lowest in plain desert areas during autumn.

3.2 Temperature variability caused by soil moisture

Although the average temperature variability (ΔT) caused by soil moisture was slightly lower 

(0.013 K) throughout the warm season (Fig. 3a4), the ΔT in summer (JJA) can reach a high level,

with variability of 0.242 K in the CL type. Among the other land-use types, the ΔT values for 
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wetlands, grasslands, shrubs, desert, and forest were 0.205 K, 0.096 K, 0.039 K, 0.025, and 0.018

K, respectively. The trend of ΔT for different land-use types in spring (MAM) and autumn 

(SON) is similar to summer. The largest ΔT in spring and autumn also appeared in the CL, with 

values of 0.067 K and 0.056 K. During the same period, the smallest ΔT appeared in the desert 

with values of 0.013 K and 0.009 K, respectively (Fig. 3a1-a3). The ΔTmax caused by soil 

moisture variation have the same tempo-spatial changing trend with the ΔT. The largest value 

also appeared in CL with values of 0.386 K, 0.133 K, and 0.098 K in summer, spring, and 

autumn, respectively, which is almost two times of that for ΔT (Fig. 3b1-b4). 

The temperature variability caused by the change in soil moisture was measured by the 

absolute value of ΔT and ΔTmax. However, soil moisture variation usually leads to negative 

temperature variability. For different land-use types, there were 43%–79%, 51%–77%, and 

41%–81% of the areas in spring, summer, and autumn, showing a negative ΔT. The largest 

negative ΔT was −0.294 K, −0.076 K, and −0.066 K in summer, spring, and autumn, 

respectively, all of which appeared in CL. The negative ΔTmax appeared in areas larger than ΔT, 

and the largest negative ΔTmax (in CL) was −0.426 K, −0.143 K, and −0.107 K in summer, spring,

and autumn, respectively. In summary, the ΔT and ΔTmax were highest in CL during summer, and 

negative temperature variability occurred in most areas of the study region due to increased soil 

moisture. 

Fig. 3 The average (ΔT) and maximum (ΔTmax) effects of soil moisture change on near-

surface temperature. The ΔT and ΔTmax were the absolute value of temperature variability,

thus the study also analyzed the positive and negative effects, including the ΔT and ΔTmax,

of soil moisture change on temperature. (a1)–(a4) was the ΔT in different land-use types

during MAM, JJA, SON and entire warm season, respectively. While the (b1)–(b4), (c1)–
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(c4), (d1)–(d4), (e1)–(e4) and (f1)–(f4) were the ΔTmax, +ΔT, +ΔTmax, -ΔT and -ΔTmax during

the same period, respectively. The abscissa numbers in (c1) to (f4) indicated the proportion

(percentage) of areas with positive or negative effects of soil moisture variation on air

temperature in each land-use type.

3.3 Evaluation of oasis cold-island effect 

Based on the coupling relationship between soil moisture and temperature, the oasis effects of 

eight typical oases, including the Hotan oasis (a), Yarkant oasis (b), Kashgar oasis (c), Akesu 

oasis (d), Kucha oasis (e), Korla oasis (f), oasis in the north of the Tianshan Mountains (g), and 

an oasis in the east Tianshan Mountains (h), were identified and evaluated (Fig. 4a). The results 

indicated that, for a single oasis, the minimum value of the multi-year average OCI was −1.36 K,

occurring in the Kucha oasis. The maximum OCI was −0.26 K, which occurred in the oasis north

of the Tianshan Mountains. In other oases, the multi-year average OCI ranged from −1.17 to 

−0.34 K (Fig. 4b). From 2001 to 2018, the oasis effects were strengthened in all oases, especially

in the Kucha (e), Korla (f), and Akesu (d) oases.

Fig. 4 The spatial variation of multi-year average oasis cold index (a), and the changing

trend of annual average cold index of eight typical oases (b) from 2001 to 2018. The annual

average value was calculated from the average value of spring, summer and autumn. The

letters a - h in the figure represent the Hotan oasis (a), Yarkant oasis (b), Kashgar oasis (c),

Akesu oasis (d), Kucha oasis (e), Korla oasis (f), oasis in north of Tianshan Mountains (g)

and oasis in east Tianshan Mountains (h), respectively.

Fig. 5 The monthly oasis cold index in the Hotan oasis (a), Yarkant oasis (b), Kashgar oasis

(c), Akesu oasis (d), Kucha oasis (e), Korla oasis (f), oasis in north of Tianshan Mountains

(g) and oasis in east Tianshan Mountains (h), respectively.
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Oasis effects have significant seasonal variation. The change in OCI showed a unimodal trend 

from March to November, which usually has the largest value in March or November while 

having the lowest value in July or August (Fig. 5). During summer (JJA), the oasis cooling effect

was most significant in the Kucha oasis (OCI = −1.38), followed by the Korla (OCI = −1.15) and

Akesu (OCI was −0.96) oasis. The oasis effects were relatively lower for the other oases, and the

OCI ranged from −0.49 to −0.29. In addition, the highest intra-annual variability of the oasis 

effect was detected in the Kucha oasis, and the OCI difference was 1.56 K between the month 

with the lowest (August) and the highest (March) OCI. The higher intra-annual variability of 

OCI also appeared in the Korla and Akesu oasis, and the OCI difference between July and March

was 1.29 K and 1.00 K, respectively. For the other oases, the intra-annual variability of OCI 

ranged from 0.36. to 0.50 K. These results indicated that the oasis effect was generally highest in

summer and the oasis area with the most significant oasis effect also has a larger intra-annual 

variability of OCI. 

4. Discussion

4.1 Assessment of model fit

Generally, there are three approaches to obtain the SM data: (1) in situ observations; (2) remote 

sensing (Han et al., 2018; Senanayake et al., 2019); and (3) modeled data (Shrivastava et al., 

2018; Schmidt-Walter et al., 2020; Shao et al., 2020). However, retrieving soil moisture through 

a remote sensing approach often faces great challenges in arid areas with sparse vegetation 

because of the adverse effects of surface roughness and vegetation cover (Kong et al., 2018). In 

addition, the simulation model of soil moisture usually requires a lot of input data and 

parameters, limiting the application of the model. While considering the difference in simulation 

methods, the final simulation results typically have a certain degree of uncertainty (Lannoy et al.,
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2006; Maroufpoor et al., 2019). Thus, it has always been a hot issue to construct a simple, easy-

to-use, and accurate method to obtain regional soil moisture. This study attempted to establish a 

simple algorithm based on the coupling relationship between soil moisture and 

evapotranspiration to estimate monthly soil moisture in arid areas with sparse vegetation. The 

estimated monthly soil moisture data were converted to relative soil moisture (RWC) and 

verified by the measured relative soil moisture data of 49 stations in the study area (Fig. 6). The 

overall changing trend of the estimated relative soil moisture was close to the observed value, 

and the coefficient of determination R2 was 0.85. Meanwhile, the root mean square error 

(RMSE), mean absolute percent error (MAPE), and the Nash–Sutcliffe efficiency coefficient 

(NSE) of this simulation was 5.17, 6.94, and 0.26, respectively. Such results indicate that the 

error between the estimated and observed value was approximately 7% RWC, while the relative 

soil moisture difference is about 5% RWC. The fitting error mainly comes from the 

overestimation of soil moisture, especially when the actual soil moisture is lower. In other words,

the estimation model used in this study may overestimate the actual soil moisture in some dry 

areas or during the dry season of soil. Although there were still some simulation errors, the 

estimated soil moisture overall was reliable. The changing trend of the estimated value is 

consistent with the observed value, so the relationship between them and EF is also consistent. 

Therefore, the estimated value can be a useful substitute index for actual soil moisture, which 

often lacks long-term and regional scale observations to analyze soil moisture and EF’s coupling 

relationship.

The method can also be applied to the downscaling of the soil moisture dataset assimilated based

on the microwave remote sensing data. This study used the assimilated soil moisture dataset with

0.25° spatial resolution, which was obtained based on microwave remote sensing data. Although 
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the dataset’s accuracy is higher, and the RMSE of soil moisture is 5% VWC, the resolution is 

still low for regional research. Thus, it cannot effectively reflect the spatial heterogeneity of soil 

moisture, which is the main reason for the cold effect of the oasis. In our study, the soil moisture 

dataset with 1 km resolution was obtained based on the coupling relationship between soil 

moisture and evaporation fraction. The downscaling data also had good fitting accuracy and 

could fully meet the spatial heterogeneity analysis of soil moisture. More importantly, this 

method can also extend the data series. In this case, the soil moisture data series was extended 

from 2002–2011 to 2001–2018. Thus, the analysis framework used in the study may be an 

effective and simple method for downscaling soil moisture data from microwave remote sensing.

 Fig. 6 Estimated and observed relative soil moisture in 0–100 cm soil layers of the study

area. The relative soil moisture data were observed in March to November during 2000 to

2013 in 49 sites.

4.2 Effect of soil moisture on temperature variation

Many studies have proved that soil moisture has a profound impact on near-surface temperature. 

Over North China, soil moisture feedback contributes 36% of the temperature variation during 

1994–2012 (Xu et al., 2019).  In subtropical southwest China, soil moisture contributed 10%–

50% of the total air temperature variance (Zhao et al., 2020). Over the monsoon-dominated 

region of India, the decrease in soil moisture increased the incidence of temperature extremes

(Ganeshi et al., 2020). Correspondingly, our study also showed that the average maximum 

temperature variation caused by soil moisture change could reach 0.386 K in the whole study 

region during the summer from 2001 to 2018, explaining 18.52% of the total air temperature 

variance. In mountainous areas, plain oasis areas, and plain desert areas, the soil moisture 

contributed 24.6%, 60%, and 4.9% of the air temperature variance. Thus, two issues need to be 
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reconsidered from a new perspective: 1) the temperature rise was highest in mountainous areas 

of the region (Tang et al., 2013; Tang et al., 2014), which was partly attributed to the changes in 

upper-air temperature trends (Chen et al., 2015). However, studies have shown that the 

land water storage of mountainous areas has decreased significantly in this region (Yang and 

Chen, 2015; Deng et al., 2019). Therefore, the decreasing trend of land water storage may lead to

the drying of soil, which contributes to the temperature rise in mountainous areas. At present, the

understanding and evaluation of the feedback relationship between soil moisture and surface 

temperature in mountainous areas are still relatively weak, which should be further interpreted. 

2) The representativeness of meteorological station observation data in arid areas requires further

evaluation. In arid regions, most meteorological stations located in the oasis area (town or city, 

only account for 5% of the total area). During the last century, artificial oasis rapidly expanded, 

and artificial vegetation replaced natural vegetation (Fan et al., 2002; Yang et al., 2006). In the 

oasis areas, artificial irrigation often leads to significant seasonal differences in soil moisture, 

and the soil maintains a higher moisture level during the growing season. The negative feedback 

between soil moisture and air temperature would strongly impact on the observed air 

temperature, especially in summer. Because the observed temperature is strongly affected by the 

local oasis microclimate, it is necessary to reevaluate the representativeness of meteorological 

stations in the entire region. 

4.3 Evolutional of Oasis effect and its plausible impacts 

The oasis effect resulted from higher water consumption in the oasis areas (Zhao et al., 2010) 

and the evapotranspiration from the oasis surface, which cools the oasis (Chu et al. 2005; Qiu et 

al. 2013). Higher evapotranspiration usually leads to a higher oasis cold effect in summer (Hao 

and Li, 2016). Our study showed that for a single oasis, the minimum OCI was −1.36 K in 
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summer. Some factors can affect the oasis effect, such as the mesoscale and secondary 

circulation (Chu et al., 2005; Liu et al., 2007; Li et al., 2011), background winds (Su and Hu, 

1987), surface conditions (Wan and Li, 1997; Schwarz et al., 2011) and the land-use and land-

cover change (LUCC) (Hao and Li, 2016). The difference in evapotranspiration between the 

oasis and the desert should be a crucial factor affecting the oasis effect. Soil moisture determines 

the partition of surface energy (Purdy et al., 2018; Feldman et al., 2019; Lin et al., 2020). Soil 

moisture variations between oasis and desert controlled the difference in evapotranspiration 

between them. Thus, soil moisture should be a determining factor for the oasis effect in arid 

regions. Here, this study outlined the basic process of the formation of the oasis effect as three 

phases: I) the quiet period (without oasis effect), which spans from December of the previous 

year to February of the current year (winter time). During this time, almost all vegetation stops 

growth, and the shallow soil is often frozen. Therefore, the evapotranspiration of the land surface

declined to the lowest, with it also having no spatial variation between oasis and desert. ) Ⅱ

Development and stable period, from March to August (spring to summer). Crops and natural 

vegetation began to enter the growth period, and evapotranspiration increased gradually under 

irrigation conditions in the oasis. The evapotranspiration of oasis is higher than that of the desert,

and the difference increases with time. Such change brings the obvious oasis effect, and it 

usually reaches a peak from July to August. In contrast, during September to November, the 

oasis effect enters the III) period, that is, the fallback period. During this period, the decreased 

difference in soil moisture and evapotranspiration between oasis and desert led to the weakening 

of the oasis effect until it disappeared.

Since the strong evaporation of oasis causes an oasis cold effect, the cooling effect limit is 

questioned. The existing observational data are difficult to give a satisfactory answer to the limit 
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of the oasis effect. Here, we attempt to answer this question based on the feedback between soil 

moisture and air temperature. We assumed that the limit of the oasis effect is the upper bound of 

soil moisture variation. Therefore, the theoretical lower bound of the oasis effect is determined 

by the difference between the field capacity of soil and annual average minimum soil moisture. It

is assumed that the soil moisture in the desert area maintains the average multi-year level in the 

same period. In this study, the calculated theoretical OCI value corresponding to the 10% 

cumulative frequency percentage is defined as the lower bound of the oasis effect. Thus, the 

lower bound of the cooling effect in the oasis of Hotan, Yarkant, Kashgar, Akesu, Kucha, and 

Korla, north of the Tianshan Mountains and east of the Tianshan Mountains was −2.09, −2.47, 

−2.19, −3.47, −4.49, −4.97, −1.69, and −2.29 K, respectively, which was 3.2 to 5.9 times the 

summer mean OCI (Fig. 5). Soil texture, which determines the available soil water capacity, is a 

precondition for the maximum cooling effect of the oasis. In addition, the irrigation intensity or 

irrigation quota, which determines the actual water recharge of soil, is another important factor 

that affects the cooling effect.

The question of if the oasification process exacerbates this cooling effect is also considered. 

The oasification is usually dominated by expanding the oasis area (Cheng et al., 2006; Wang et 

al., 2019). With the oasification, the water-saving irrigation measures have been gradually 

popularized in the oasis area. Thus, the oasification itself can only expand the cooling area, but 

not strengthen the cooling effect. However, due to the expansion of artificial oasis, the total 

irrigation water demand increased sharply (Wang et al., 2019), which often leads to the draught-

off of the lower reaches of the river, and soil drying in the desert areas around the oasis (Hao et 

al., 2008). In addition, the afforestation activities for soil conservation in desert areas may lead to

a decrease in soil moisture (Jia et al., 2017). Therefore, oasification may cause serious 
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desertification, and the drying of desert soil further highlights the cooling effect on the oasis. 

Thus, the process of desertification may enhance the cooling effect of the oasis.

4 Conclusions

The sensitivity coefficients of ∂T/∂EF and ∂EF/∂ϴ all have obvious tempo-spatial variation. 

They usually have the highest absolute values in summer and the highest in plain oasis areas, 

followed by mountainous and plain desert areas. Compared with the contribution rate of EF to 

air temperature, the contribution rate of soil moisture to EF was significantly higher. Under the 

interaction of temperature sensitivity to EF and EF to soil moisture, the ∂T/∂ϴ presented a 

similar tempo-spatial variation with both of the above. ∂T/∂ϴ was highest in oasis areas during 

summer (−1.676), while it was lowest in plain desert areas during autumn (−0.071).

  During summer, the ΔT values for CL, wetland, grassland, shrubs, desert, and forest were 0.242

K, 0.205 K, 0.096 K, 0.039 K, 0.025, and 0.018 K, respectively. The ΔTmax has the same tempo-

spatial changing trend as ΔT, and the largest value also appeared in CL with a value of 0.386 K. 

In the study region, soil moisture often leads to negative effects on air temperature, and the 

negatively affected area accounts for 41%–82% of the total area. 

  The difference in temperature variability between the oasis and desert areas promoted the 

formation of the oasis effect. The oasis effect was generally highest in summer, and the oasis 

area with the strong oasis effect also has a larger intra-annual variability of OCI. For different 

oasis, the multi-year average OCI ranged from −1.36 K to −0.26 K, while average summer OCI 

ranged from −1.38 K to −0.29 K.

  This study reveals the process and mechanism of soil moisture variation on surface air 

temperature in extremely arid areas. Based on the negative feedback between soil moisture and 

air temperature, the study analyzed the dynamics and the upper bound of the oasis cooling effect.
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The analysis framework and results will provide a new perspective for further research of water 

and heat balance in arid areas.
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	Abstract: Soil moisture plays a significant role in land-atmosphere interactions. Changing fractions of latent and sensible heat fluxes caused by soil moisture variations can affect near-surface air temperature, thus influencing the cooling effect of the oasis in arid regions. In this study, the framework for the evaporative fraction (EF) dependence on soil moisture is used to analyze the impacts of soil moisture variation on near-surface air temperature and the oasis effect. The results showed that the contribution rate of soil moisture to EF was significantly higher than that of EF to temperature. Under the interaction of temperature sensitivity to EF and EF to soil moisture, the ∂T/∂ϴ presented a similar tempo-spatial variation with both of the above. It was most significant in oasis areas during summer (−1.676), while it was weaker in plain desert areas during the autumn (−0.071). In the study region, the effect of soil moisture variation on air temperature can reach 0.018–0.242 K for different land-cover types in summer. The maximum variation of soil moisture in summer can alter air temperature by up to 0.386 K. The difference in temperature variability between the oasis and desert areas promoted the formation of the oasis effect. For different oasis, the multi-year average oasis cold effect index (OCI) ranged from −1.36 K to −0.26 K, while average summer OCI ranged from −1.38 K to −0.29 K. The lower bound of the cooling effect of oasis ranged from −4.97 to −1.69 K. The analysis framework and results of this study will provide a new perspective for further research on the evolution process of the oasis effect and water-heat balance in arid areas.
	1. Introduction
	2 Materials and Methods
	2.1 Study area
	2.2 Data
	2.3 Methods
	a. Theoretical background
	b. Downscaling and estimation of soil moisture data
	c. The impacts of soil moisture variation on near-surface air temperature
	d. Analysis framework of oasis cold effect index


	3 Results
	3.1 The sensitivity of temperature to soil moisture
	3.2 Temperature variability caused by soil moisture
	3.3 Evaluation of oasis cold-island effect
	4.1 Assessment of model fit
	4.2 Effect of soil moisture on temperature variation
	4.3 Evolutional of Oasis effect and its plausible impacts

	4 Conclusions
	Acknowledgements

