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Abstract

Here, we propose a method to obtain local analytic approximate solutions of ordinary
differential equations with variable coefficients, or even some non-linear equations, inspired
in the Lyapunov method, where instead of polynomial approximations, we use truncated
Fourier series with variable coefficients as approximate solutions. In the case of equations
admitting periodic solutions, an averaging over the coefficients gives global solutions.
We show that, under some restrictive condition, the method is equivalent to the Picard-
Lindelöf method. After some numerical experiments showing the efficiency of the method,
we apply it to equations of interest in Physics, in which we show that our method possesses
an excellent precision even with low iterations.

1 Introduction

The motivation of the present article is a contribution to the methods for approximate solutions
of ordinary differential equations (ODE) either non-linear or linear with variable coefficients.
These methods have been developed in order to solve different kind of problems that arise in
Physics and that need of these kinds of ODE. Solutions for most of ODE, out of trivial cases
studied in textbooks, are unknown and even in the case that an equation has known solutions,
there are either incomplete of a complexity that makes them inappropriate for a first analysis
of the problem given. For the almost ubiquitous second order linear equations with variable
coefficients not always a solution a la Frobenius is possible, a trouble experienced sometimes
by theoretical physicists.

It is interesting to mention some methods to obtain approximate solutions to non-trivial
ODE, although for obvious reasons we may give only a very limited number of references on a
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field which in which the number of publications is really enormous [1–9]. Our point of departure
is the search for analytic approximate solutions for given initial values, boundary conditions or
solving the Sturm-Liouville problem for second order ODE of the form

ẅ(t) + p(t)ẇ(t) + q(t)w(t) = 0 , (1)

Here, we propose a modification of the Lyapunov method to obtain approximate solutions
of equations of the type (1), which improves the standard Lyapunov method and which is also
based on iterations. We introduce the method, compare it with the Picard-Lindelöf method
and shows the advantages that it may have with respect to the others in terms of precision,
CPU times, etc. The method is also applicable to non-linear equations.

We support our arguments with some numerical experiments. Applications to second order
differential equations of interest in Physics has been discussed. These equations are either linear
with variable coefficients or non-linear,

The Modified Lyapunov Method we are introducing in the present article has some impor-
tant features in common with the Standard Lyapunov Method. Both are intended to find local
approximate analytic solutions. Both are polynomial approximations. While in the Standard
Lyapunov Method are given by powers, in our approach are truncated Fourier series with vari-
able coefficients. This poses a clear advantage with respect to Standard Lyapunov, since after
the numerical recipe of averaging over the coefficients, we obtain a global approximation valid
for periodic solutions of equations which admit such solutions. As mentioned, the advantage of
reducing computational times makes this techniques widely accessible using a software such as
Mathematica.

This paper has the following organization: In Section 2, we introduced our modified Lya-
punov method and discuss convergence properties and the construction of approximate periodic
solutions after non-periodic ones. In Section 3, we compare our method to the well established
Picard-Lindelöf method and provide of some simple numerical experiments to show the advan-
tage of our method in terms of smaller CPU times. Section 4 is devoted to the applications
of the method on differential equations of interest in physics. This presentation is continued
in Section 5. We pay particular attention to the precision of the method. It closes with some
concluding remarks.

2 A modified Lyapunov method

Let us go back to equation (1), where the functional coefficients p(t) and q(t) are defined on
an interval [0, T ], on where are both continuous and, in addition, p(t) admits a continuous first
derivative. Let us perform the following change of variables to introduce a new indeterminate
w(t) as

w(t) = x(t) exp

{
−1

2

∫ t

0

p(s) ds

}
. (2)

Clearly, w(t) satisfies equation (1) if and only if x(t) satisfies

ẍ(t) + a(t)x(t) = 0 , (3)
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with

a(t) = q(t)− 1

4
p2(t)− 1

2
ṗ(t) . (4)

Note that the function a(t) is continuous on the interval [0, T ].
The standard Lyapunov method solves equation (3) by first considering the one parameter

family ẍ(t) = λ a(t)x(t) and, after a procedure similar to what follows, one singles out the
value λ = −1. Our modified Lyapunov method instead consideres the following one parameter
family of equations given by

ẍ(t) + ω2 x(t) + λ b(t)x(t) , with b(t) := a(t)− ω2 . (5)

Note that we recover the original (3) equation by choosing λ = 1. However, we shall yield,
in principle, certain freedom in the choice of ω. In fact, if the approximation replaces to a
non-periodic solution, the choice is ω = 1, while if it is periodic and the period is given, then,
ω is well determined. On the other hand, if the solution is periodic and the period is unknown,
we should determine ω through the periodicity condition.

In the original Lyapunov method [2, 3], one considers the one-parameter family ẍ(t) =
λ a(t)x(t) and, then, choose λ = −1. Here, we are using an extension of this method in (5).

Let us consider the particular solution φλ(t) of (5) with the initial conditions given by φλ(0)
and φ̇λ(0). In order to obtain such a solution, let us consider the following span into series:

φλ(t) =
∞∑
k=0

xk(t)λ
k . (6)

Next, we replace (6) into (5) so as to obtain:

∞∑
k=0

ẍk(t)λ
k + ω2

∞∑
k=0

xk(t)λ
k +

∞∑
k=0

b(t)xk(t)λ
k+1 = 0 . (7)

Let us keep arbitrary the value of the parameter λ, so that we may identify the coefficient
of λk for k = 0, 1, 2, . . . on both sides of (7). The result is

ẍ0(t) + ω2 x0(t) = 0 , (8)

for k = 0 and

ẍk(t) + ω2 xk(t) + b(t)xk−1(t) = 0 , (9)

for k = 1, 2, . . . .
Next, let us impose initial conditions such as x0(0) = A, ẋ0(0) = B, xk(0) = 0 and ẋk(0) = 0,

k = 1, 2, . . . , n. We obtain,

x0(t) = A cosωt+
B

ω
sinωt . (10)

Also, and after the stated initial condition and using the variation of parameters method,
for any k = 1, 2, . . . we have that
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xk(t) =
1

ω

∫ t

0

b(s)xk−1(s) sinω(s− t) ds . (11)

Consequently, we have obtained a recurrence relation to obtain the form of the series (6).
The series converges if it converges absolutely. Continuous functions on the compact interval
[0, T ] are bounded so is b(t). Let us call K to an upper bound of |b(t)z0(t)| on [0, T ]. Hence,
for k = 1, 2, . . . we have

|xk(t)| ≤
1

k!

(
K

ω
t

)k
. (12)

Then, after (6) and (12), we have

∞∑
k=0

|xk(t)| |λ|k ≤ K0 +
∞∑
k=1

|λ|k

k!

(
K

ω
t

)k
≤ H0 + exp

{
|λ|K t

ω

}
≤ H0 + exp

{
∆K β

ω

}
, (13)

where, H0 = K0−1 and ∆ is an upper bound of the possible values of |λ|. Recall that t ∈ [0, T ].
Thus, the series (6) converges absolutely and uniformly on the interval [0, T ]. The choice λ = 1
gives the desired solution to Equation (3).

A simple analysis of (11) shows than an approximation of the solution of (3)

ψ(t) = φ1(t) =
∞∑
k=0

xk(t) , (14)

up to order n, has the following form

ψn(t) =
m∑
k=0

{pk(t) cos(kωt) + qk(t) sin(kωt)} , (15)

where pk(t) and qk(t) are polynomials and m > n. We should point out that the approximation
given by (15) is local.

We need to determine the value of n in order to control the error produced by the choice of
the approximation (15) with respect to the exact solution. We define this error as

en :=

∫ T

0

(ψ̈n(t) + a(t)ψn(t))2 dt . (16)

Then, we settle a desirable maximal error, δ > 0, and choose n such that en < δ.
Nevertheless, the approximation given by (15) is not periodic. We propose a global periodic

approximation after (15) constructed as follows: Define

pk :=
1

P

∫ P

0

pk(t) dt , qk :=
1

P

∫ P

0

qk(t) dt , (17)

where P is the period of the searched periodic solution Then, we propose as the approximate
periodic solution the following
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ψn(t) :=
m∑
k=1

{pk cos(kωt) + qk sin(kωt)} . (18)

Another possibility is to use pk(0) and qk(0) instead of pk and qk, although this is just a
conjecture that may be supported just by numerical precision.

Henceforth, we shall call this procedured the modified Lyapunov method.

2.1 First order systems

The above method may be extended to first order systems of the form

ẋ(t) = f(t, x, y) , ẏ(t) = g(t, x, y) , (19)

where f and g are real and polynomials on the variables x and y and continuous with respect
all the three variables. In this case, the system playing the role of equation (5) has the following
form:

ẋ(t) = y + λ(f(t, x, y)− y) , ẏ(t) = −ω2x+ λ(g(t, x, y) + ω2x) . (20)

By approximation of order n we mean the choice

xn(t) :=
n∑
k=1

λk uk(t) , yn(t) :=
n∑
k=0

λk vk(t) . (21)

From here, we repeat the above procedure, we determine the value of ω as did after (5) and
then we obtain the approximate periodic solutions.

3 Equivalence between the modified Lyuapunov and the

Picard-Lindelöf methods

Along the present short Section, we show that our proposed modified Lyapunov is equivalent
to the Picard-Lindelöf method provided that we made a particular choice of the seed solution.
The Picard-Lindelöf method finds approximate solutions of equations of the form

z̈(t) + ω2z(t) = f(t, z, ż) , z(0) = A , ż(0) = B , (22)

by iteration [10]. In [10], it is shown that if f(t, z(t), ż(t)) is Lipschitz continuous on t ∈ [0, T ],
then a fixed point iterative approximation method to solve (22) uses the following relation,
valid for all k = 1, 2, . . . :

z̈k+1(t) + ω2zk+1(t) = f(t, zk, żk) , zk(0) = A , żk(0) = B , (23)

so that (22) admits the following iterative approximate solutions:

zk+1(t) = z0(t)−
1

ω

∫ t

0

f(s, zk(s), żk(s)) sin(ω(s− t)) ds , (24)
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where zk(t) converges uniformly to the exact solution on a compact interval [0, T ]. The impor-
tant point here is that this method [10] relies on the choice of the initial seed z0(t) and that
this choice is somehow arbitrary. After n iterations, zn(t) is the approximation to the order n
of the solution of (23).

Observe that (5) with λ = 1 is a particular case of (22) with f(t, z, ż) ≡ −b(t)z(t). There-
fore, (24) becomes

zk+1(t) = z0(t) +
1

ω

∫ t

0

b(s) zk(s) sin(ω(s− t)) ds . (25)

It was proven in [10] that whenever b(t) be continuous on the integration interval [0, T ], the
sequence of approximate solutions {zn(t)} converges uniformly to the exact solution on [0, T ].

In order to determine the sequence zk(t), let us first construct a sequence of functions {xk(t)}
in the following form: The first term of the sequence is x0(t) defined in (10) and then, write
z0(t) ≡ x0(t), so that we choose as seed the function (10). Then,

x1(t) :=
1

ω

∫ t

0

b(s) z0(s) sin(ω(s− t)) ds . (26)

Thus, z1(t) = x0(t) + x1(t). Note that z0(t) ≡ x0(t). Next, write:

x2(t) :=
1

ω

∫ t

0

b(s)x1(s) sin(ω(s− t)) ds , (27)

so that,

z2(t) = x0(t) +
1

ω

∫ t

0

b(s) z1(s) sin(ω(s− t)) ds

= x0(t) +
1

ω

∫ t

0

b(s) [x0(s) + x1(s)] sin(ω(s− t)) ds = x0(t) + x1(t) + x2(t) . (28)

We may proceed by induction and hence,

zk+1(t) = x0(t) + x1(t) + · · ·+ xk(t) , (29)

with

xk(t) :=
1

ω

∫ t

0

b(s)xk−1(s) sin(ω(s− t)) ds . (30)

The exact solution of (22) with the given initial conditions is just [10],

z(t) = lim
k→∞

zk(t) =
∞∑
k=0

xk(t) . (31)

This limit does exist uniformly on compact intervals [10].
Now, let us come back to Section 2, where we shall use λ = 1 and the initial conditions

xk(0) = A and ẋk(0) = B, for k = 0, 1, 2, . . . . The seed, x0(t), is given by (10). Then, let us go
to (6) with λ = 1 and (11), so as to conclude that the exact solution is
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ψ(t) ≡ φ1(t) =
∞∑
k=0

xk(t) = x0(t) +
1

ω

∫ t

0

b(s) sinω(s− t)
∞∑
k=1

xk(s) ds , (32)

with x0(t) as in (10), so that

ψn(t) = x0(t) +
1

ω

∫ t

0

b(s) sinω(s− t)
n−1∑
k=1

xk(s) ds = x0(t) + x1(t) + · · ·+ xn(t) , (33)

due to (11). A comparison between (33) with (30) and (31) shows that zn(t) and ψn(t) provide
of the same approximation for the solution of (5) with λ = 1 and the same value of ω in both
approximations.

Nevertheless, this coincidence is a consequence of a particular choice of the seed solution
made when using the Picard-Lindelöf method [10]. This seed solution must coincide with the
zero order approximation (10) for the modified Lyapunov method, so that both methods be
equivalent. Nevertheless, Picard-Lindelöf shows a bigger level of complexity than the modified
Lyapunov method and this fact may imply an advantage in favour of the latter. To begin with,
the arbitrary choice of the seed solution is a factor that has a great influence on the speed of the
convergence and, hence, in the precision of the n-th approximation. Another origin of the bigger
complexity of Picard-Lindelöf as compared with modified Lyapunov concerns on the procedure
for the construction of each approximation in the first case, which relies on the generation of a
sequence of partial sums, for which its convergence to a infinite series gives the exact solution.
The advantage of the modified modified Lyapunov with respect to the Picard-Lindelöf may be
shown by numerical experiments as we discuss next.

3.1 Two numerical experiments

Numerical experiments show that the modified Lyapunov method requires shorter CPU times
that the Picard-Lindelöf method. We give here two significative and simple examples. The
former is just a simple linear oscillator such as

ẍ(t) + 4x(t) = 0 , x(0) = ẋ(0) = 1 . (34)

Let us write (34) in the form (5) with ω = 1. We have,

ẍ(t) + x(t) + 3µx(t) = 0 . (35)

Let us use the Picard-Lindelöf method, where now (23) has the following form:

ẍk(t) + xk(t) + 3xk−1(t) = 0 , k = 1, 2, . . . , n , (36)

and initial conditions xk(0) = ẋk(0) = 1. Now, it is possible the choice of the seed solution
under the condition that the same iteration produce the same precision. This can be done with
x0(t) = sin t+ cos t. We observe the following facts:

i.) In order to obtain a reasonable approximation to the exact solution, which is xexact(t) =
cos2t + 1

2
sin 2t, on the interval [0, 2π], we need a minimum of 15 iterations, so that n ≥ 15.
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Figure 1: Comparison of the CPU times of the Poincaré-Lindelöf method (dashed curve) with the
CPU times of the modified Lyapunov (continuous curve) for the linear oscillator (34), with the same
number of iterations.

Note that although the exact solution has a period equal to π, we have used the interval [0, 2π],
in order to evaluate the error. This helps to understand the quality of the obtained result,
since although the solutions are local, they have nevertheless an excellent behaviour over two
periods. Then, the norm on L2[0, 2π] of the difference between the approximate solution and
the exact solution is of the order of 10−6. Note that both integration methods are local, i.e.,
valid on compact intervals.

ii.) We compare the variation of CPU times with the order n of approximation on both
methods in Figure 1. We observe that the modified Lyapunov is more efficient that the Picard-
Lindelöf method.

In the second example, we use the Mathieu equation, see below in (39). We choose as
values of the parameters a = 1 and q = 0.05 (these values have been chosen by simplicity in
the procedure) and, again, the initial values x(0) = ẋ(0) = 1. This equation may be rewritten
as

ẍ(t) + x(t) + λ(a− 1− 2q cos 2t)x(t) = 0 . (37)

The implementation of Poincaré-Lindelöf yields to

ẍk(t) + xk(t) + (a− 1− 2 cos 2t)xk−1(t) = 0 , k = 0, 1, 2, . . . , n , (38)

with initial conditions xk(0) = ẋk(0) = 1. We use x0(t) = sin t + cos t as initial seed. We
compare the CPU times in Figure 2, so as to obtain similar conclusions than in the precedent
example. Observe that modified Lyapunov is particularly advantageous for n > 10.
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Figure 2: Comparison of the CPU times of the Poincaré-Lindelöf method (dashed curve) with the
CPU times of the modified Lyapunov (continuous curve) for the Mathieu equation, with the same
number of iterations.

4 Applications of the method on ODE of interest in

Physics

Along the present Section, we test this extended Lyapunov method to some well known second
order differential equations of interest in science. These are the Mathieu, which is a first order
Hill equation, the Airy and the Bratu equations.

4.1 The Mathieu equation

The Mathieu equation has the following form [2,11]:

ẍ(t) + (a− 2q cos 2t)x(t) = 0 , (39)

with a, q > 0. The general solution is a linear combination of the so called Mathieu special
functions, C(a, q, t) and S(a, q, t). These solutions are not, in general periodic, although periodic
solutions may be found for some values of the parameters a and q. A method to approximate
periodic solutions has been proposed in [12].

In order to check the extended Lyapunov method, we shall use an exact solution of (39).
In this case a = 1 and q = 0.05 with initial conditions given by x(0) = 1 and ẋ(0) = 0. The
resulting solution is

x(t) = (0.763507− 0.641316 i)C(1, 0.05, t) . (40)

This solution is not periodic.
Let us call w(t) to the function, obtained through the above method, that approximates the

solution x(t) on the interval [0, T ] (usually T = 2π), x(t) being either (40) or another periodic
exact solution. On this interval, the error produced by the use of w(t) is defined by
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En :=

∫ β

0

(x(t)− w(t))2 dt . (41)

We have written En as we have defined on the above procedure the approximate solution
by an iterative process. Here n would be the order of the iteration necessary to achieve the
approximate solution w(t). On (16), we have defined the error en that may be applied either
to our modified Lyapunov (ML) or the standard Lyapunov method (L). We have made some
numerical experiments using both taking (40) as reference solution. We have used n = 2, 4, 6
iterations with both methods. The results are displayed in the following table:

n en ML En ML en L En L

2 6.86 10−7 1.05 10−7 2.72 103 1.15 103

4 1.40 10−12 1.21 10−14 1.17 103 1.26 102

6 1.47 10−20 7.99 10−22 1.34 10 4.81 10−1

TABLE 1.- Error estimations produced when approaching solution (39) on the interval
[0, 2π] either using the modified Lyapunov method (ML) or the traditional Lyapunov method
(L). We use two different definitions of errors, en as in (16) and En as in (36). In our numerical
tests, en < En in general. The furthermost left column gives the order of iteration.

The information we obtain from Table 1 is clear: In order to approximate non-periodic
solutions on the interval [0, 2π] by the modified Lyapunov method gives a much higher precision
than the traditional Lyapunov method. We have performed some other numerical experiments
leading to the same result. It is already outstanding the precision obtained with the use of the
second iteration.

Needless to say that the method allows finding the explicit form of the approximate solutions.
Listing these solutions makes no sense as are easily obtainable with the package Mathematica.
Just to show the explicit form of one of them, the approximation to (39) obtained after the
second iteration is

x2(t) = (1.00639 + 0.000315 t2) cos 2t− 0.00640625 cos 3t

+0.0000130208 cos 5t+ 0.0246875 t sin t− 0.00015625 t sin 3t . (42)

Note that this is an approximation of the type (15) with p2(t) and q2(t) polynomial, so that
(42) is not periodic. Thus, we estimate the error En. The estimation of the error en comes
after the use of the averaging (17), which gives periodic approximations to the solution on the
interval [0, 2π].

4.1.1 Characteristic values

As is well known, not all solutions of the Mathieu equation are periodic. Periodic solutions are
labelled by some values of a for given q. In particular, for |q| < 1 and solutions with period π,
we may single out the three first characteristic values, which are [11]:
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a1 = 1− q − 1

8
q2 +

1

64
q3 − 1

1536
q4 + . . . ,

a2 = 4 +
5

12
q2 − 763

13824
q4 +

10002401

79626240
q6 + . . . ,

a3 = 9 +
1

16
q2 − 1

64
q3 +

13

20480
q4 + . . . . (43)

To apply the modified Lyapunov method, let us go to (15) with ω = 2, which takes the
form,

xn(t) =

m(n)∑
k=0

{pk(t) cos 2kt+ qk(t) sin 2kt} , (44)

and write the Mathieu equation (39) as

ẍ(t) + 4x(t) + λ(a− 4− 2q cos 2t)x(t) = 0 . (45)

In order to single out a particular solution, we have to choose some initial conditions such
as x(0) = 0 and ẋ(0) = 1. Note that in (45), we have to determine somehow the characteristic
value a, which is not arbitrary and requires some other conditions. In fact, the values of a are
determined as follows: Take a given value of n. The following equation

xn(π) = 0 , (46)

where xn(π) is given in (44) is a polynomial equation on the variable a having m(n) solutions.
Take the real roots on a of (46). Then, select those real roots fulfilling the condition

ẋ(π) ≈ 1. This gives a list of approximate characteristic values for the Mathieu equation. We
repeat the procedure with higher values of n until a change in the value of n does not produce
any substantial change on the characteristic values. The percent relative error, ea, of the values
of a is defined as the modulus of

ea :=
aML − aExact

aExact
, (47)

where aExact corresponds to an exact value of the characteristic value under consideration and
aML is the value obtained by the use of modified Lyapunov. In the next table, we give the per-
cent errors of the three first characteristic values obtained with modified Lyapunov as compared
to the exact values as appeared in (43). Here, we have used q = 0.1.

n = 10 a1 a2 a3

Exact 0.89876 4.00416 9.00061
ML 0.89876 3.99917 9.00182
ea 0.0 0.12 0.013
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TABLE 2.- Percent relative errors ea in the evaluation of the three first characteristic values
of the Mathieu equation. In the second row, “Exact” denotes the values given by (43) with
q = 0.1. In the third row “ML” mean the values obtained by modified Lyapunov. The values
of ea are listed on the last row.

Once we have established the approximate characteristic values, we may determine the ap-
proximate solutions. On Table 3, we comparee the errors en and En produced as the consequence
of applying either Modified Lyapunov of order 10 or Runge-Kutta on the same interval, once
we have fixed certain values of a1, a2 and a3. We recall that for each characteristic value, we
have one solution and that these errors correspond to the solution provided by its characteristic
value.

n = 10 a1 a2 a3

en ML 2.67 10−10 5.28 10−19 9.18 10−6

en RK 2.04 10−8 6.81 10−10 1.01 10−9

En ML 1.00 10−13 5.02 10−26 3.37 10−9

En RK 8.34 10−15 4.41 10−15 1.02 10−15

TABLE 3.- Errors en and En produced when choosing the solution for the characteristic
values a1, a2 and a3, both for the Modified Lyapunov of order n = 10 and Runge-Kutta.

The approximate explicit solutions have the form (15), where pk(t) and qk(t) are polynomials
on the variable t. In order to obtain a periodic solution on the whole real line R, we should
take the mean of these polynomials as defined in (17). Just an example: Take n = 4 and
a2 = 3.99917, which yields to the following approximate periodic solution (after having taken
the averages on the values of the polynomials):

x4(t) = 0.508434 sin 2t− 4.23676 10−3 sin 4t+ 1.3297 sin 6t , (48)

with the errors en = 5.08 10−16 and En = 4.41 10−15.
The exact solution with q = 0.1 and a = 4.00416 is here given by

x(t) = (0.35921 + 0.20801i)S(4.00416, 0.1, t) , (49)

where S(a, q, t) is the second Mathieu special function [11]. If we expand (49) into Fourier
series, we obtain:

x(t) = 1.22378 10−5 + 2.4938 10−4 cos 2t− 2.00187 106 cos 4t+ 0.508307 sin 2t

−4.34328 10−3 sin 4t− 4.6836 sin 6t . (50)

This approximation gives an error, e = 9.2 10−6. Compare to the error given on Table 3, when
we show that the error produced by Modified Lyapunov is 5.28 10−19, which is much smaller.
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4.2 The Airy equation

The Airy equation has the following form:

ẍ(t) + tx(t) = 0 . (51)

Take the initial conditions x(0) = 1 and ẋ(0) =. Now, we have an exact solution which is
known. This is

xexact(t) =
1

2
Γ(2/3)(32/3Ai[(−1)1/3t] + 31/6Bi[(−1)1/3t]) , (52)

where Γ(z) is the gamma function and Ai(x) and Bi(x) are the Airy functions [11]. This
solution is obviously not oscillatory. In order to implement Modified Lyapunov, we first rewrite
(49) as

ẍ(t) + x(t) + λ(t− 1)x(t) = 0 . (53)

Then, we proceed to its approximate integration on the interval [0, 2] using both Modi-
fied Lyapunov and Lyapunov. While with Modified Lyapunov one obtains a combination of
harmonics with fundamental frequency equal to one, with Lyapunov we obtain the truncated
Taylor series of xexact(t) on a neighbourhood of t = 0. On Table 4, we display the errors en and
En, with respect to the exact solution, produced by both approximate methods for some low
values of n:

n en ML En ML en L En L

2 9.14 10−5 2.90 10−17 6.74 10−2 1.48 10−4

4 1.41 10−11 4.06 10−15 1.70 10−6 5.12 10−10

6 4.63 10−20 3.20 10−24 1.17 10−12 9.34 10−17

TABLE 4.- Errors en and En obtained when we take the approximated solutions either with
Modified Lyapunov or Lyapunov, with respect to the exact solution, for the values n = 2, 4, 6.

Observe that we have gain in precision using Modified Lyapunov with respect Lyapunov.
Nevertheless, the solutions are local, so that if we enlarge the domain [0, 2], we need higher
values of n so as to obtain similar precision.

4.3 Bratu equation

The Modified Lyapunov method may also be used to determine approximate solutions if we
replace the initial conditions by boundary conditions [8]. Take, for instance, the Bratu equation:

ẍ(t) = −α ex(t) , α > 0 . (54)

In this example, we integrate (54) on the interval [0, 1] with the boundary conditions x(0) =
0 and x(1) = 0. Under these conditions, the exact solution of (54) is known and is
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xexact(t) = −2 log

(
cosh(0.5(t− 0.5)θ)

cosh(0.25 θ)

)
, (55)

where θ satisfies the following transcendental equation [8]:

θ =
√

2α cosh(0.25 θ) . (56)

Equation (56) has either zero, one or two solutions depending if α > αc, α = αc or α < αc,
respectively, where the critical value αc must satisfy the following relation [8]:

4 =
√

2αc sinh(0.25 θ) . (57)

By using an expansion of the exponential in (54) on a neighbourhood of the origin, we have
the following approximation for (54):

ẍ(t) + α

(
1 + x(t) +

1

2
x2(t)

)
= 0 . (58)

With the goal of testing our method, we make a choice on the parameters, say α = 1. This
gives θ = 1.57716459905. In [8], we may found a calculation to obtain approximate analytic
solutions using the Variational Iteration method, developed in [6, 7]. This method also give
approximate solutions by iteration. For instance, if for the solution on the interval [0, 1], we
impose x(0) = 0, we found for the second iteration:

H2(t) = kt− t2

2!
− t3

3!
− (k2 − 1)t4

4!
+

4kt5

5!
+

(5k2 − 3)t6

6!
+

5k(k2 − 2)t7

7!

−25k2t8

8!
− 35k32t9

9!
− 35k4t10

10!
. (59)

Values of k can be obtained using the second boundary condition x(1) = 1. This gives
two conjugate complex solutions and two real solutions. One of these real solutions produces
an enormous error on the solution. The other is k = 0.6231399 which we consider the only
admissible.

Let us solve (58) by Modified Lyapunov. Let us write

ẍ(t) + x(t) + λ

(
1 +

1

2
x2(t)

)
= 0 . (60)

We have used Modified Lyapunov with initial conditions, and now we are interested in
extended the method so as to use boundary conditions instead. Then, we need a slight change
of strategy. Assume, for instance, that we want to make an approximate integration at second
order, n = 2, knowing that the boundary conditions are, say, x(0) = 0 and x(1) = 0. Then, we
begin with fixing the initial conditions x(0) = 0 and ẋ(0) = u, where u is unknown. Thus, the
solution, xu(t), that provides the chosen initial conditions depends on u. To find the solution
with the given boundary conditions, we have to fix u as the real root of xu(1) = 0. Thus, we
have the desired approximation with the given boundary conditions.
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Assume that by whatever method, we have obtained an approximate solution, say z(t). We
want to compare the efficiency of each method in relation to two parameters. One is

e :=

∫ 1

0

(
z̈(t) + 1 + z(t) +

1

2
z2(t)

)2

dt . (61)

The other one compares the approximate solution to the exact solution xexact(t) in (55):

E :=

∫ 1

0

(z(t)− xexact(t))2 dt . (62)

Results are gathered on Table 5, where we compare the values of these two parameters
obtained either by Modified Lyapunov (ML), Runge-Kutta

n = 2 ML RK VIM

e 1.43 10−3 7.55 10−4 4.99 10−2

E 3.16 10−6 5.95 10−6 4.03 10−4

TABLE 5.- Values of the parameters e and E for second order of iteration and different
methods of approximation of solutions: Modified Lyapunov (ML), Runge-Kutta (RK) and
Variational Iteration (VIM).

Finally, the approximate solution for n = 2 by Modified Lyapunov is given by

zML(t) = −1.07413 + (1.09885− 0.289098t) cos t− 0.0247115 cos 2t

+0.636714 sin t+ 0.0997301 sin 2t− 0.000841047 sin 3t . (63)

We conclude this Section at this point.

5 Non-linear equations

It is simple to see how Modified Lyapunov works if the first order system (19) is written in the
form of a second order non-linear equation,

ẍ(t) + f(t, x, ẋ) = 0 , (64)

where the dot means derivative with respect to the variable t and f(t, x, ẋ) is a polynomial
on the variables x and ẋ and, with respect its explicit dependence on t, it is continuous on a
neighbourhood of the origin. The one parameter family of equations that replaces to (20) is
now,

ẍ(t) + ω2x(t) + λ(f(t, x(t), ẋ(t))− ω2x) = 0 , (65)

15



where λ is a real parameter. Now, the procedure is essentially identical as in the previous
situation. Solutions are written as in (6), which in the present case gives,

n∑
k=0

ẍk(t)λ
k + ω2

n∑
k=0

xk(t)λ
k + λ(f(t, φλ, φ̇λ)− ω2

n∑
k=0

xk(t)λ
k+1 = 0 , (66)

where φλ was defined in (6). Note that we have truncated the series for some value of n, so
that the relation (66) is just an approximation, the higher the value of n the better. For n = 0,
we recover (8). Otherwise, and taking into account that f(t, x(t), ẋ(t)) is a polynomial on x
and ẋ, we have for n = 1, 2, . . . ,

ẍk(t) + ω2xk(t) + f(t, φλ, φ̇λ) = 0 . (67)

Finally, we define the error obtained by some approximate solution, z(t), within the inte-
gration interval [0, T ] as

en :=

∫ T

0

(z̈(t) + f(t, z(t), ż(t)))2 dt . (68)

Next, we analyze this procedure in two examples: The Duffing and the van der Pol equations.

5.1 The Duffing equation

The Duffing equation has been introduced to study damped oscillators, driven or not by an
external force [3, 13–15]. However, we search for periodic solutions. Therefore, we have chosen
a simplified form of this equation as

ẍ(t) + x(t) + x3(t) = 0 , (69)

where we have omitted the damping term, because otherwise we cannot have periodic solutions,
and the external force for simplicity. Recall that the term on ẋ introduces a “friction”, so that
solutions of equations with this term decay. Equation (69) has the following first integral

E = ẋ2(t) + x2(t) +
1

4
x4(t) , (70)

so that all its solutions are periodic.
To use Modified Lyapunov in (69), let us write

ẍ(t) + ω2x(t) + λ(1− ω2 + x2(t))x(t) = 0 , (71)

where we have introduced an extra term of the form ω2x in order to produce an output with
harmonics with fundamental frequency ω = 2π/P , where P is the period to be determined.

In order to determine the period of periodic solutions, we may proceed as follows. Fix some
initial conditions. We establish x(0) = 1 and ẋ(0) = 0 for simplicity. We are in the position
of using Modified Lyapunov as described in Section 2 so as to obtain the approximate solution
x(t) := φλ=1(t), see (14). This solution depends on the period P . The periodicity condition
yields to
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(x(0)− 1)2 + ẋ2(0) = 0 . (72)

This equation gives the value of P . We wish to compare the precision of our method with
the precision given by a eight order Runge-Kutta. We denote the period and the error as defined
by (68) obtained using Runge-Kutta as PRK and eRK, respectively. We have PRK = 4.768022
and eRK = 1.50 10−2.

On Table 6, eP is the percent relative error of P with respect to PRK.

n P en eP

2 4.749641 2.39 10−4 0.38
3 4.767863 2.74 10−6 4.61 10−3

4 4.768020 2.21 10−7 4.20 10−4

TABLE 6.- We give the values of the period P , the percent relative error of P with respect
to PRK, eP and the error as defined in (16) for the iterations n = 2, 3, 4.

This is the approximate solution for n = 2:

x(t) = 0.981824 cosωt+ 1.78571 10−2 cos 3ωt+ 3.18878 10−4 cos 3ωt

+5.06201 10−3t sinωt− 8.66948 10−10 t sin 3ωt . (73)

Here, en = 2.39 10−4.
Next, we average the coefficients on the interval [0, P ] and obtain the following periodic

approximate solution:

x(t) = 0.981824 cosωt+ 1.78571 10−2 cos 3ωt+ 3.18878 10−4 cos 3ωt

+1.20214 10−2 sinωt− 1.64194 10−9 sin 3ωt . (74)

Here, en = 4.16 10−4. We see that the averaged periodic solution (74) has a very similar
precision to (71). In addition, it produces the global solution by periodicity, a property which
does not have (73).

5.2 The van der Pol equation

The van der Pol equation [2, 16] is given by

ẍ(t) + µẋ(t)(x2(t)− 1) + x(t) = 0 . (75)

Now, we may apply the Modified Lyapunov in order to obtain a function that approximates
its unique limit cycle and get some approximation of the period. In order to express the solution

17



x(t) as a combination of harmonics with fundamental frequency ω, let us proceed as done in
the case of the Duffing equation (69) and write

ẍ(t) + ω2x(t) + λ(µẋ(t)(x2(t)− 1) + (1− ω2)x(t)) = 0 . (76)

As happens with the Duffing equation (69), the frequency ω = 2π/P as well as the position
of the limit cycle on the plane (x, ẋ) are unknown. The only critical point is the origin and
the limit cycle goes around it. Then, we propose the following initial conditions x(0) = u and
ẋ(0) = 0, where u is unknown. Since P is the period, we may determine the values of u and P
as solutions of

x(0) = x(P ) , ẋ(0) = ẋ(P ) . (77)

This is an algebraic system for which does not exist a unique solution. With each of the
solutions of (77), we construct a solution of (76). Then, we have a set of solutions, from which
we select the desired solution as a critical point (possible minimum) of the functional

e :=

∫ P

0

(ẍ(t) + µẋ(t)(x2(t)− 1) + x(t)) dt . (78)

Observe that the expression under the integral sign is given by the left hand side of (75).
This suggests that for approximate solutions e(x) << 1. Nevertheless, the idea of the approx-
imate solution as the critical functions of the functional (78) is being supported by numerical
experiments.

We may compare the solution given by this procedure with the numerical solution given by
Runge-Kutta, which gives a value for the period PRK = 6.38116 and an error eRK = 2.49 10−3,
for the values µ = 0.5 and µ = 0.1. Again, we call eP to the percent relative error of P with
respect to PRK. We give some results on TABLE 7 and TABLE 8, corresponding to the values
of the parameter µ = 0.5 and µ = 0.1, respectively. In both tables en comes after the definition
(16) and the cofficients of the approximating functions have been averaged according to (17).

n P eP en u

1 6.28319 1.5 7.50 10−1 2.0000
2 6.39775 2.6 10−1 1.44 10−1 2.0065
3 6.38017 1.6 10−2 3.56 10−2 2.0056
4 6.38787 1.0 10−1 7.04 10−6 2.0084

TABLE 7.- Values of the period, the percent relative error of the period with respect to the
result obtained by using Runge-Kutta, the error en defined in (16) and the given value of u for
the choice µ = 0.5 for different iterations n = 1, 2, 3, 4.
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n P eP en u

1 6.28319 6.27 10−2 1.21 10−3 2.0000
2 6.28711 3.2 10−4 1.26 10−5 1.9999
3 6.28712 1.6 10−4 1.37 10−7 2.0002
4 6.28711 3.2 10−4 1.25 10−9 2.0001

TABLE 8.- Values of the period, the percent relative error of the period with respect to the
result obtained by using Runge-Kutta, the error en defined in (16) and the given value of u for
the choice µ = 0.1 for different iterations n = 1, 2, 3, 4.

Another option to figure out the precision of the method is to compare its solutions to
the solutions given by another well established method, in the present case we compare the
approximate solution obtained by Modified Lyapunov, after the averaging procedure (17), with
the approximate solution given by Lindstedt-Poincaré [1, 10], which is

xLP(t) = 1.99865 cosωt+ 0.001875 cos 3ωt− 0.000520833 cos 5ωt

+0.0749972 sinωt− 0.0249991 sin 3ωt . (79)

If we choose ω = 1, we obtain for the period PLP = 2π, the error e = 2.97 10−5 and the
percent error eP = 6.5 10−2. we have chosen µ = 0.1.

As discussed along the present article, Modified Lyapunov gives as approximate solution
a linear combination of sine and cosine functions with polynomial coefficients with a small
variation within a period. After averaging as in (17), we obtain the following periodic solution
for n = 4:

xML(t) = 1.99876 cosωt+ 0.00172964 cos 3ωt− 0.000521438 cos 5ωt

+0.0749972 sinωt− 0.0249991 sin 3ωt . (80)

Here, we have obtained ω = 0.999375, which is very closed to ω = 1 as given by Lindelöf-
Poincaré. The other resulting parameters are of a similar order. For the period, we obtain
P = 6.28711, for the error e = 1.26 10−5 and for the percent error, we have eP = 3.2 10−4,
which in fact are of the same order than in Lindelöf-Poincaré.

6 Concluding remarks

We have proposed a substantial modification of the Lyapunov method in order to find either
periodic or non-periodic approximate solutions to second order linear differential equations with
variable coefficients. We obtain approximate solutions by an iteration method and we show
the absolute convergence of the resulting series on compact intervals. Using a non-periodic
approximation, we may find a periodic one using averages on the time dependent coefficients of
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the non-periodic approximation. The numerical recipe may be extended to first order systems
of two equations.

the range of equations to which our method is applicable also includes non-linear ODE.
Thus, we have tested it using the Bratu, the Duffing and the van der Pol equations.

We have found that our modified Lyapunov method is equivalent, making a particular
choice of the seed solution, to the widely used Picard-Lindelöf method. The choice of this seed
solution is crucial in the approximate integration by Picard-Lindelöf, although both methods are
equivalent only with a particular choice of this seed, choice that has some ambiguity. We discuss
this property with detail. At the same time, we have made a number of numerical experiments
that show that, even if we find the right choice for the seed, our modified Lyapunov method
is more efficient than Picard-Lindelöf. We have added two simple examples of these numerical
experiments on the text with detailed explanations.

A method for approximate solutions must be applicable and easily implementable. We
believe that our modified Lyapunov method fulfils these requirements. We apply it on some
equations well known by physicists, such as Mathieu, Airy, Bratu, Duffing and van der Pol
equations. In all cases, we discuss the precision of the method, which is good even if we use a
low number of iterations. CPU times are also quite reasonable, definitively smaller that those
needed for Standard Lyapunov, an interesting property for researchers not having a strong
computational power.
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