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Abstract

In this paper, a deep dynamical analysis is made using tools from multidimensional
real discrete dynamics of some derivative-free iterative methods with memory. They
all have good qualitative properties, but one of them (due to Traub) shows the
same behavior as Newton’s method on quadratic polynomials. Then, the same tech-
niques are employed to analyze the performance of several multipoint schemes with
memory, whose first step is Traub’s method, but their construction was made us-
ing different procedures. Therefore, their stability is analyzed, showing which is the
best in terms of the wideness of basins of convergence or the existence of free criti-
cal points that would yield convergence towards different elements from the desired
zeros of the nonlinear function. Therefore, the best stability properties are linked
with the best estimations made in the iterative expressions rather than their sim-
plicity. These results have been checked with a numerical and graphical comparison
with many other known methods with and without memory, with different orders of
convergence, with excellent performance.
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1 INTRODUCTION

A wide variety of physical processes observed in real life are nonlinear, as are many systems underlying engineering problems.
If in order to simplify the problem, they are linearised, much of the complexity disappears, but the solution obtained is a worse
approximation to the real solution. Iterative processes are beneficial in this context, approximating the solution of the nonlinear
equations, f (x) = 0, that model this type of problem.
Newton’s method is the best-known fixed-point iterative method, but it represents only a subclass of numerical procedures:

memoryless iterative processes. This kind of scheme uses only the current iteration to compute the next one, building the
sequence that eventually converges to the solution. However, there are iterative schemes that use more than one known iterate
to calculate the next: these are known as iterative procedures with memory, and the best known is the secant method, whose
iterative expression is

xn+1 = xn −
f (xn)(xn − xn−1)
f (xn) − f (xn−1)

, n = 1, 2,… ,

where x0 and x1 are the initial estimations. The simplicity of its expression makes it very useful, but the quadratic order of
convergence of Newton’s scheme is lost, reaching superlinear convergence. To overload this inconvenient, Traub in [2] designed,
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among others, the derivative-free scheme (DF, for short) with memory,

xn+1 = xn −
f (xn)

f [xn−1, xn−2] − f [xn, xn−2] − f [xn, xn−1]
, (1)

denoted by TM , where f [x, y] = f (x) − f (y)
x − y

, that increases the order of convergence from 1.618 (of secant scheme) up to
1.839. It is lower than other DF methods as Steffensen’s scheme (without memory), but it has good numerical properties. This
scheme has been used as the first step of several higher-order multipoint methods, with good results in terms of robustness and
applicability (see the works by Neta [17, 18]).
In recent years, different iterative schemes with memory have been designed (a good overview can be found in [28]), mostly

derivative-free. These have been constructed with increasing order of convergence and, therefore, with increasing computational
complexity. In terms of stability, some researchers compared the amplitude of the set of initial points converging to the same
attractor using complex discrete dynamics techniques. In [3], the authors observed that iterative schemes with seventh-order
memory convergence showed better stability properties than many eighth-order optimal procedures without memory. Different
authors subsequently used this graphical comparison; observe, for instance, the work of Wang et al. in [5], and Cordero et al.
[4] in 2016 or the investigations of Bakhtiari et al. [6] in 2016. Howk et al. [7] in the following years.
The authors developed in [20] a technique that, using multidimensional real discrete dynamics tools, can study the qualitative

performance of iterative with memory schemes, not only in graphical terms but essentially in analytical terms. By using this
technique, the stability of the fixed and critical points of secant, Steffensen’ and Kurchatov’s methods (among others) were
studied in [20]. It was also used to analyze other procedures, such as those described in [21], that defined by Choubey et al. in
[10], or those by Chicharro et al. in [11, 12, 13]. In this kind of analysis, the performance of the numerical procedure on the most
straightforward nonlinear functions (that is, quadratic polynomials) is studied. As many researchers in the area have corroborated
it, this kind of study allows us to select those elements of a class of iterative schemes with better qualitative performance. Also,
those schemes are shown to be the best also on non-polynomial functions (see, for example, [3, 10, 13]), among others.
The design of high-order multipoint iterative methods is based on the scheme used as the first step: it defines the starting

order of convergence, the use of derivatives or not, the employment of only one previous iterate, or the use of memory. We
aim to analyze in-depth the qualitative performance of some DF methods with memory to select the one with the best stability
properties. Then, that one is used as the first step of different iterative methods designed through diverse techniques. Those
multipoint schemes’ qualitative behavior is studied to deduce how the qualitative properties are inherited. In this way, we would
have objective tools to select which technique is more suitable in the construction of iterative multipoint methods with memory.
In this context, wemade in Section 2 a deep dynamical analysis of several DF iterative schemes with memory, defined by using

three previous iterates. We find the most stable one and, therefore, compare in Section 3 the performance of several multistep
methods based on the previous methods. All this analysis is made by using multidimensional discrete dynamics. By using
these results, we select the most stable scheme, and in Section 4, we check the performance of the methods on non-polynomial
functions numerically, showing their basins of attraction. Therefore, the applicability of the schemes and the dynamical results
are checked.

2 QUALITATIVE STUDY OF ONE-STEP ITERATIVE WITH MEMORY SCHEMES

An iterative procedure that uses three previous iterates to calculate the next one is

xn+1 = Ψ(xn−2, xn−1, xn), n ≥ 2,

being the starting guesses x0, x1 and x2. The authors described in [20, 21] a procedure that allows us to describe any iterative
with memory scheme as a multidimensional real discrete dynamical system so that its stability performance can be studied.
To get the fixed points of an iterative scheme defined byΨ, we define a multidimensional fixed point functionH ∶ ℝ3 ←→ ℝ3,

related to Ψ as

H
(

xn−2, xn−1, xn
)

= (xn−1, xn,Ψ(xn−2, xn−1, xn)),

for n = 1, 2,…, where x0, x1, and x2 are the initial guesses. Then, any fixed point ofH must satisfy xn+1 = xn, xn−2 = xn and
xn−1 = xn.
From function H ∶ ℝ3 → ℝ3, the associate discrete dynamical system in ℝ3 is defined by H

(

xn−2, xn−1, xn
)

=
(xn−1, xn, xn+1), where Ψ is the operator of the iterative method with memory. Let us define the sequence of vectors x̄n =
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(xn−1, xn, xn+1) by taking three consecutive iterates. The fixed points x̄ of H satisfy x̄ = Ψ(x̄) and all three components are
identical. This notation implies xn−2 = xn−1 = xn. Now, let us introduce some definitions (see [1]).
Let us consider the vectorial rational function H ∶ ℝ3 → ℝ3, usually obtained by applying an iterative method on a scalar

polynomial q(x). Then, if a fixed point x̄ of operatorH is different from (r, r, r), being r a zero of q(x), it is called strange fixed
point. Moreover, the orbit of a point x∗ ∈ ℝ3 is defined as the set of successive images from x∗ by the vector function, that is,
orbit(x∗) = {x∗,H(x∗),… ,Hn(x∗),…}. Indeed, if a point x̄∗ ∈ ℝ3 satisfyHk (x̄∗) = x̄∗ andHp (x̄∗) ≠ x̄∗, p = 1, 2,… , k− 1
is called k-periodic point. Let us remark that a k-periodic point x∗ is a fixed point if k = 1.
The qualitative performance of a point of ℝ3 is classified depending on its asymptotic performance. So, in order to declare

the stability of multidimensional fixed points, the following result from Robinson [22] is used.

Theorem 1. Let H be a function of class 2, defined from ℝm to ℝm. Let us also assume that x∗ is a k-periodic point. If we
denote by �1, �2,… , �m the eigenvalues ofH ′(x∗), then

a) x∗ is attracting if |�j| < 1, for all j = 1, 2,… , m.

b) If ∃j0 ∈ {1, 2,… , m} such that |�j0 | > 1, then x
∗ is unstable (repelling or saddle).

c) x∗ is repelling if |�j| > 1, for all j = 1, 2,… , m.

Moreover, a fixed point x̄ ∈ ℝ3 is said to be hyperbolic if |�j| ≠ 1 for all j = 1, 2,… , m. Specifically, if ∃i, j ∈ {1, 2,… , m}
satisfying |�i| < 1 and |�j| > 1, then the fixed point is a saddle point.
Nevertheless, sometimes the Jacobian is not well-defined at the fixed points. In these cases, we impose to the rational operator

H the condition that all components are identical so that it is reduced to a real-valued function. Therefore, the stability of the
fixed point can be inferred from the absolute value of its first derivative at the fixed point, as it is done in scalar complex dynamics.
By considering x̄ an attracting fixed point of functionH , we define its basin of attraction (x̄) as the set

(x̄) =
{

x̄ ∈ ℝ3 ∶ Hm(x̄)→ x̄, for m→∞
}

.

A key element in the stability analysis of an iterative method is the set of critical points of its associated rational functionH :
ifH ′(x̄) satisfies det(H ′(x̄)) = 0, x̄ is said to be a critical point. This definition usually does not provide a finite set of points but
one or several curves in the domain of the rational function or even that all points are critical. Therefore, we calculate them by
finding those points satisfying thatH ′ has zero eigenvalues; this is a more restrictive definition but often necessary. Moreover,
if the critical points are also fixed points, they are called superattracting points; if not, they are called free critical points (let us
remark that components of critical points can be different). Indeed, Julia and Fatou [1] proved that there is at least one critical
point associated with each basin of attraction. Therefore, all the attracting elements can be found by studying the orbit of the
free critical points.

2.1 Preliminary analysis: how to select the first step
In this section, we analyze the performance of quadratic polynomials of three different schemes with memory due to Traub [2],
(1), denoted by TM , that of Jarratt and Nudds [14],

xn+1 = xn − f (xn)
(xn−1 − xn)(xn−2 − xn)(f (xn−2) − f (xn−1))

(xn−1 − xn)(f (xn−2) − f (xn))f (xn−1) + (xn−2 − xn)(f (xn) − f (xn−1))f (xn−2)
, (2)

denoted by JNM , and the procedure presented by Popovski et al. in [15],

xn+1 = xn − f (xn)
(xn − xn−2)(f (xn−2) − f (xn−1))(xn − xn−1)

(f (xn−2) − f (xn))(xn−2 − xn−1)(f (xn−1) − f (xn))
, (3)

denoted by PM .
All these schemes have similar iterative expressions and the same order of convergence (p = 1.839). Our first aim is to

decide, under qualitative considerations, which is the most stable one to add two more steps, increasing its convergence order
and showing the best performance in terms of the wideness of the sets of initial estimations converging to the roots.
To extend the results to any polynomial of second degree, this study is constructed on q(x) = x2 − c so that the value of c

yields to a situation with real, complex, or multiple roots depending on c > 0, c < 0 or c = 0, respectively. This analysis can be
summarized in the following results.
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Theorem 2. The multidimensional rational operator associated with Traub’s scheme TM , when it is mapped on polynomial
q(x) = x2 − c, c ≠ 0 is

T (w, z, x) =
(

z, x, c + x
2

2x

)

,

and it is
T (w, z, x) =

(

z, x, x
2

)

,
for c = 0. Moreover, TM satisfies:

a) The only fixed points are the roots of q(x).

b) The only critical points are the roots of q(x).

So, there is no other possible performance of TM scheme than convergence to the roots.

Proof. Let us remark that the third component of operator T (w, z, x) is equal to the rational function obtained when classical
Newton’s method is applied on polynomial q(x). This is the reason why, when we force the three consecutive iterates to be equal
(x = z = w) in order to get the fixed points, then the only fixed points are the roots x = ±

√

c.
Regarding the critical points, the Jacobian matrix T ′ is

T ′(w, z, x) =
⎛

⎜

⎜

⎝

0 1 0
0 0 1
0 0 1

2
− c

2x2

⎞

⎟

⎟

⎠

,

with eigenvalues
{

0, 0, 1
2
− c

2x2

}

. So, there are no free critical points.

A handy tool to visualize the analytical results is the dynamical plane of the system, composed of the set of the different
basins of attraction. It can be drawn employing the programs presented in [16] after some changes to adapt them to schemes
with memory. The dynamical plane of a method is built by calculating the orbit of a mesh of 400 × 400 starting points (z, x)
(y does not appear in the rational function T ). Then, we paint each of them in different colors (orange and green in this case)
depending on the attractor they converge to (marked as a white star), with a tolerance of 10−3. Also, they appear in black if the
orbit has not reached any attracting fixed point in a maximum of 80 iterations. In Figure 1, we show the dynamical planes of
this method for selected values of c in order to show its performance.

(a) c = −1 (b) c = 0 (c) c = 1

Figure 1 Dynamical planes of scheme TM on q(x)

Let us remark that, by definition, all the fixed points have equal components; they will always appear in the main diagonal of
the dynamical plane. It can be observed that when there is no real root (c < 0, Figure 1a), no other attracting element appears;
when c = 0, the only root is multiple, and the convergence is linear, so there is global convergence to x = 0 as can be seen in
Figure 1b. In Figure 1c, the convergence to the roots is also observed to be global, being their basins of attraction two symmetrical
half-planes.
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Now, we analyze the performance of Jarratt-Nudds method with memory [14] on quadratic polynomials.

Theorem 3. The multidimensional rational operator associated with method JNM , when it is applied on polynomial q(x) =
x2 − c, c ≠ 0 is

JN(w, z, x) =
(

z, x,
c(x + z +w) + xzw
c + x(z +w) + zw

)

,

and it is
JN(w, z, x) =

(

z, x, xzw
x(z +w) + zw

)

,

for c = 0. Moreover, JNM satisfies:

a) There are no attracting strange fixed points. If c ≠ 0, x = 0 is a strange fixed point, that is a saddle point. If c = 0, x = 0
is an attracting fixed point, as it is a multiple zero of q(x).

b) There exists an infinite set of free critical points (w, z, x), defined by the lines x = ±
√

c or z = ±
√

c, being c > 0 and w
arbitrary, provided that c + x(z +w) + zw ≠ 0.

Proof. By applying Jarratt-Nudds’ method on q(x) and constructing the auxiliary multidimensional operator, JN(w, z, x) is
found. To get the fixed points of JN , we solve JN(x, x, x) = (x, x, x) and find

2x
(

c − x2
)

c + 3x2
= 0,

so the fixed points are those whose three components coincide at x = ±
√

c and x = 0, provided that c +3x2 ≠ 0. To study their
qualitative behavior, we calculate

JN ′(w, z, x) =

⎛

⎜

⎜

⎜

⎝

0 1 0
0 0 1

(c−x2)(c−z2)
(c+x(z+w)+zw)2

(c−x2)(c−w2)
(c+x(z+w)+zw)2

(c−z2)(c−w2)
(c+x(z+w)+zw)2

⎞

⎟

⎟

⎟

⎠

and its eigenvalues at the fixed points are (0, 0, 0) in the case of y = z = x = ±
√

c and (approximately) {1.83929,−0.419643 +
0.606291i,−0.419643 − 0.606291i} for w = z = x = 0. So, the roots of q(x) are superattracting fixed points and (0, 0, 0) is
saddle, since |�1| = 1.83929 > 1 and |�2| = |�2| ≈ 0.737353 < 1.
Regarding the critical points, it is not possible to gent an analytical expression of the eigenvalues of JN ′(w, z, x). Then, it

can be checked that

det(JN ′(w, z, x)) =

(

c − x2
) (

c − z2
)

(c + x(z +w) + zw)2
,

and, therefore, x = ±
√

c or z = ±
√

c are curves of critical points, provided that c + x(z+w) + zw ≠ 0 and they are free as the
third component w is not fixed.

In Figure 2, we show the dynamical planes of this method for selected values of c in order to show its performance. For all
the dynamical planes, different values ofw have been used to observe the dependence of the wideness of the basins of attraction
on it.
It can be noticed that, for c ≥ 0, global convergence to the roots is found, being slower in case of multiplicity (see Figure 2b).

Moreover, a symmetry is observed for opposite values ofw in the wideness of the basins of attraction of both roots (see Figures
2c and 2d).
Finally, by means of a similar analysis, we found the main result about the stability of Popovski’s scheme [15]. The proof is

omitted as it is similar to the previous ones.

Theorem 4. The multidimensional rational operator associated with method PM , when it is applied on polynomial q(x) =
x2 − c, c ≠ 0 is

P (y, z, x) =
(

z, x,
c(z + y) + x3 + xzy
(x + z)(x + y)

)

,

and it is
P (y, z, x) =

(

z, x,
x3 + xzy

(x + z)(x + y)

)

,

for c = 0. Moreover, PM satisfies:
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(a) c = −1, w = 2 (b) c = 0, w = 2 (c) c = 1, w = 2

(d) c = 1, w = −2 (e) c = 1, w = 0 (f) c = 1, w = 10

Figure 2 Dynamical planes of scheme JNM method on q(x), for different values of w and c

a) The only fixed points are the roots of q(x).

b) There exists an infinite set of free critical points (w, z, x), defined by the lines z = x, provided that x ≠ z and x ≠ w.

In Figure 3, we show the performance of this method with memory for several values of c. For all the dynamical planes,
different values of w has been used, in order to observe the dependence of the wideness of the basins of attraction on it.
Similar performance to the case of JNM is observed (in terms of symmetry and convergence to the roots). However, their

basins of attraction have more connected components, and the Julia set (the boundary among the basins of attraction) is much
more complicated. Also, slow convergence to the multiple root in case of c = 0 is observed.
So, it can be concluded that the stability of Traub’s scheme with memory is much better than the other methods with similar

shape and order of convergence under analysis. Therefore, we study in the following section how is the qualitative behavior of
two iterative schemes with three steps based on Traub’s procedure as the first step.

3 QUALITATIVE PERFORMANCE OF MULTIPOINT METHODS WITH THE SAME
FIRST STEP

As it has been previously stated, we analyze the qualitative properties of two iterative with memory schemes based on Traub’s
scheme. We denote by method M1 that scheme with iterative expression

yn = xn −
f (xn)

f [xn−2, xn] + f [xn−1, xn] − f [xn−2, xn−1]
,

zn = yn −
f (yn)

f [yn, xn] + f [yn, xn, xn−1](yn − xn) + f [yn, xn, xn−1, xn−2](yn − xn)(yn − xn−1)
, (4)

xn+1 = zn −
f (zn)

f [zn, yn] + f [zn, yn, xn](zn − yn) + f [zn, yn, xn, xn−1](zn − yn)(zn − xn)
,
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(a) c = −1, w = 2 (b) c = 0, w = 2 (c) c = 1, w = 2

(d) c = 1, w = −2 (e) c = 1, w = 0 (f) c = 1, w = 10

Figure 3 Dynamical planes of scheme PM on q(x), for different values of w and c

presented in [17], with order of convergence 7.356. Also in [18], the schemewith memory that we denote byM2was constructed,

yn = xn −
f (xn)

f [xn−2, xn] − f [xn−2, xn−1] + f [xn−1, xn]
,

zn = yn −
f (yn)

�1f (xn) + �2f (xn−1) + �3f (yn)
, (5)

xn+1 = zn −
f (zn)

�1f (xn) + �2f (yn) + �3f (zn)
.

showing the order of convergence is 6.219.
Although both schemes are based on the same first step, they reach different orders of convergence with also significant

divergence between their computational complexity: as M1 uses in the denominator of the second and third steps, high-order
estimations of the derivatives f ′(yn) and f ′(zn), respectively, its expression are more complicated, but it reaches higher order
of convergence than its partner M2, with a simpler iterative expression but lower order of convergence. Moreover, the highest
is the order of convergence, higher is the need to be close to the root to converge; so, it would be possible to get better stability
properties for lower-order methods. Our aim is not to classify them through their convergence order but their stability. In what
follows, we construct the multidimensional discrete dynamical system associated with both schemes and analyze the existence
of strange attracting fixed points or free critical points that might yield undesirable numerical performances.

3.1 Qualitative study ofM1
We now analyze the performance of the rational operator related toM1 on quadratic polynomials. As in the previous section, this
analysis is made on q(x) = x2− c. The results are condensed in the following result. It can be observed that the third component
of the vectorial rational function does not depend on the two previous iterations, w, and z, as it happened in Traub’s method.
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Theorem 5. The multidimensional rational operator associated with methodM1, when it is applied on q(x) = x2 − c, c ≠ 0 is

M1(w, z, x) =
(

z, x, c
4 + 28c3x2 + 70c2x4 + 28cx6 + x8

8c3x + 56c2x3 + 56cx5 + 8x7

)

,

and it is
M1(w, z, x) =

(

z, x, x
8

)

,

for c = 0. Moreover,M1 satisfies:

a) There are no strange attracting fixed points. If c < 0, there exist six real strange fixed points that are saddle points. If
c = 0, x = 0 is the unique fixed point, that is only attracting; finally, for c > 0, the only fixed points are the roots of q(x).

b) There exists no critical points different from the roots of q(x).

So, methodM1 has global convergence.

Proof. We calculate the fixed points of operator M1 by solving M1(w, z, x) = (w, z, x), that must satisfy w = x = z.
Specifically,

M1(w, z, x) =
(

z, x, c
4 + 28c3x2 + 70c2x4 + 28cx6 + x8

8c3x + 56c2x3 + 56cx5 + 8x7

)

= (w, z, x),

if and only if w = z = x and

−

(

x2 − c
) (

c3 + 21c2x2 + 35cx4 + 7x6
)

8x
(

c + x2
) (

c2 + 6cx2 + x4
) = 0.

So, the fixed points ofM1(y, z, x) are the roots of q(x) and also the zeros of the sixth-degree polynomial c3+21c2x2+35cx4+7x6
(that are real if c < 0), meanwhile c2 + 6cx2 + x4 ≠ 0. Let us remark that in case c > 0, there are no strange fixed points, and
when c = 0, the rational function is reduced, and the only fixed point is x = 0, which is attracting but not superattracting. The
Jacobian matrixM1′(w, z, x) is defined as

M1′(w, z, x) =

⎛

⎜

⎜

⎜

⎝

0 1 0
0 0 1

0 0 (x2−c)7

8x2(c+x2)2(c2+6cx2+x4)2

⎞

⎟

⎟

⎟

⎠

.

It can be checked that the first two eigenvalues ofM1′ evaluated at each one of these strange fixed points are null. Then, their
character would be attracting or saddle depending on the absolute value of the third eigenvalue. In all cases, |�3| = 8, so they
are saddle.
By calculating the eigenvalues ofM1′(w, z, x), we get �1 = �2 = 0 and �3 = −

(c−x2)7

8x2(c+x2)2(c2+6cx2+x4)2
. So, we conclude that

the only critical points are the roots of q(x), proving the global convergence for quadratic polynomials.

(a) c = −1 (b) c = 0 (c) c = 1

Figure 4 Dynamical planes of schemeM1 on q(x)
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Figure 4 shows the behavior stated at Theorem 5. Let us notice that only the convergence to the roots is reached (it is clear
from the absence of free critical points), showing the best possible behavior in terms of stability. Fixed points are represented
as white stars.

3.2 Qualitative study ofM2
A similar study is made forM2; the rational function involved depends on the two previous iterations (in this case, w = xn−2
has not any role). The proof is omitted as it can be developed in a similar way as in Theorem 5.

Theorem 6. The multidimensional rational operator associated with methodM2, when it is applied on q(x) = x2 − c, c ≠ 0 is

M2(y, z, x) =

(

z, x,
−c5(3x + z)3 + c4x2q1(z, x) + c3q2(z, x) − 2c2x6q3(z, x) + cx8q4(z, x) + x10q5(z, x)
8x

(

c(x + z) + x2(x − 3z)
) (

−c3(3x + z)2 + c2x2r1(z, x) + cx4r2(z, x) + x6r3(z, x)
)

)

,

where
q1(z, x) = −141x3 − 77x2z + 17xz2 + 9z3,
q2(z, x) = −222x7 + 610x6z + 438x5z2 + 70x4z3,
q3(z, x) = 69x3 − 411x2z + 471xz2 + 319z3,
q4(z, x) = −23x3 + 425x2z − 1373xz2 + 1163z3

q5(z, x) = 39x3 − 217x2z + 333xz2 − 91z3,
r1(z, x) = −17x2 + 18xz + 15z2,
r2(z, x) = −11x2 + 62xz − 35z2,
r3(z, x) = 5x2 − 10xz − 11z2

and it is

M2(y, z, x) =

(

z, x,
x
(

39x3 − 217x2z + 333xz2 − 91z3
)

8(x − 3z)
(

5x2 − 10xz − 11z2
)

)

,

for c = 0. Indeed,M2 satisfies:

a) There are no strange attracting fixed points. If c < 0, there are two real strange fixed points
(

−
√

−c
√

3
,−

√

−c
√

3

)

and
(√

−c
√

3
,
√

−c
√

3

)

that are saddle points. If c = 0, the unique fixed point is x = 0 that is attracting but not superattracting;
finally, for c > 0, the only fixed points are the roots of q(x).

b) If c > 0, there are two infinite sets of free critical points, (w, 9
11

√

5
17

√

c,−
√

c
√

85
) and (w,− 9

11

√

5
17

√

c,
√

c
√

85
), for any real

value of w.

The existence of free critical points led us to infer the possibility of convergence to attracting elements (points, orbits,...)
different from the roots. As a first step to check if it other performances are possible, some dynamical planes can be seen in
Figure 5.
In Figure 5,M2 scheme is found to have a very stable performance. In case there exist strange fixed points, they are repelling

or neutral. Global convergence is observed, despite free critical points that lie inside the basins of attraction of the roots in Figure
5c, where c > 0. The observed performance is similar to that ofM1, but the attraction basins are divided into infinite connected
components. However, free critical points do not assure that there are other values of c with convergence to attracting periodic
orbits or even with chaotical performance. So, it should be possible that for any value of c > 0, those free critical points were
not in the basins of attraction of the roots but inside the basin of any other attractor, maybe a periodic orbit or a strange attractor.
In order to detect this performance, we use Feigenbaum’s diagram.

3.2.1 Feigenbaum’s diagrams
We use bifurcation diagrams of M2, depending on the value of c, by means of the use of each real critical point s1(c) =
(w, 9

11

√

5
17

√

c, −
√

c
√

85
) and s2(c) = (w,− 9

11

√

5
17

√

c,
√

c
√

85
) as a starting point, w arbitrary, (described in Theorem 6) and

observing the range [0, 10] of the parameter c, where free critical points are real.
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(a) c = −1 (b) c = 0 (c) c = 1

Figure 5 Dynamical planes ofM2 method on q(x)for different values of c

(a) z = 9
11

√

5
17

√

c, x = −
√

c
√

85
(b) z = − 9

11

√

5
17

√

c, x =
√

c
√

85

Figure 6 Bifurcation diagrams ofM2 for real critical points

Both Feigenbaum’s diagrams can be observed in Figures 6a and 6b, with the same performance. We use blue color for plotting
the last 100 from 500 iterations, for each c ∈ [0, 10] (if a wider interval is used, the results are the same). We notice that the
same curve appears in both. It corresponds with the real roots of q(x) in this interval.
So, both schemes have shown good stability properties on quadratic polynomials. The performance of M1, despite the higher

complexity of its iterative expression, has shown to be globally convergent due to the absence of free critical points. However, the
final performance of M2 has been similar. The best estimation of the derivatives has a crucial role in the qualitative properties.
In what follows, these schemes are numerically checked on some other nonlinear functions to test the applicability of these
qualitative results.

4 NUMERICAL EXPERIMENTS

In this section, we compare 9 methods of various orders, some of which are derivative-free (DF, for short) and other are optimal
eighth-order schemes without memory. The methods and their order of convergence are:

1. TM, Traub’s DF method (1) of order 1.839 [2] (Method 7a on page 234)

2. JNM, Jarrat-Nudds’s DF method (2) of order 1.839 [14]

3. PM, Popovski’s DF method (3) of order 1.839 [15]

4. NM, Newton’s second order method

5. SM, Steffensen’s DF second order method [30]
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6. M1, Neta’s DF method of order 7.356 [17]

7. M2, Neta’s DF method of order 6.219 [18]

8. ZOM, Zhanlav-Otgondroj’s DF method of optimal order 8 [31]

9. SAM, Sharma-Arora’s method of optimal order 8 [29]

We ran these methods on 3 examples on a 6 × 6 square with center at (0, 0). The functions are:

1. Wilkinson-type polynomial
f1(x) = x(x2 − 1∕4)(x2 − 1)(x2 − 9∕4)(x2 − 4) (6)

2. A function vanishing at ±3,±2,±1, 0, 3∕2 on [-3, 3]

f2(x) = sin(�x)
(

ex−1.5 − 1
)

(7)

3. A function vanishing at ±2.5,±1.5,−1,±1∕2 on [-3,3]

f3(x) = cos(�x)
(

ex+1 − 1
)

(8)

The square is divided into a mesh of initial points of the complex plane to apply the iterative procedures to them. For those
methods requiring additional starting values, we have taken x−1 = x0 + 0.01 and x−2 = x0 + 0.02. The number of function
evaluations to converge within a tolerance of 10−7 is collected; Also, the searched root the sequence has converged to. If the
iterates have not converged in 40 iterations, we denote it as a divergent point. The color corresponding colors each point to the
root. Note that we have used 6 different colors therefore some roots will have the same color, but they are far apart. Moreover,
the color is brighter for lower number of iterations needed to converge to the root. A divergent point is colored black. We also
have annotated the CPU time needed to run the code on all initial guesses of the mesh using MacBook Pro computer.
In Figure 7 we have depicted the basins of attraction for the 9 methods of the first function. SM and ZOM (having SM as

first step) have too many divergent points. Also, the basins of M1, M2, and SAM are brighter than the rest, showing the fastest
convergence. In this cases, the basins of attraction of the roots are similar (in terms of wideness) to those of Newton’s method.
We have also collected in Tables 1-3 the average number of function-evaluation per point for each scheme, the CPU run time

in seconds, and the percentage of divergent points. The methods SM and ZOM use the highest number of functional evaluations
per point. The CPU runtime for these schemes is the highest since they have the most divergent points. The methods M1, M2,
JNM, and SAM have no divergent points. TM and NM have very few divergent points.

Table 1 Average number of function evaluations per point for each example and each of the methods

Method Ex1 Ex2 Ex3 average
TM 16.11 14.31 14.94 15.12
JNM 11.62 9.48 9.76 10.29
PM 14.92 12.81 13.18 13.64
NM 23.25 18.63 19.71 20.53
SM 63.90 39.36 49.17 50.81
M1 13.67 11.84 12.20 12.57
M2 16.72 14.38 14.98 15.36
ZOM 84.23 53.03 72.46 69.91
SAM 14.57 13.41 13.66 13.88

The basins of attraction for the methods in the second example are given in Figure 8. Again SM and ZOM are inferior. The
methods M2, SAM, and M1 are the fastest.
We average the numerical results over the 3 examples, and we can conclude that JNM is the top scheme in all 3 categories,

followed by M1. In a previous comparison of TM, JNM and PM using 4 polynomials of degrees 2–5 and one non-polynomial
function [18], we found that TM was best.



12 R.R. Capdevila ET AL

(a) TM (b) JNM (c) PM

(d) NM (e) SM (f) M1

(g) M2 (h) ZOM (i) SAM

Figure 7 Dynamical planes of analyzed methods for the roots of the function f1(x)

Table 2 CPU time (msec) for each example and each of the methods

Method Ex1 Ex2 Ex3 average
TM 1050.964 842.572 774.008 889.181
JNM 568.898 574.472 551.134 564.835
PM 717.363 656.711 665.299 679.791
NM 926.910 530.669 522.581 660.054
SM 1498.093 920.992 975.164 1131.416
M1 582.13 532.055 582.332 565.506
M2 726.71 354.122 685.238 655.357
ZOM 1404.49 1110.924 1148.6 1221.338
SAM 805.488 512.445 492.982 603.638
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Table 3 Number of black points for each example and each of the methods and average across examples

Method Ex1 Ex2 Ex3 average
TM 278 11515 9022 6938
JNM 0 174 152 109
PM 2446 10625 11515 8195
NM 20 1742 1806 1189
SM 273404 140192 192616 202071
M1 0 1730 1679 1136
M2 0 1600 1900 1167
ZOM 166138 94779 142562 134439
SAM 0 1894 1827 1240

(a) TM (b) JNM (c) PM

(d) NM (e) SM (f) M1

(g) M2 (h) ZOM (i) SAM

Figure 8 Dynamical planes of analyzed methods for the roots of the function f2(x)
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(a) TM (b) JNM (c) PM

(d) NM (e) SM (f) M1

(g) M2 (h) ZOM (i) SAM

Figure 9 Dynamical planes of analyzed methods for the roots of the function f3(x)
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5 CONCLUSIONS

In this manuscript, we have deepened the reasons for the better stability of derivative-free iterative methods with memory based
on DF Traub’s scheme regarding other methods of the same kind but based on other schemes as the first step. The absence of crit-
ical points different from the roots in the case of Traub’s method yields global convergence on quadratic polynomials, precisely
the same performance as Newton’s scheme. Other procedures also under analysis show stable behavior, but the complexity of
the basins of attraction is much higher. Once Traub’s method is selected as the most stable, some schemes constructed with this
method as the first step are also analyzed with the same dynamical technique, finding only convergence to the roots but global
convergence in the case of M1. This scheme was designed by using high-order estimations of the derivatives in the iterative ex-
pression versus a simpler construction of the denominators in the design of M2. Therefore, the dynamical analysis has shown
that the computational complexity is not a key fact in the stability, even if it is a sufficient element to assure a good perfor-
mance from good estimations of the derivatives. Numerically, these schemes show this good performance, compared with other
schemes with memory of different convergence orders. It shows better than optimal iterative procedures without memory, of
higher order of convergence. Even in these cases, the performance of M1 shows lower computational time and better efficiency.
Conflicts of interest: This work does not have any conflicts of interest. Acknowledgement: This research was partially sup-

ported Grant PGC2018-095896-B-C22 funded by MCIN/AEI/10.13039/5011000113033 by "ERDF A way of making Europe",
European Union.
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