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In this paper, we study different ways for introducing mem-
ory to a parametric family of optimal two-step iterativemeth-
ods. We study the convergence and the stability, by means
of real dynamics, of the methods obtained by introducing
memory in order to compare them. We also perform sev-
eral numerical experiments to see how the methods be-
have.
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1 | INTRODUCTION

Iterativemethods are one of themostwidely used tools for solving problemswith nonlinear equations f (x ) = 0, where
f : D ⊆ Ò → Ò. These methods obtain a sequence of approximations, which, under certain conditions, converge to
the solution of the equation. One of the best known schemes is Newton’s method, which has the iterative expression

xk+1 = xk −
f (xk )
f ′ (xk )

, k = 0, 1, . . . (1)

Newton’s method is well known for its efficiency and simplicity, as well as for its quadratic convergence and optimality
in the sense of Kung-Traub conjecture [12]. When the derivative in (1) is replaced by the divided difference f [xk +

f (xk ), xk ] we obtain the Steffensen’s method [18], which is a derivative-free and also optimal scheme. The existence
of derivatives in the iterative expression of a method can be a drawback when the function to be studied cannot be
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derived or its derivative is too costly to calculate. For this reason, derivative-free methods have arisen in the literature,
see for example [6, 11] and the overviews about iterative methods [15, 1].

In order to increase the quadratic convergence, Traub [19] proposed the following scheme

yk = xk −

f (xk )
f ′ (xk )

,

xk+1 = yk −
f (yk )
f ′ (xk )

, k = 0, 1, . . .

(2)

This method has order of convergence 3, but it is not optimal in the sense of Kunt-Traub conjecture.
In this paper, we design a derivative-free variant of Traub’s method by replacing the derivatives by a divided

difference with a parameter and a weight function. This yields the following parametric family, which as we shall see
below is a class of optimal iterative methods of fourth-order, that we denote by M4,β .


yk = xk −

f (xk )
f [wk , xk ]

, where wk = xk + βf (xk ) [β ∈ Ò\{0},

xk+1 = yk − H (µk )
f (yk )

f [yk , xk ]
, where µk =

f (yk )
f (wk )

, k = 0, 1, . . .

(3)

In addition to designing such a family of optimal methods, we study several ways to introduce memory in it, by
replacing the parameter with an expression that uses the previous iterates and their functional evaluations. In this
way, we increase the order of the methods without more computational cost.

To prove the order of convergence of themethodswithmemorywe use the followingOrteg-Rheinboldt’s theorem,
which can be found in [14]:
Theorem 1 Let φ be an iterative method with memory that generates a sequence {xk } of approximations to the root α ,
and let this sequence converges to α . If there exist a nonzero constant η and positive numbers t i , i = 0, . . . ,m such that the
inequality

|ek+1 | ≤ η
m∏
i=0

|ek−i |t i ,

holds, then the R-order of convergence of the iterative method φ is at least p , where p is the unique positive root of the
equation

pm+1 −
m∑
i=0

t i p
m−i = 0.

The convergence of an iterative method is not the only thing to analyze, it is also important to study its stability
in terms of the set of initial approximations that generate convergence or give rise to chaotic behavior. This stability is
analyzed using discrete real dynamics tools, which will allow us to differentiate family members with stable behavior
from others with chaotic behavior. In this work we study the real dynamics of the proposed memory methods on the
polynomial x2 − c, where c is an arbitrary positive real value.

The manuscript finishes with some numerical experiments to make a comparison between different elements of
the family and the methods obtained by introducing memory.
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2 | CONVERGENCE ANALYSIS

Let f : Ò→ Ò be a sufficiently differentiable function in an open set D ⊂ Ò that contains a root α of f (x ) = 0. Let us
consider the expression

f [x + h, x ] =
∫ 1

0
f ′ (x + t h)d t , (4)

obtained by Genochi-Hermite in [14]. Using the Taylor’s expansion f ′ (x + t h) around x and integrating, we obtain the
following development

f [x + h, x ] = f ′ (x ) + 1

2
f ′′ (x )h + 1

6
f ′′′ (x )h2 +O (h3), (5)

which we use to prove that the order of convergence of methods M4,β , defined in (3), is 4 for any β ∈ Ò\{0}.
Theorem 2 Let f : D ⊆ Ò → Ò be a sufficiently differentiable function in an open neighbourhood D of α such that
f (α) = 0. We assume that f ′ (α) , 0. Let H (t ) be a real function that verifies H (0) = 1, H ′ (0) = 1 and |H ′′ (0) | < ∞. Then,
taking an estimate x0 sufficiently close to α , the sequence of iterates {xk } generated by the proposed family (3) converges
to α with order 4, and its error equation is:

ek+1 =
1

2
C2 (1 + βf ′ (α)) (−2C3 (1 + βf ′ (α)) + C 2

2 (6 + 4βf ′ (α) − H2))e4k +O (e
5
k ), (6)

where Cj =
1

j
f (j ) (α )
f ′ (α ) for j = 2, 3, . . ., ek = xk − α and H2 = H ′′ (0) .

Proof Let us consider the Taylor expansion of f (xk ) and f (wk ) around α :
f (xk ) = f ′ (α)

(
ek + C2e

2
k + C3e

3
k + C4e

4
k + C5e

5
k +O (e

6
k )

) (7)
and

f (wk ) = f ′ (α)
(
ew + C2e

2
w + C3e

3
w + C4e

4
w + C5e

5
w +O (e6w )

)
, (8)

where ew = wk − α .
Now, we calculate f [wk , xk ] using the above equations

f [wk , xk ] =
f (wk ) − f (xk )

wk − xk
=
f (wk ) − f (xk )
wk − α + α − xk

=
f (wk ) − f (xk )

ew − ek

= f ′ (α)
(
1 + C2 (ew + ek ) + C3

(e3w − e3k )
ew − ek

+ C4

(e4w − e4k )
ew − ek

+O4 (ek , ew )
)
.

Since wk = xk + βf (xk ) , then it follows that
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f [wk , xk ] =f ′ (α) (1 + C2 (2 + βf ′ (α))ek + (βC 2
2 f
′ (α) + C3 (3 + 3βf ′ (α) + β 2f ′ (α)2))e2k

+ (2 + βf ′ (α)) (2βC2C3f
′ (α) + C4 (2 + 2βf ′ (α) + β 2f ′ (α)2))e3k ) +O (e

4
k ) .

From this, we have

yk − α = ek −
f (xk )

f [wk , xk ]

= C2 (1 + βf ′ (α))e2k + (−C
2
2 (2 + 2βf ′ (α) + β 2f ′ (α)2) + C3 (2 + 3βf ′ (α) + β 2f ′ (α)2))e3k +O (e

4
k ) .

Let us calculate ek+1. Let consider the Taylor expansion of f (yk ) around α

f (yk ) = f ′ (α)
(
ey + C2e

2
y + C3e

3
y + C4e

4
y + C5e

5
y +O (e6y )

)
, (9)

where ey = yk − α .
By using the previous equations, we obtain the following expression for f [yk , xk ]

f [yk , xk ] =
f (yk ) − f (xk )

yk − xk
=
f (yk ) − f (xk )
yk − α + α − xk

=
f (yk ) − f (xk )

ey − ek

= f ′ (α) (1 + C2ek + (C3 + C
2
2 (1 + βf

′ (α)))e2k +O (e
3
k ) .

Let us now calculate µk =
f (yk )
f (wk )

.

f (yk )
f (wk )

=C2ek + (C3 (2 + βf ′ (α)) − C 2
2 (3 + 2βf ′ (α)))e2k +O (e

3
k )

and, therefore

H (µk ) = H0 + H1µk +
1

2
H2µ

2
k +O (µ

3
k ) = 1 + µk +

H2

2
µ2k +O (µ

3
k )

= 1 + C2ek + (C3 (2 + βf ′ (α)) +
1

2
C 2
2 (−6 − 4βf

′ (α) + H2))e2k +O (e
3
k ) .

Then, we calculate ek+1 = ey − H (µk )
f (yk )
f [yk ,xk ]

using the above results.

ek+1 =
1

2
C2 (1 + βf ′ (α)) (−2C3 (1 + βf ′ (α)) + C 2

2 (6 + 4βf ′ (α) − H2))e4k +O (e
5
k ) .

So, it is proved that family (3) has order 4 under these conditions.
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According to the Kung-Traub conjecture, all the elements of family (3) are optimal iterative schemes.
From the error equation, we note that if β = − 1

f ′ (α ) , then the order increase at least one unit. Since the value of
α is unknown, we approximate the value of f ′ (α) in order to increase the order of the iterative scheme. In this way,
we obtain a method with memory.

If we take the Newton interpolation polynomial of degree 1 at nodes xk and xk−1, that is, N1 (t ) = f (xk ) +
f [xk , xk−1 ] (t − xk ) , then we approximate the derivative of f evaluated at the solution as

f ′ (α) ≈ N ′1 (xk ) =
f (xk ) − f (xk−1)

xk − xk−1
,

so, we choose βk = − 1
N ′
1
(xk )

and we obtain a method with memory, which we denote by M4N1.
Theorem 3 Let f : D ⊆ Ò → Ò be a sufficiently differentiable function in a neighborhood of a simple root α of f (x ) = 0.
Let H (t ) be a real function that satisfies H (0) = 1, H ′ (0) = 1, H ′′ (0) = 2 and |H ′′′ (0) | < ∞. Then, taking an initial
estimation x0 sufficiently close to α , the sequence of iterates {xk } generated by method M4N1 converges to α with order
2 +
√
6 ≈ 4.4495.

Proof From the error equation (6) and taking H2 = H ′′ (0) = 2, we have
ek+1 ∼ (1 + βf ′ (α))2C2 (2C 2

2 − C3)e4k +O (e
5
k ) .

By using Taylor’s series developments of f (xk ) and f (xk−1) around α in the same way as in the previous theorem, we
obtain

βk = − xk − xk−1
f (xk ) − f (xk−1)

= − 1

f ′ (α) (1 + C2 (ek + ek−1) +O2 (ek−1, ek )
.

Therefore, 1 + βk f ′ (α) ∼ C2ek−1.
From the error equation (6) and the above relation it follows that

ek+1 ∼ (C2ek−1)2C2 (2C 2
2 − C3)e4k ∼ e

2
k−1e

4
k . (10)

On the other hand, we suppose that the R-order of the method is at least p . Therefore,
ek+1 ∼ Dk ,pepk ,

where Dk ,p tends to the asymptotic error constant, Dp , when k −→ ∞.
Analogously,

ek ∼ Dk−1,pepk−1 .

Then,
ek+1 ∼ Dk ,p (Dk−1,pepk−1)

p = Dk ,pD
p
k−1,pe

p2

k−1 . (11)
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In the same way that relation (10) is obtained, it follows that

ek+1 ∼ e2k−1 (Dk−1,pe
p
k−1)

4 = D 4
k−1,pe

4p+2
k−1 . (12)

Then, by equating the exponents of ek−1 of (11) and (12), we obtain p2 = 4p + 2, whose only positive solution is
the order of convergence of M4N1 method, where p ≈ 4.4495.

Other way to approximate the derivative of the function is by the Kurchatov’s divided difference, which has the
following expression

f ′ (α) ≈ f [2xk − xk−1, xk−1 ] .

Then, if we take
βk = − 1

f [2xk − xk−1, xk−1 ]
,

we obtain an iterative method with memory, denoted byM4K , whose convergence is analyzed in the following result.
Theorem 4 Let f : D ⊂ Ò→ Ò be a sufficiently differentiable function in an neighborhood of a simple root α of f (x ) = 0.
Let H (t ) be a real function that satisfies H (0) = 1, H ′ (0) = 1, H ′′ (0) = 2 and |H ′′′ (0) | < ∞. Then, taking an initial
estimate x0 sufficiently close to α , the sequence of iterates {xk } generated by method M4K converges to α with order
p = 2 + 2

√
2 ≈ 4.83.

Proof From the error equation (6) and taking H2 = H ′′ (0) = 2, we have
ek+1 ∼ (1 + βf ′ (α))2C2 (2C 2

2 − C3)e4k +O (e
5
k ) .

By using Taylor’s series developments in the sameway as in Theorem2 and by applying theGenocchi-Hermite formule,
we obtain

[2xk − xk−1, xk−1, f ] = f ′ (xk−1) +
1

2
f ′′ (xk−1) (2xk − 2xk−1) +

1

6
f ′′′ (xk−1) (2xk − 2xk−1)2 +O3 (ek , ek−1)

= f ′ (α)
(
1 + 2C2ek + 4C3e

2
k + C3e

2
k−1 − 2C3ek ek−1

)
+O3 (ek , ek−1) .

Then, we get
1 + βk f

′ (α) ∼ 2C2ek + 4C3e
2
k + C3e

2
k−1 − 2C3ek ek−1 .

As ek converges less quickly to 0 than e2
k
and ek ek−1, the behaviour of 1 + βk f ′ (α) is like that of ek or like that of

e2
k−1. Suppose that the R-order of the method is at least p . Therefore,

ek+1 ∼ Dk ,pepk ,
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where Dk ,p tends to the asymptotic error constant, Dp , when k −→ ∞. Analogously,

ek

e2
k−1
∼ Dk−1,pep−2k−1,

which means that 1 + βk f ′ (α) ∼ e2k−1 provided that p > 2.
Let us suppose p > 2. From the error equation (6) and the above relation it follows that

ek+1 ∼ (e2k−1)
2e4k ∼ e

4
k−1e

4
k . (13)

On the other hand,
ek+1 ∼ Dk ,p (Dk−1,pepk−1)

p = Dk ,pD
p
k−1,pe

p2

k−1 . (14)
In a similar way as relation (13) is obtained, it follows that

ek+1 ∼ e4k−1 (Dk−1,pe
p
k−1)

4 = D 4
k−1,pe

4p+4
k−1 . (15)

Then, by equating the exponents of ek−1 of (14) and (15) we obtain p2 = 4p + 4, whose only positive solution is
the order of convergence of the M4N1 method, where p ≈ 4.83.

We can use other approximations of f ′ (α) by means of Newton interpolation polynomials of higher degree.
If we define N2 (t ) = f (xk ) + f [xk , xk−1 ] (t − xk ) + f [xk , xk−1, yk−1 ] (t − xk ) (t − xk−1), an approximation of the

derivative is
f ′ (α) ≈ N ′2 (xk ) .

So we will choose βk = − 1

N ′2 (xk )
, and so we obtain an iterative method with memory, denoted by M4N2, whose

convergence is analyzed in the next result.
Theorem 5 Let f : D ⊂ Ò → Ò be a sufficiently differentiable function in a neighborhood of a simple root α of f (x9 = 0.
Let H (t ) be a real function that satisfies H (0) = 1, H ′ (0) = 1, H ′′ (0) = 2 and |H ′′′ (0) | < ∞. Then, taking an initial
estimation x0 sufficiently close to α , the sequence of iterates {xk } generated by the method M4N2 converges to α with
order 1

2 (5 +
√
33) ≈ 5.37228.

Proof From the error equation (6) and knowing that H2 = H ′′ (0) = 2

ek+1 ∼ (1 + βf ′ (α))2C2 (2C 2
2 − C3)e4k +O (e

5
k ) .

Using Taylor’s series of f (xk ) , f (xk−1) and f (yk−1) around α , we obtain
N ′2 (xk ) = f [xk , xk−1 ] + f [xk , xk−1, yk−1 ] (xk − xk−1)

= f ′ (α) + 2C2f
′ (α)ek + C3f

′ (α)ek ey + C3f
′ (α) (ek − ey ,k−1)ek−1 +O (e2k−1) +O (e

2
k ) +O (e

2
y ) +O3 (ey ,k−1, ek , ek−1) .
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This means that 1 + βk f ′ (α) will be able to behave as ek , as ek ey ,k−1, as ek−1ek or as ek−1ey ,k−1. It is clear that

ek ey ,k−1 tends faster to zero than ek when k → ∞, and that ek−1ek tends to zero faster than ek−1ey ,k−1. For this
reason, we need to analyze if ek converges faster to zero or does it ek−1ey ,k−1.

Suppose the R-order of the method is at least p . Let us consider the sequence {yk } generated by the first step
of the method, and let us assume that converges to R-order at least p1. Therefore, it is satisfied

ek+1 ∼ Dk ,pepk and ey ,k ∼ Dk ,p1e
p1
k
,

where Dk ,p tends to the asymptotic error constant, Dp , and where Dk ,p1 tends to the asymptotic error constant, Dp1 ,when k −→ ∞.
As ek ∼ Dk−1,pepk−1, then

ek
ek−1ey ,k−1

∼
Dk−1,pe

p
k−1

ek−1ey ,k−1
∼

Dk−1,pe
p
k−1

Dk−1,p1ek−1e
p1
k−1
.

Then, if p > p1 + 1, it follows that
1 + βk f

′ (α) ∼ −C3ek−1ey ,k−1 . (16)
From the error equation (6) and the above relation

ek+1 ∼ (−C3ek−1ey ,k−1)2C2 (2C 2
2 − C3)e4k ∼ e

2
k−1e

2
y ,k−1e

4
k . (17)

Assuming that the R-order of the method is at least p we obtain the relation (11). If sequence {yk } converges to
R-order at least p1, we obtain the relation

ey ,k ∼ Dk ,p1e
p1
k
∼ Dk ,p1 (Dk−1,pe

p
k−1)

p1 ∼ Dk ,p1D
p1
k−1,pe

pp1
k−1 . (18)

In the same way that relation (17) is obtained, it follows that
ek+1 ∼ e2k−1 (Dk−1,p1e

p1
k−1)

2 (Dk−1,pepk−1)
4 = D 2

k−1,p1D
4
k−1,pe

2p1
k−1e

4p+2
k−1 . (19)

On the other hand, we know that
ek ,y ∼ (1 + βk f ′ (α))e2k ∼ ek−1ey ,k−1e

2
k ∼ ek−1 (Dk−1,p1e

p1
k−1) (Dk−1,pe

p
k−1)

2 ∼ e2p+1+p1
k−1 . (20)

Then, by equating the exponents of ek−1 of (11) and (19), and equating those of (18) and (20), it follows that
p2 = 4p + 2 + 2p1,

pp1 = 2p + 1 + p1,

whose only positive solution is the order of convergence of the method M4N2, being p ≈ 5.37228 and p1 ≈ 2.68614.
We can also approximate f ′ (α) by using the Newton interpolating polynomial of third-degree N3 (t ) = f (xk ) +
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f [xk , xk−1 ] (t − xk ) + f [xk , xk−1, yk−1 ] (t − xk ) (t − xk−1) + f [xk , xk−1, yk−1,wk−1 ] (t − xk ) (t − xk−1) (t − yk−1) . In this
case,

f ′ (α) ≈ N ′3 (xk )

and by choosing βk = − 1

N ′3 (xk )
, we design a new iterative method with memory, denoted by M4N3.

Theorem 6 Let f : D ⊂ Ò −→ Ò be a sufficiently differentiable function in a neighborhood of a simple root α of f (x ) = 0.
Let H (t ) be a real function which verifies that H (0) = 1, H ′ (0) = 1, H ′′ (0) = 2 and |H ′′′ (0) | < ∞. Then, taking an
estimation x0 close enough to α , the sequence of iterates {xk } generated by the M4N3 method converges to α with order
p ≈ 6.

Proof In the same way as in the previous results, it follows that
N ′3 (xk ) = f [xk , xk−1 ] + f [xk , xk−1, yk−1 ] (xk − xk−1) + f [xk , xk−1, yk−1,wk−1 ] (xk − xk−1) (xk − yk−1)

and
1 + βk f

′ (α) ∼ 2C2ek + C4ey ,k−1ek−1ew ,k−1 .

This means that 1 + βk f ′ (α) may behave as ek or as ek−1ey ,k−1ew ,k−1, as the other terms converge faster than these
two. We now check that the behaviour of 1 + βk f ′ (α) is like the behaviour of ek−1ey ,k−1ew ,k−1.

Suppose that the R-order of the method is at least p . Moreover, we assume that the sequence {yk } generated
by the first step of the method and the sequence {wk }, converge with R-order at least p1 and at least p2, respectively.
Then,

ek
ek−1ey ,k−1ew ,k−1

∼
Dk−1,pe

p
k−1

Dk−1,p1Dk−1,p2ek−1e
p1
k−1e

p2
k−1
,

where Dk ,p1 and Dk ,p2 tend to the asymptotic error constants, Dp1 and Dp2 , respectively, when k −→ ∞.Then, if p > p1 + p2 + 1 it follows that
1 + βk f

′ (α) ∼ C4ek−1ey ,k−1ew ,k−1 .

From equation (6) and the above relation, we have
ek+1 ∼ (C4ek−1ey ,k−1ew ,k−1)2C2 (2C 2

2 − C3)e4k ∼ e
2
k−1e

2
y ,k−1e

2
w ,k−1e

4
k . (21)

Assuming that the R-order of the method is at least p yields the relation (11). On the other hand, assuming that
sequence {yk } and sequence {wk } converge with R-order at least p1 and at least p2, respectively, we obtain the
relation defined in (18) and the following relation

ew ,k ∼ Dk ,p2e
p2
k
∼ Dk ,p2 (Dk−1,pe

p
k−1)

p2 ∼ Dk ,p2D
p2
k−1,pe

pp2
k−1 . (22)
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In the same way that relation (21) is obtained, it follows that

ek+1 ∼ D 2
k−1,p1D

2
k−1,p2D

4
k−1,pe

2p1+2p2+4p+2
k−1 . (23)

In addition, we know
ek ,y ∼ (1 + βk f ′ (α))e2k ∼ e

2p+1+p1+p2
k−1 (24)

and
ew ,y ∼ (1 + βk f ′ (α))ek ∼ e

p+1+p1+p2
k−1 . (25)

Then by equating the exponents of ek−1 of (11) and (23), those of (18) and (24) and those of (22) and (25), it is
obtained the nonlinear system

p2 = 4p + 2 + 2p1 + 2p2,

pp1 = 2p + 1 + p1 + p2,

pp2 = p + 1 + p1 + p2,

whose only positive solution is the order of convergence of the method M4N3, being p ≈ 6, p1 ≈ 3 and p2 ≈ 2.
Finally, we can approximate the derivative of the equation using the following divided differences operators

• f ′ (α) ≈ f [xk , yk−1 ],
• f ′ (α) ≈ f [2xk − yk−1, yk−1 ]
which allow us to design two new iterative methods with memory, denoted by M4Ny and by M4Ky , respectively. Let
us note that these divided differences are of first order and with the last one we reach the maximum possible order
of convergence by introducing memory in family (3).
Theorem 7 Let f : D ⊂ Ò → Ò be a sufficiently differentiable function in a neighborhood of a simple root α of f (x ) = 0.
Let H (t ) be a real function that verifies that H (0) = 1, H ′ (0) = 1, H ′′ (0) = 2 and |H ′′′ (0) | < ∞. Then, taking an estimation
x0 sufficiently close to α , sequence {xk } generated by methodM4Ny converges to α with order 5, and sequence generated
by methodM4Ky converges to α with order 6.

Proof In the same way that the demonstration of the order of the two previous methods was done, it can be verified
that in this case what is obtained is that the order is the positive root p of the following systems:

For method M4Ny , we obtain
p2 = 4p + 2p1,

pp1 = 2p + p1,

whose only positive solution is the order of convergence of the method M4Ny , being p = 5.
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On the other hand, for method M4Ky , we obtain

p2 = 4p + 4p1,

pp1 = 2p + 2p1,

whose only positive solution is the order of convergence of the method M4Ky , being p = 6.

3 | STABILITY OF THE METHODS WITH MEMORY

In this section, we analyze the stability of the methods with memory M4N1 and M4Ny , by using some tools of real
dynamics.

The standard form of an iterative method with memory that uses only two previous iterations to calculate the
next is:

xk+1 = φ (xk−1, xk ), k ≥ 1,

being x0 and x1 the initial estimations. A function defined from Ò2 to Ò cannot have fixed points. Therefore, an
auxiliary vectorial function O is defined by means of O (xk−1, xk ) = (xk , xk+1) = (xk ,φ (xk−1, xk )), k = 1, 2, . . .

If (xk−1, xk ) is a fixed point of O , then O (xk−1, xk ) = (xk−1, xk ) , and from the definition of O , we have that
(xk−1, xk ) = (xk , xk+1) .
Thus, the discrete dynamical system O : Ò2 → Ò2 is defined as

O (x̄ ) = O (z , x ) = (x ,φ (z , x )),

where φ is the operator of the iterative scheme with memory.
Then, a point (z , x ) is a fixed pint ofO if z = x and x = φ (z , x ) . If a fixed point (z , x ) of the operatorO does not verify
that f (x ) = 0, it is called strange fixed point.

In [16], the stability of a fixed point is defined in the following result:
Theorem 8 Let O from Ò2 to Ò2 be a sufficiently differentiable function. Assume that x̄ is a fixed point. Let λ1 and λ2 be
the eigenvalues of the Jacobian matrix of O evaluated at x̄ . Then,
• If all the eigenvalues satisfy |λj | < 1, then x̄ is attracting.
• If one eigenvalue λi satisfy |λi | > 1, then x̄ is unstable, that is, repelling or saddle.
• If all the eigenvalues satisfy |λj | > 1, then x̄ is repelling.
Moreover, if all the eigenvalues are equal to zero the fixed point is superattracting.

A critical point ȳ satisfies that the determinant of the Jacobian matrix evaluated at ȳ , its 0. All superattracting fixed
points are critical points.
The basin of attraction of a fixed point x ∗, is defined as the set of pre-images of any order such that

A(x ∗) = {y ∈ Òn : Om (y ) → x ∗, m →∞}.

We study the stability of the fixed points of the rational operator obtained when the methods is applied on the
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polynomial p (x ) = x2 − c, when c is a positive real value. It is easy to observe that both squemes give us the same
rational polynomial.

In order to obtain the fixed points of the rational operator associated to a method with memory, we need to
construct the auxiliary vectorial operator of two variables where xk−1 = z and xk = x . If we choose the weight
function H (µ) = µ2 + µ + 1, the operator obtained is

OM4N1 (z , x ) =

©­­­­­­­«
x ,

(
c − x2

)3 (
c − z 2

)
(x + z ) ©­«

(
c−x2

)2
(x+z )4

(c+x (x+2z ) )4 −
(
c−x2

)
(x+z )2

(c+x (x+2z ) )2 + 1
ª®¬

(c + x (x + 2z ))3
(
(c (2x+z )+x2z)2
(c+x (x+2z ) )2 − x

2

) +
2cx + cz + x2z

c + x2 + 2xz

ª®®®®®®®¬
.

To calculate the fixed points we will simultaneously do z = x and OM4N1 (z , x ) = (x , x ) , which gives us the
following operator

OM4N1 (x , x ) =

©­­­­­­­«
x ,

2x
©­«
16x4

(
c−x2

)2
(c+3x2)4

−
4x2

(
c−x2

)
(c+3x2)2

+ 1
ª®¬
(
c − x2

)4
(
c + 3x2

)3 (
(3cx+x3)2

(c+3x2)2
− x2

) +
3cx + x3

c + 3x2

ª®®®®®®®¬
.

It is easy to prove the following result from which we conclude the good stability of the methods on quadratic
polynomials.
Theorem 9 The only fixed points of the operator OM4N1 (x , x ) are the roots of the polynomial p (x ) , that is, (

√
c,
√
c) and

(−
√
c,−
√
c) , and both fixed points have superattractor character, taking into account the order of the method.

For any value of c > 0, operator OM4N1 does not have critical points different of the roots of p (x ) .

Therefore it is obtained that the methods M4N1 and M4Ny have as fixed points only the roots of the polynomial
p (x ) and do not have free critical points when c > 0, that is, when the roots of the polynomial p (x ) are real.

We now draw the dynamic line, see [3], when c = 1 so that we can compare it with the dynamic lines of the rest
of the methods. The dynamical line represents the basins of attraction, plotting in different colors where the orbit of
each initial estimation tends. We paint in blue the initial points that converge to the root {1, 1} and we paint in orange
the initial points that converge to {−1,−1}.

F IGURE 1 Dynamic line M4N1 for c = 1
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Below we show different real dynamic planes of these methods for the polynomial p (x ) varying the value of c.

These planes have been generated with a mesh of 1000 points, a tolerance of 10−3 and a maximum number of 2000
iterations. The tolerance must be less than the distance from the last iteration to one of the two roots. The dynamical
planes represents the bassins of attraction of each method. We choose a initial point from the mesh, and applying
the iterative method, we study whether or not this initial point converges. We paint in orange the initial points that
converge to the superattracting fixed point {1, 1} and we paint in blue the initial points that converge to {−1,−1}. In
black are painted the initial points that do not converge to any fixed point.

(a) M4N1 with c = 1 (b) M4N1 with c = 10 (c) M4N1 with c = 100

(d) M4Ny with c = 1 (e) M4Ny with c = 10 (f) M4Ny with c = 100

F IGURE 2 Dynamic planes of the M4N1 and M4Ny methods for different values of c.

As can be seen in these dynamic planes the convergence zones are similar, but the M4Ny method obtains more
convergence points since the approximation used to obtain the parameter is a little better than that of the M4N1

method, for this reason theremay be points that converge for theM4Ny method in amuch smaller number of iterations
than in the case of the M4N1 method, which may diverge or take considerably longer.

3.1 | Real dynamics of other methods with memory.

The study of the fixed and critical points of the other methods with memory is the same, since the same rational
operator is obtained. For this reason we only study the case of the method with memory M4N2.

As in the previous case, we choose the polynomial p (x ) = x2 − c, when c is a positive real value, and as weight
function H (µ) the polynomial µ2 + µ + 1.

The previous section discussed how the operator was obtained for two previous iterations. For the case of three
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previous iterations, the definitions and results seen for the previous case are developed in an equivalent way.

The vectorial operator obtained by applying the method on p (x ) is as follows, where xk−1 = z , yk−1 = z y , xk = x

and yk = x y ,

OM4N2 (z , z y , x ) =
(
x , x y ,

191x14 + 2063cx12 + 2659c2x10 + 2291c3x8 + 781c4x6 + 189c5x4 + 17c6x2 + c7

4x
(
c + x2

) (
c + 3x2

)5 )
.

To calculate the fixed points we simultaneously do z = x , z y = x and OM4N2 (x , x , x ) = (x , x , x ) , which gives us
the following operator

OM4N2 (x , x , x ) =
(
x , x ,

191x14 + 2063cx12 + 2659c2x10 + 2291c3x8 + 781c4x6 + 189c5x4 + 17c6x2 + c7

4x
(
c + x2

) (
c + 3x2

)5 )
.

The next result establishes the stability of M4N2 on quadratic polynomials.
Theorem 10 The only fixed points of operator OM4N2 (x , x , x ) are the roots of polynomial p (x ) , that is, (

√
c,
√
c,
√
c) and

(−
√
c,−
√
c,−
√
c) , and both fixed points have superattractor character, taking into account the order of convergence of

methodM4N2.
For any value of c > 0, operator OM4N2 does not have critical points different of the roots of p (x ) .

In this case, the dynamic line when c = 1 is the same of method M4N1, as we see in Figure 3.

F IGURE 3 Dynamic line M4N2 for c = 1

In this case, we can say that there are no strange fixed points (fixed points different of the roots) for any of the
methods with memory obtained, and that there are no free critical points (critical points different of the roots) either
when c > 0.

Moreover, the two roots of the polynomial are superattractor fixed points, and as can be seen from the dynamic
lines, they are stable methods when c > 0.
The dynamic lines were only made for one value of the parameter c since they were the same bassins of attraction in
all cases where c > 0.
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4 | NUMERICAL EXPERIMENTS

In this section, we solve the nonlinear equations discussed below in order to make another comparison, in addition
to that of the order of convergence, between the element of the parametric family M4 corresponding to β = −1 and
the memory methods obtained above.

We use Matlab R2020b, for the computational calculations, with arithmetic precision of 2000 digits. We iterate
from an initial estimate x0 until it is verified that the distance between consecutive iterations plus the absolute value
of the function evaluated in the last iteration is less than a tolerance of 10−100.

The items used to compare themethods in the examples are the approximation obtained, the normof the equation
evaluated in this approximation, the distance between the last two iterates, the number of iterations necessary to
verify the tolerance, the computational time and the approximate computational convergence order (ACOC), defined
by Cordero and Torregrosa in [8], which has the following expression

p ≈ ACOC =
ln( |xk+1 − xk |/ |xk − xk−1 |)ln( |xk − xk−1 |/ |xk−1 − xk−2 |) .

The functions used are as follows:
• f1 (x ) = cos(x ) − x , which has a zero at 0.73908513,
• If f2 (x ) = arctan(x ) − 2x

x2+1
= 0, it has a real root at −1.39175,

• f3 (x ) = (x − 1)3 − 1, that has a zero at 2.We use the quadratic polynomial H (µ) = µ2 + µ + 1 as the weight function for all methods. Table 1 lists the initialestimates that are used for each equation.
TABLE 1 Initial estimations.

Function x0 x−1 y−1 w−1

f1 (x ) 1 2 1.5 1.75
f2 (x ) −1 −0.25 −0.75 −0.5

f3 (x ) 1.5 0 1.1 0.5

Let us observe the results obtained for the equation cos(x ) − x = 0 in Table 2. As it can be seen, all the methods
converge to the solution, but there are differences between them.

The parametric familymethod takes onemore iteration to reach the stopping criterion, but it is one of themethods
that takes the lowest computational time.

As we can see in Table 2, the method that takes the highest time is method M4N1 and it is not the scheme that
obtains the best approximation, so this would not be the ideal procedure in this case.

The next method taking more time is M4K but this one obtains a better approximation than the previous one in
less time, although if we had to choose which method obtains a better approximation we would not choose this one
or the previous one.The best approximation is obtained by M4Ky followed by M4N3. By summarizing, method M4Ky is the best onebecause of its low cpu-time, its great approximation and its ACOC, that fits the theoretical order of convergence.
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TABLE 2 Results for the equation f1 (x ) = 0.

Method |xk+1 − xk | |f (xk ) | Iteration ACOC Time
M4 with β = −1 7.98384×10−225 1.76651×10−897 5 4 0.5437

M4N1 6.36668×10−125 6.52553×10−555 4 4.4822 0.7719
M4K 3.88156×10−171 3.96378×10−824 4 4.95099 0.6625
M4Ny 9.72756×10−165 3.46507×10−823 4 4.99744 0.5313
M4Ky 6.84252×10−270 2.18741×10−1618 4 6.00073 0.4969
M4N2 2.43352×10−190 8.10487×10−1022 4 5.3755 0.5656
M4N3 8.22231×10−257 5.63335×10−1540 4 5.99732 0.6219

Let us observe now the results obtained for the equation f2 (x ) = arctan x − 2x
x2+1

= 0 in Table 3. As in the
previous case, all methods converge to the solution, but there are some differences among them. The member of the
parametric family and method M4K take one more iteration to reach the stopping criterion, but the scheme needing
more iterations is M4N1.If we search the best approximations, we realise that they are obtained by M4 and M4K , although the methodgetting the best approximation with the lowest number of iterations is method M4N3.
TABLE 3 Results for the equation f2 (x ) = 0.

Method |xk+1 − xk | |f (xk ) | Iteration ACOC Time
M4 with β = −1 3.83003×10−287 4.31925×10−1149 5 4 0.5469

M4N1 4.49563×10−177 2.0329×10−788 6 4.4329 0.8000
M4K 1.08803×10−451 2.69748×10−2008 5 4.82737 0.8063
M4Ny 3.16171×10−164 7.17119×10−823 4 4.95602 1.0938
M4Ky 1.46333×10−220 6.63869×10−1325 4 6.07599 0.6937
M4N2 1.69774×10−171 6.23524×10−921 4 5.38703 0.5469
M4N3 7.11925×10−222 9.37588×10−1330 4 5.99633 0.7219

Now, let us observe the results obtained for the equation f3 (x ) = (x − 1)3 − 1 = 0 and presented in Table 4. In
this case, all the methods need 6 iterations to converge, except M4Ky and M4N3 which use 5 iterations. This table
shows similar cpu-times, except in case of M4 and M4K , which are the methods taking the lowest and the highest
time, respectively.If we look at the approximations obtained, we notice that, among the methods needing 5 iterations, the bestapproximation is obtained by M4Ky ; among the methods taking 6 iterations, M4N2 stands out.
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TABLE 4 Results for the equation f3 (x ) = 0.

Method |xk+1 − xk | |f (xk ) | Iteration ACOC Time
M4 with β = −1 1.067×10−181 2.59228×10−723 6 4 0.3969

M4N1 2.03723×10−285 7.96453×10−1267 6 4.44956 0.5000
M4K 2.69898×10−346 4.85264×10−1669 6 4.8361 0.7312
M4Ny 4.33709×10−318 4.60379×10−1587 6 5.00014 0.5531
M4Ky 1.39248×10−181 7.13286×10−1085 5 6.00027 0.5938
M4N2 1.5561×10−416 1.49505×10−2234 6 5.4087 0.5750
M4N3 6.26407×10−151 4.83317×10−901 5 6 0.5938

5 | CONCLUSIONS

In this manuscript, we design a family of two-step optimal iterative methods with convergence order 4. We introduce
memory in several ways in this parametric family to increase the order without adding functional evaluations. There-
fore, we increase the order up to 2 units, thus obtaining a method with memory with order 6, which is the highest
order of convergence allowed by the error equation of its partner without memory.

Moreover, we study the stability of these schemes with memory for the sake of comparison. We conclude that,
in general, the behaviour of these methods is similar, and that wide convergence zones are obtained for the function
analyzed. Finally, we also perform numerical experiments, and it can be seen that the introduction of memory helps
to obtain better results in general.
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