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Summary:11

1. Patterns in, and the underlying dynamics of, species cooccurrence is of interest in many12

ecological applications. Unaccounted for, imperfect detection of the species can lead to mis-13

leading inferences about the nature and magnitude of any interaction. A range of different14

parameterisations have been published that could be used with the same fundamental mod-15

elling framework that accounts for imperfect detection, although each parameterisation has16

different advantages and disadvantages.17

2. We propose a parameterisation based on log-linear modelling that does not require a species18

hierarchy to be defined (in terms of dominance), and enables a numerically robust approach19

for estimating covariate effects.20

3. Conceptually the parameterisation is equivalent to using the presence of species in the cur-21

rent, or a previous, time period as predictor variables for the current occurrence of other22

species. This leads to natural, ’symmetric’, interpretations of parameter estimates.23

4. The parameterisation can be applied to many species, in either a maximum-likelihood or24

Bayesian estimation framework. We illustrate the method using camera trapping data col-25

lected on three mesocarnivore species in South Texas.26

Keywords: bobcat (Lynx rufus), coyote (Canis latrans), imperfect detection, log-linear model, mul-27

tiple season, ocelot (Leopardus pardalis), single season, species cooccurrence28

29

#Introduction Examining patterns of species cooccurrence has a long history in ecology. One30

of the earliest examples of statistical analysis in modern-day ecology was examining the indepen-31

dence of fish species in Illinois streams using a simple two-way contingency table (Forbes, 1907).32

Since then there have been a large number of publications devoted to the development, and ap-33

plication, of statistical methods to evaluate the level of independence of species occurrence in an34
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area of interest (e.g., Dice, 1945; Pielou, 1977; Connor & Simberloff, 1979; Diamond & Gilpin, 1982;35

Manly, 1995), and investigating possible covariate relationships (e.g., Kelt et al., 1995; Peres-Neto36

et al., 2001). Prior to the mid-2000’s, little attention had been devoted to the practical sampling37

issue of imperfect detection with species cooccurrence assessments, i.e., species may occur at a38

surveyed location, yet be undetected by the field methods employed (but see Cam et al., 2000).39

This will lead to ‘false absences’ that may result in misleading inferences about species cooccur-40

rence patterns. MacKenzie et al. (2006) demonstrated that when the probability of species detec-41

tion is unaffected by the presence of other species, the direction of any association between the42

two species (i.e., positive or negative effect on cooccurrence) may be correctly estimated using43

methods that do not account for imperfect detection, but the magnitude of the dependence will be44

underestimated. Whereas, when detection probability of one species is different depending on the45

presence of the second species (e.g., due to behavioural changes in the presence of a competing46

species), using methods that ignore imperfect detection may not even estimate the direction of47

any association correctly.48

MacKenzie et al. (2004) developed a modelling approach to investigate cooccurrence patterns49

between two species, while accounting for imperfect detection. An important basis of their method50

is recognising that with two species of interest, a surveyed location may be in one of four possi-51

ble states defined by the presence or absence of each species (i.e., species A and B present, only52

species A present, only species B present, or neither species present). MacKenzie et al. (2004) pa-53

rameterised the cooccurrence component of their model in terms of the joint probability of both54

species occurring at a unit (ψAB) and the marginal, or overall, probabilities of each species occupy-55

ing a unit (i.e., ψA and ψB). They suggested the level of cooccurrence could be quantified in terms56

of:57

ϕ =
ψAB

ψAψB ,

where a value of 1 would imply independence. They used a similar parameterisation for the58

detection component, noting that which species could be detected in a survey of a unit would de-59

pend on the ‘true’ state of the location. Potential covariate relationships with any of the parameters60

could be explored, however it was found to be numerically unstable because of the constraints im-61
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posed upon possible parameter values (MacKenzie et al., 2006). Richmond et al. (2010) and Waddle62

et al. (2010) independently implemented an alternative parameterisation (hereafter referred to as63

the RW parameterisation) of the MacKenzie et al. (2004) model that was more numerically robust,64

particularly with covariates. The RW parameterisation requires identifying a hierarchy between65

species where species A is defined as the ‘dominant’ species and species B is the ‘subordinate’66

species, where the ‘subordinate’ species is the focal species in an analysis (i.e., how is the occur-67

rence of species B affected by the presence/absence of species A). The model is parameterised68

in terms of the marginal occurrence probability of species A, and the occurrence probability for69

species B conditional on species A being either present or absent from the unit (denoted here as70

ψB|A and ψB|a, respectively; with the lowercase ‘a’ indicating absence of species A). A similar con-71

ditional parameterisation was also implemented for the detection component of the model. The72

RW parameterisation could be regarded as ‘asymmetric’ as a direction to the interaction between73

species is assumed, while the MacKenzie et al. (2004) parameterisation is ‘symmetric’ as no direc-74

tion is assumed. While both the MacKenzie et al. (2004) and RW models were initially presented in75

the context of cooccurrence between two species, they generalise to situations with a greater num-76

ber of species, with the number of possible parameters to estimate increasing exponentially with77

the number of species (although constraints could be applied to reduce the number of parameters78

in the model).79

Rota et al. (2016) developed a species cooccurrence model using a ‘multivariate Bernoulli dis-80

tribution’, which has one Bernoulli random variable per species. However this is essentially the81

same general approach used by earlier authors, where possible states are defined in terms of the82

combinations of which species are present or absent. Therefore, the Rota et al. (2016) model can83

be considered as another parameterisation, which, for the two-species situation, is in terms of the84

conditional probabilities ψA|b and ψB|a, and the odds-ratio of cooccurrence ν (MacKenzie et al.,85

2018). The odds-ratio ν indicates how the odds of occurrence for one species is different given86

the presence or absence of the other species, and is the same for either species. The Rota et al.87

(2016) parameterisation is therefore symmetric (as with the MacKenzie et al. (2004) model), with88

the numerical robustness of the RW parameterisation.89

The underlying dynamic processes of species cooccurrence are also of interest to many ecolo-90

gists, although methods to quantify them have received much less attention than those examining91
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cooccurrence patterns, particularly while also accounting for the imperfect detection of the target92

species (although see MacKenzie et al., 2006; Miller et al., 2012; Haynes et al., 2014; Yackulic et al.,93

2014; Fidino et al., 2019). As in the static cooccurrence situation, there are numerous ways in which94

such a model could be parameterised to quantify the level of interaction between species in terms95

of cooccurrence dynamics (e.g., MacKenzie et al., 2006, 2018; Fidino et al., 2019).96

In this paper, we first note the link between the ‘multivariate Bernoulli distribution’ used by97

Rota et al. (2016), and the well-known statistical method of log-linear modelling. Understand-98

ing this connection improves our ability to formulate, and interpret, models for more than two99

species. We also detail how a dynamic multi-species model could be defined using the log-linear100

framework, with a simple example application. In the following, we focus on how the models can101

be parameterised in terms of log-linear models, and do not supply the details of the underlying102

modelling procedure, as that has been suitably described elsewhere (e.g., MacKenzie et al., 2004;103

MacKenzie et al., 2009; Richmond et al., 2010; Waddle et al., 2010; Rota et al., 2016; MacKenzie et al.,104

2018; Fidino et al., 2019).105

#Material and Methods ## General sampling situation Throughout this paper we assume a106

situation where s sampling units (e.g., grid cells, ponds, habitat patches) have been selected from107

the wider population of units of interest for surveying, ideally using a probabilistic sampling108

scheme (to extrapolate to unsurveyed units). Units are surveyed for the presence of each species109

of interest, possibly at systematic points in time when cooccurrence dynamics are of interest. At110

each of the T survey periods (that shall be referred to as seasons henceforth), it is assumed that111

the species’ distributions are static or stable, therefore the pattern of cooccurrence is assumed112

to be stable in each season. Changes in the distributions, and cooccurrence, is allowed between113

seasons. Due to imperfect detection, multiple surveys of each unit are conducted each season. The114

number of surveys may vary spatially and temporally (MacKenzie et al., 2004; MacKenzie et al.,115

2018).116

Log-linear models117
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Table 1: Example of cell probability (πi) structure for 2 × 2 contingency table,
using the corner-point constraint. U and V are the factors of interest, each with
2 levels. The binary indicator variables (zU

i and zV
i ) for the second level of each

factor are also presented.

U V zU
i zV

i log(πi) πi

1 1 0 0 0− log(K) 1/K

2 1 1 0 αU − log(K) exp(αU)/K

1 2 0 1 αV − log(K) exp(αV)/K

2 2 1 1 αU + αV + αUV − log(K) exp(αU + αV + αUV)/K

Log-linear models are used to analyse count data, particularly to assess the independence of fac-118

tors used to construct contingency tables, and possibly other predictor variables. Analyses can be119

conducted on the counts in each cell of the table, or on the underlying cell probability structure120

(i.e, the probability an observation has a particular combination of factor values). It is not possible121

to separately estimate parameter values for all combinations of factor levels, and constraints must122

be applied. One option is the ‘corner-point constraint’ where the values for parameters associated123

with one row and one column are set equal to 0, with either the first, or last, row and column124

typically being used. For example, consider a 2 × 2 contingency table for factors U and V, and125

let i index the row and column of the table (i.e., i = {u, v}, where u = 1, 2 and v = 1, 2). The126

log-linear model for the cell probability πi could be defined as:127

log(πi) = αU + αV + αUV − log(K),

where K is a normalizing constant such that the πi’s sum to 1.0. The αU parameter defines the128

effect of level 2 of factor U on the probability when v = 1, the αV parameter defines the effect of129

level 2 of factor V on the probability when u = 1. The αUV parameter defines the level of inter-130

action, or dependence, between factors U and V on the probability structure. The two factors are131

independent when αUV = 0, and in many applications it is the nature of the interaction between132

the factors on the cell probabilities (or counts) that is of interest. The cell probabilities for a 2 × 2133

table are given in more detail in Table 1, where K = 1+ exp(αU)+ exp(αV)+ exp(αU + αV + αUV).134
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An equivalent approach to using the corner-point constraint, is to define the log-linear model135

in terms of binary indicator variables representing the levels of each factor of interest. For example,136

if a factor contains M levels select one level to use as a reference category, then define M− 1 binary137

indicator variables for observations from the other levels for that factor. In the 2 × 2 contingency138

table case, using the first level of factors U as V the ‘reference’ levels, then the indicator variables139

zU
i and zV

i can be defined, which equal 1 if the observed factor level was 2, and equal 0 otherwise140

(Table 1). The log-linear model can then be expressed as:141

log(πi) = αUzU
i + αVzV

i + αUVzU
i zV

i − log(K).

Hence, in a regression context, the indicator variables are predictor variables representing the142

combination of factor levels for an observation, and the α terms are regression coefficients quanti-143

fying the magnitude of the effect for each factor level. Coefficients associated with an interaction144

between two (or more) factors, e.g., the parameter αUV for the zU
i zV

i interaction, quantifies how145

the effect of one factor is different depending on the value of the other factor(s).146

When there is more than 2 levels for a factor, then the log-linear model generalises in the obvi-147

ous manner. For example, if factor U had 2 levels and factor V contained 3, the indicator variables148

zV2
i and zV3

i could be defined to equal 1 if the observed factor level was 2 or 3, respectively. The149

log-linear model would then be:150

log(πi) = αUzU
i + αV2zV2

i + αV3zV3
i + αUV2zU

i zV2
i + αUV3zU

i zV3
i − log(K).

Similarly, the approach easily generalises to a greater number of factors. For example, with three151

factors (U, V and W) with two levels each, then:152

log(πi) = αUzU
i + αVzV

i + αWzW
i + αUVzU

i zV
i + αUWzU

i zW
i + αVWzV

i zW
i + αUVWzU

i zV
i zW

i − log(K).

In all cases K would be defined differently to ensure that the cell probabilities sum to one.153
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Species cooccurrence data - single season154

Species cooccurrence data, assuming perfect detection, can be represented as a contingency ta-155

ble. Each factor is a species, and the absence/presence case there are two levels for each species156

(henceforth denoted with lowercase and uppercase characters, respectively). The structure of the157

possible observations for two species (species A and B), indicator variables and associated cell158

probability structure is given in Table 2. The log-linear model, expressed in terms of the indicator159

variables, would therefore be:160

log(πi) = αAzA
i + αBzB

i + αABzA
i zB

i − log(K),

where zA and zB are the binary-valued variables indicating the presence of each species. While161

covariates have not been considered here, the general cell probability structure is the same as that162

used Rota et al. (2016) where the set of indicator variables represent their ‘multivariate Bernoulli163

distribution’, with αA, αB and αAB being equivalent to the f1, f2 and f12 parameters defined by164

Rota et al. (2016).165

Table 2: Example of cell probability (πi) structure for a 2-species (A and B)
cooccurrence application.

Sp. A Sp. B State (i) zA
i zB

i πu,v

Absent Absent ab 0 0 1/K

Present Absent Ab 1 0 exp(αA)/K

Absent Present aB 0 1 exp(αB)/K

Present Present AB 1 1 exp(αA + αB + αAB)/K

As shown by Rota et al. (2016), the model parameters are directly interpretable in terms of the166

probability of each species being present, conditional upon the presence or absence of the other167

species. That is:168

logit(ψA|b) = αA,

logit(ψA|B) = αA + αAB,
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logit(ψB|a) = αB,

logit(ψB|A) = αB + αAB.

Therefore, αA and αB determine the probability of occupancy (on the logit-scale) for each species169

given the absence of the other species, and αAB is the effect that the presence of one species has on170

the other. Hence, αAB parameter is a symmetric measure of cooccurrence between the two species,171

where αAB = 0 indicates the species cooccur independently, while a negative value indicate some172

form of exclusion or avoidance, and a positive value indicate the species tend to occur together.173

Inferences about the level of cooccurrence between species could be based on estimates of αAB
174

(e.g., by considering confidence intervals), or one could ‘test’ for independence of the species by175

comparing the fit of a model where αAB is estimated, to the fit of a model with the constraint176

αAB = 0. Note that the level of association, can also be expressed as an odds ratio:177

ν = exp(αAB)

=
ψA|B/(1− ψA|B)

ψA|b/(1− ψA|b)

=
ψB|A/(1− ψB|A)

ψB|a/(1− ψB|a)
.

Therefore, this is similar to the RW parameterisation, but the interaction between species is mod-178

elled as a symmetric relationship.179

Heuristically, the presence or absence of one species is being used as a covariate on the proba-180

bility of occurrence of the other species.181

The extension to more than two species is therefore straightforward. For example, with three182

species a third indicator variable can be defined (zC) and the model for the contingency table cell183

probabilities becomes:184

log(πi) = αAzA
i + αBzB

i + αCzC
i + αABzA

i zB
i + αACzA

i zC
i + αBCzB

i zC
i + αABCzA

i zB
i zC

i − log(K).

The parameters αAB, αAC and αBC quantify the two-way interactions between species, and αABC
185
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the three-way interaction. As noted by Rota et al. (2016), and also MacKenzie et al. (2018), it is186

not always necessary to estimate higher order interaction terms between many species, and in187

fact very large sample sizes may be required to obtain reliable parameter estimates. Furthermore,188

complex interactions between many species will be difficult to interpret biologically. Therefore189

some higher-order interaction terms may be set equal to zero. In the log-linear modelling litera-190

ture, this is known as conditional independence. For example, the occurrence of species A and191

B may appear to be not independent, but that is because both species have a non-independent192

cooccurrence relationship with species C. Given the presence or absence of species C, species A193

and B occur independently of each other (i.e., species A and B are conditionally, upon species C,194

independent). This hypothesis could be fit by constraining αABC = 0 and αAB = 0.195

Covariates196

The effect of potential covariates on the occurrence, or cooccurrence, for each species can be easily197

incorporated in the log-linear modelling framework, where the effect of such covariates may be the198

same, or different for each species. For example, if a covariate x1 is thought to affect the occurrence199

of species A, the covariate x2 affect the occurrence of species B, but the level of cooccurrence200

interaction is unaffected by either covariate, the following model could be fit to the data:201

log(πi) = (αA + βA
1 x1)zA

i + (αB + βB
2 x2)zB

i + αABzA
i zB

i − log(K).

If covariate x1 is also thought to affect the level of interaction between species, then another model202

could be fit:203

log(πi) = (αA + βA
1 x1)zA

i + (αB + βB
2 x2)zB

i + (αAB + βAB
1 x1)zA

i zB
i − log(K).

Interpretation of the covariate effects would proceed exactly as normal.204

Extension to multiple-seasons205

To examine how species cooccurrences change over time, it is neccesary to have data from mul-206

tiple seasons, preferably at equally-spaced intervals. A general approach to analysing such data207

is to model how the combination of species present at each unit changes over time. A transition208
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probability matrix (TPM) can be defined, which provides the probability structure for which com-209

bination of species are present in season t + 1, given that combination of species present at a unit210

in season t (MacKenzie et al., 2018). For example, in the two-species case, the TPM would be of the211

form:212

φt =



ab→ ab ab→ Ab ab→ aB ab→ AB

Ab→ ab Ab→ Ab Ab→ aB Ab→ AB

aB→ ab aB→ Ab aB→ aB aB→ AB

AB→ ab AB→ Ab AB→ aB AB→ AB


where X → Y denotes the probability of transitioning from occupancy state X in season t to state213

Y in season t + 1 (where the states are denoted as above). Importantly, the elements of each row214

must sum to 1, as a unit must be of one of the four states by the next season. When there are l215

species of interest, then the dimension of the TPM will be 2l × 2l .216

As noted by MacKenzie et al. (2018), there are a range of possible parameterisations that could217

be used to estimate the parameters associated with the transition probabilities. Building on the218

log-linear parameterisation outlined above for the single-season situation, the expected cell prob-219

abilities could be defined in terms of the binary indicator variables for the presence/absence of220

each species at both times t and t + 1 (Table 3).221

Table 3: Binary variable coding for 2-species multi-season cooccurrence model.

Row Column State t (i) State t + 1 (j) zA
i zB

i zA
j zB

j

1 1 ab ab 0 0 0 0

1 2 ab Ab 0 0 1 0

1 3 ab aB 0 0 0 1

1 4 ab AB 0 0 1 1

2 1 Ab ab 1 0 0 0

2 2 Ab Ab 1 0 1 0

2 3 Ab aB 1 0 0 1

2 4 Ab AB 1 0 1 1

3 1 aB ab 0 1 0 0
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Row Column State t (i) State t + 1 (j) zA
i zB

i zA
j zB

j

3 2 aB Ab 0 1 1 0

3 3 aB aB 0 1 0 1

3 4 aB AB 0 1 1 1

4 1 AB ab 1 1 0 0

4 2 AB Ab 1 1 1 0

4 3 AB aB 1 1 0 1

4 4 AB AB 1 1 1 1

Let zX
i denote the presence of species X in given state in season t, zX

j denote the presence of the222

species in season t + 1. The general structure for the cell probability in row i and column j could223

be defined as:224

log(πi,j) =βAzA
j + βBzB

j + βABzA
j zB

j

+
(

γAzA
j + γBzB

j + γABzA
j zB

j

)
zA

i

+
(

δAzA
j + δBzB

j + δABzA
j zB

j

)
zB

i

+
(

ξAzA
j + ξBzB

j + ξ ABzA
j zB

j

)
zA

i zB
i

− log(K)

where K is a normalising constant defined to ensure the probabilities for each row of the TPM sum225

to 1.226

This is a very general formulation, allowing complex relationships about the dynamic cooccur-227

rence processes to be evaluated, providing sufficient data. However the model can be simplified228

by applying constraints to some parameters. For example, the γ, δ and ξ parameters are all asso-229

ciated with the effects of the presence of each species in the previous season (season t), on which230

combination of species are present in the current season (season t + 1). This represents a situ-231

ation where changes in occurrence (and cooccurrence) can be represented as a Markov process.232
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Constraining all these parameters to equal 0 represents a model where the probability of which233

species are present in season t + 1 is independent of the combination of species that were present234

in season t (i.e., non-Markovian, or a random process). Alternatively, one may set only the ξ235

parameters to 0, representing a situation where the presence of each species in season t has an236

effect on the cooccurrence structure in season t + 1, but only as additive effects. If the constraints237

βAB = γB = γAB = δA = δAB = 0 are also enforced, that represents a model where the occur-238

rence of each species changes as a Markov process, but changes are independent for each species.239

Finally, in the model where δ = ξ = 0, the γ parameters indicate how the presence of species A in240

season t affects the cooccurrence between the species in the next season. Specifically, the parame-241

ters γB and γAB quantify what effect the presence of species A in season t has on the probability242

of species B being present in season t + 1. One could make a-priori predictions about the expected243

direction of such effects based on whether the species are considered to exclude one another, or244

not.245

Generalising to a greater number of species is achieved by defining the respective set of binary246

indicator variables for the presence of each species in seasons t and t + 1, with potentially a large247

number of parameters associated with the full model (including all interaction terms amongst248

species). Regardless of whether it is possible to estimate many of those parameters for a given data249

set, interpretation of the effects may be challenging. Hence, it is recommended that practitioners250

limit the number of interaction terms they include in a model when analysing data, and carefully251

consider the biological interpretation of the estimates.252

Modelling the detection component253

An important consideration for modelling the detection component is that the possible number of254

categories, or types of detection, will vary depending on which combination of species are present255

at a unit. For example, if only one species of interest is present at a unit then there are two types of256

detections (nondetection/detection of that species), while if two of the target species are present257

there are four possible detection outcomes from a survey. This is demonstrated in Table 4 for258

the two-species case. The number of possible observations can be accounted for by defining the259

detection component to be both a function of the true (but unknown) presence/absence of the260

species (zX
i indicator variables) and binary indicator variables based on the observed outcomes of261
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each survey, which will be defined as hX
k .262

Table 4: Possible observations admitting imperfect detection. Lowercase char-
acters for the true state or survey observation (Obs) indicate the absence or
nondetection of that species, respectively, while uppercase characters indicate
the presence or detection of that species. zX

i are the binary indicator variables
for the presence or absence of species X and hX

k are the binary indicator vari-
ables for the detection or nondetection of species X in a survey.

True State (i) zA
i zB

i Obs (k) hA
k hB

k

ab 0 0 ab 0 0

Ab 1 0 ab 0 0

Ab 1 0 Ab 1 0

aB 0 1 ab 0 0

aB 0 1 aB 0 1

AB 1 1 ab 0 0

AB 1 1 Ab 1 0

AB 1 1 aB 0 1

AB 1 1 AB 1 1

Detection probability can therefore be defined using a log-linear modelling framework as:

log(pi,k) =ηAhA
k zA

i

+ ηBhB
k zB

i

+
(

ζAhA
k + ζBhB

k + ζ ABhA
k hB

k

)
zA

i zB
i

− log(K)

where,

K =1 + (exp(η1)) zA
i (1− zB

i )

+ (exp(η2)) (1− zA
i )z

B
i

+ (exp(η1 + η3) + exp(η2 + η4) + exp(η1 + η2 + η3 + η4 + η5)) zA
i zB

i .
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Example – mesocarnivores in Texas263

The motivation for developing this parameterisation of the multi-season cooccurrence model was264

a 7-year camera trap dataset of bobcats (Lynx rufus), ocelot (Leopardus pardalis) and coyote (Canis265

latrans) collected in South Texas (Lombardi et al., 2020). This dataset is part of a long-term ocelot266

monitoring study on the East Foundation’s El Sauz Ranch in Willacy and Kenedy counties, Texas.267

Although ocelot share a geographic overlap with bobcats and coyotes from South Texas to Central268

Mexico (Sánchez-Cordero et al., 2008; Horne et al., 2009; Hody & Kays, 2018), interactions among269

this community are poorly understood in this region.270

From 8 May 2011 to 24 March 2018, 56 camera traps (Cuddeback R© white-flash Expert Scout-271

ing Cameras and Cuddeback R© X-Change Color cameras (NonTypical, Isanti, WI, USA) were de-272

ployed at 28 paired camera stations in the northwestern and southwestern regions of the El Sauz273

Ranch. Camera traps were set in forests containing live oak (Quercus virginiana), honey mesquite274

(Prosopis glandulosa), and thornshrub (lime prickly ash [Zanthoxylum fagara], huisache [Acacia far-275

nesiana], and spiny hackberry [Celtis pallida]). Camera stations were spaced 1 km apart, which was276

based on the mean minimum distance moved for ocelots in the region (M. Tews, unpub. data). At277

a station, cameras were placed facing each other and offset 1-2 meters, with each camera attached278

to a tree or wooden stake about 30 cm above the ground. Camera stations were maintained all279

year and cameras were replaced if they malfunctioned (Lombardi et al., 2020).280

A sampling season was defined to be a 20-week period, either 8 May to 23 September (hot281

season) or 8 November to 24 March (cool season). A survey was defined to be a 4-week period,282

i.e., a species was detected (hX
k = 1) if it was photographed at least once at a station during the283

4-week period, and undetected (hX
k = 0) otherwise. Hence each season comprised of 5 surveys.284

Surveys were defined to be a 4-week period such that detections of bobcats and coyotes within a285

survey period could be assumed independent (Lombardi et al., 2020).286

The log-linear parameterisation discussed above provides a great deal of flexibility for exam-287

ining the patterns and dynamics of cooccurrence between multiple species, especially given the288

ability to incorporate spatial and temporal covariates. However, given the number camera stations289

deployed (i.e., 28 surveyed units), only relatively simple models are fit to the data here to illustrate290

some key concepts. Lombardi et al. (2020) conduct a fuller analysis of the data set examining the291
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effect of covariates.292

Five models were fit to the data-set, each representing a different set of hypotheses about cooc-293

currence patterns and dynamics (Table 5). While model parameters could be season-specific, they294

have been assumed to be season invariant. Additional information about the exact parameter-295

isation is supplied in the Supplemental Material. The same detection component was assumed296

for all models, where a separate detection probability was estimated for each species, which was297

assumed to be independent of both the presence and detection of other species. Model 1 assumes298

species occur near camera trap stations independently of each other, and the probability of occur-299

rence is the same each season and independent of the species being present near a station in the300

previous season. Model 3 also assumes species occur independently of each other, although the301

probability of occurrence after season 1 depends on the presence of the species in the previous sea-302

son. This is equivalent to modelling the occurrence of each species as independent single-species303

multi-season models (MacKenzie et al., 2003), where changes in occurrence is assumed to be a304

first-order Markov process.305

Table 5: Summary of effects included in each model fit to the Texas cam-
era trapping data. ‘2-way Interaction’ is interaction effects between pairs of
species, ‘Depends on zX

i ’ and ‘Depends on zY
i ’ indicates whether occurrence

in the current season depends on the presence of the focal (X), or other (Y)
species in the previous season.

Model 2-way Interactions Depends on zX
i Depends on zY

i

1 N N N

2 Y N N

3 N Y N

4 Y Y N

5 Y Y Y

The species cooccurrence models were fit using maximum likelihood techniques (e.g., MacKen-306

zie et al., 2004; MacKenzie et al., 2009; Richmond et al., 2010; Waddle et al., 2010; MacKenzie et al.,307

2018) using custom-written R code, although Bayesian methods could also be used (e.g., Rota et al.,308

2016; Fidino et al., 2019). Models were compared on the basis of Akiake’s Information Criterion309
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(AIC).310

Results311

Example – mesocarnivores in Texas312

Table 6 presents a summary of the five models fit to the mesocarnivore data. On the basis of AIC,313

Model 4 had the majority of the support with 79% of the AIC model weight, and Model 5 also has314

some support with 21% AIC model weight. The results provide strong evidence the probability of315

a species occurring near a station is dependent on the presence of the species near the station in316

the previous seasons (given ranking of Models 3-5), and affected by the presence of other species317

in the same season (Models 4 and 5 ranked highest). The is some indication that occurrence may318

also depend on the presence of other species in the previous season (Model 5 ranked second).319

Table 6: Summary of model comparison process. Given is the relative differ-
ence in AIC (∆AIC), AIC model weight (w), number of estimated parameters
(K) and two times the negative log-likelihood value (−2ll).

Model ∆AIC w K −2ll

1 175.20 0.00 6 6298.15

2 66.11 0.00 9 6183.06

3 104.62 0.00 12 6215.57

4 0.00 0.79 15 6104.95

5 2.65 0.21 21 6095.59

From Model 4, the estimated probability of detecting ocelots, bobcats and coyotes during 4320

weeks of camera trapping was estimated to be 0.43 (0.02), 0.49 (0.01) and 0.51 (0.01), respectively321

(standard error in parentheses). For each of the three species, the probability of occurrence in the322

current season is estimated to be higher if they were present in the previous season, particularly323

for ocelots, although the effect is small for bobcats (Table 7; parameters γO, δB and ξC). Note324

that under the parameterisation used here, the β parameters determine the probability of occur-325

rence given the absence of the species in the previous season, i.e., the probability of colonisation.326

Therefore, the γO, δB and ξC parameters are the difference between the colonisation and persis-327
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tence probabilities (on the logit-scale) for the respective species. The estimated 2-way interaction328

terms (parameters αOB, αOC and αBC) are all positive, indicating that if one species is present, the329

other species are more likely to be also present. The odds-ratio for the cooccurrence of ocelots330

and bobcats is estimated to be 4.16, 5.31 for ocelots and coyotes, and 5.88 for bobcats and coyotes.331

The confidence intervals for each of the odds ratios are relatively wide, which is a reflection of332

the number of surveyed stations, although the intervals are all greater than 1.0 suggesting strong333

evidence of a positive correlation.334

Table 7: Parameter estimates from Model 4. Given are the estimates, associated
standard errors, estimated odds ratio (OR) with associated lower and upper
limits of 95% confidence intervals.

Parameter Est SE OR Lower Upper

αO -2.10 0.63 0.12 0.04 0.42

αB -1.16 0.55 0.31 0.11 0.92

αC -1.29 0.56 0.28 0.09 0.82

αOB 1.43 0.37 4.16 2.03 8.53

αOC 1.67 0.48 5.31 2.07 13.60

αBC 1.77 0.34 5.88 2.99 11.56

βO -3.72 0.51 0.02 0.01 0.07

βB -0.89 0.34 0.41 0.21 0.81

βC -0.56 0.34 0.57 0.30 1.11

γO 2.11 0.30 8.24 4.62 14.69

δB 0.06 0.31 1.06 0.57 1.96

ξC 0.55 0.36 1.74 0.87 3.49

Discussion335

The log-linear parameterisation outlined here for the multi-season, multi-species cooccurrence336

model is not unique, and other parameterisations are possible (e.g., MacKenzie et al., 2006, 2018;337

Fidino et al., 2019). The log-linear parameterisation provides the ability to directly estimate, and338

interpret, how the presence of species is affected by the presence of other species in either the339

17



current, or previous, season. With this structure, the presence of each species is essentially being340

used as a predictor variable for the presence of other species, although the general framework341

that accounts for imperfect detection allows for the fact that the presence of any species may not342

be known with certainty. Furthermore, the parameterisation can also be applied to the detection343

process, to allow for non-independent detections of each species.344

Complexity breeds complexity. As practitioners attempt to address more complex questions345

of ecological data, more complex methods of analysis are generally required to provide quan-346

titative inspections of that data. Such is the case with multi-season, multi-species cooccurrence347

models. Irrespective of the preferred parameterisation to be used, proper analysis should involve348

careful consideration of hypotheses of interest, which species interactions should be included and349

whether such interactions change over time, effect of potential covariates for cooccurrence- and350

detection-related parameters. Proper analysis will require time, and some degree of skill in fitting351

and interpreting model results. While tools can be developed to simplify certain aspects of the352

process, practitioners should have a realistic expectation that such analysis require a substantial353

investment of time and effort.354

Practitioners are strongly encouraged to gain a realistic expectation of the type, and quantity,355

of data required to achieve their objectives, before embarking on any data collection. Complex356

models, with a large number of biologically relevant parameters to estimate, will require relatively357

large datasets to produce accurate estimate with suitable levels of precision. Simulation studies358

are an incredibly useful approach to evaluating the expected quality of the results from a proposed359

study design. The outcome will often be enlightening, and sometimes, sobering. While the exact360

outcome will depend on the specifics of the situation, in general we suggest that typically the361

number of sampling units required to be survey will be in the 100’s rather than the 10’s of units.362

This is based on our experience with similar models, and on the simple premise that there is not a363

lot of information in binary observations, and therefore a large number of them tend to be required364

to obtain adequate precision of parameter estimates.365

Log-linear modelling can be used in situations where a factor of interest has m levels (with366

m ≥ 2), by defining m − 1 indicator variables. In this paper we have focused on situations367

where m = 2 (i.e., species presence or absence), although as alluded to above, this parame-368

terisation extends naturally to situations where the occurrence of species may be defined using369
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a greater number of categories (e.g., absent, present without breeding, present with breeding).370

The log-linear modelling parameterisation therefore provides a framework for assessing relevant371

questions about cooccurrence patterns and dynamics for more these more complex situations, in372

combination with multi-state occupancy models (e.g., Royle & Link, 2005; Nichols et al., 2007;373

MacKenzie et al., 2009).374

This parameterisation of a many-species cooccurrence model is currently being incorporated375

into Program PRESENCE and the RPresence R package.376
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