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Abstract 14 

Delays in forest recovery from terrestrial acidification combined with climate change is leading 15 

Acadian Forest ecosystems into new territory.  Kejimkujik Calibrated Catchments (KCC) Study 16 

Program was established in an around Kejimkujik National Park and Historic Site (KNPHS) in 17 

Southwest Nova Scotia (SWNS) in the late 1970s to increase our understanding of the impacts of 18 

acid precipitation on relatively pristine ecosystems. KCC now have one of the longest 19 

continuously monitored water chemistry records in North America, with data collection 20 

beginning in 1980. Its infrastructure includes three gauged streams, twelve forest inventory plots, 21 



an atmospheric deposition monitoring station, and three streams with continuous water quality 22 

monitoring and regular lab analysis of stream chemistry, and recent LiDAR coverage. The KCC 23 

fits into a wider network of monitored lakes. Data collected at the KCC form a key datapoint in 24 

comparisons of catchment response to terrestrial acidification in the context of a warming 25 

climate, due to their high and increasing DOC levels, highly dilute waters, lowland topography 26 

and extensive wetlands. KCC are also emerging as an important source of information for 27 

species at risk protection as SWNS was declared one of the 11 national priority places for 28 

biodiversity protection.   29 
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 33 

1.0 Introduction and a brief history 34 

The Acadian forests in and around Kejimkujik National Park and Historic Site (KNPHS) were 35 

the ancestral home to the Mi’kmaw people for thousands of years forming a culturally vital place 36 

for fishing, hunting and travel. Europeans settled the inland areas of KNPHS in the 1820s and 37 

logged much of the area for eastern white pine (Pinus strobus) and red spruce (Picea rubens).  In 38 

the 19th and 20th centuries, KNPHS became a famous tourist destination for sports fisherman and 39 

hunters until terrestrial acidification reduced the productivity of this ecosystem in the 1960s and 40 

70s. Southwest Nova Scotia was one of the most highly sensitive areas to acid precipitation in 41 

North America (Hindar, 2001; Kerekes, 1996) being downwind of major North American urban 42 

and industrial centres.  The impacts to the region have been severe. In the mid-1990s, perch 43 

(Perca flavescens) and common loons (Gavia immer) from KNPHS had among the highest 44 



mercury concentrations across North America (Wyn et al., 2010). Adult abundance of wild 45 

Atlantic salmon (Salmo salar) populations plummeted 89-99% between 1980s and 2013 in the 46 

four monitored rivers (DFO, 2013). Current ionic monomeric aluminum concentrations exceed 47 

thresholds for aquatic health (Sterling et al., 2020). Recently, actions have been taken to help 48 

protect species at risk in and around KNPHS: a UNESCO Southwest Nova Biosphere Reserve 49 

was founded in 2001 and in 2018 Canada designated SWNS as a National Priority Place for 50 

species at risk.  51 

 52 

2.0 Kejimkujik Calibrated Catchment Research Program 53 

In 1978 the Government of Canada initiated the KCC in and around KNPHS in SWNS (Figure 54 

1) to increase scientific knowledge of the potential impacts of long-range transportation of air 55 

pollutants (LRTAP) on terrestrial and freshwater ecosystems (Kerekes, 1996). KCC lies in and 56 

around KNPHS (Figure 1). KCC began as a multi-agency effort, encompassing federal 57 

government departments (wildlife, forestry, inland waters, atmospheric environment, fisheries 58 

and park departments). KCC thus has comprehensive baseline data on meteorology, hydrology, 59 

water chemistry, aquatic biology, and terrestrial biophysical characteristics (Kerekes, 1996). 60 

Monitoring continues today, although the monitoring and scientific staffing was markedly 61 

cutback in the 2010s. The KCC is the only region in Atlantic Canada where a consistent 62 

intensive effort has been made to produce quantitative, long-term data with which to assess 63 

catchment acidification processes (Clair et al., 2007). The KCC watersheds have particular 64 

advantages for research as they are not impacted by local industrial developments (Table 1) or 65 

other point sources of pollutants (Wyn et al., 2010).   66 

 67 



Early aquatic chemistry research in the KCC (1980s) was dedicated to spatially delineating and 68 

measuring the deleterious effects of acid rain on aquatic ecosystems (Kerekes et al., 2002; Clair 69 

et al., 2007). Research changed to include geochemical modelling to determine if and how 70 

reductions in acid deposition might promote ecosystem recovery (Clair et al., 2007), such as 71 

dynamic modelling via the lumped-parameter Model of Acidification of Groundwaters (MAGIC) 72 

model (Dennis et al., 2005a). Paleolimnological studies were also conducted in the region in 73 

2003-2004, where diatom and chrysophyte communities preserved in lake sediments were 74 

analysed for over 100 lakes in the region (Korosi et al., 2013).  75 

 76 

3.0 Site Characteristics 77 

Climate and Hydrology 78 

Precipitation events in the KCC originate from both maritime air masses, via fog or tropical 79 

cyclone (hurricane) events and continental air masses moving southwesterly to westerly across 80 

North America producing frontal system precipitation events. Most of the anthropogenic acid 81 

precipitation that falls in the KCC is transported in frontal systems from the Great-Lakes region 82 

and Eastern US, particularly during the winter months (Beattie and Whelpdale, 1989). Mean 83 

annual precipitation in the KCC between 1966 and 1983 was 1430 mm with 18% of this falling 84 

as snow (Kerekes and Freedman 1989), and more recently 1352 mm, of which 10% fell as snow 85 

(Laudon et al., 2002). Temperatures in the KCC are relatively moderate compared to Eastern 86 

Canada, with mean temperatures at 7.6 +/-8.7 oC (Rotteveel and Sterling, 2020) ranging between 87 

−10 °C during the winter to 25 °C during the summer. Annual river flow in the region typically 88 

peaks annually in early April with low-flow periods between mid-July to mid-September 89 

(Rotteveel and Sterling, 2020).  90 



 91 

Surface Waters 92 

KCC drainage waters are highly sensitive to acid deposition due to their unique combination of 93 

slowly weathering bedrock and thin soils with very low base cation concentrations, the lowest in 94 

Canada (Clair et al., 2007). This sensitivity to acid deposition is exacerbated by high organic acid 95 

inputs from extensive wetlands, and by acid anion (Cl-) inputs from episodic sea salt deposition 96 

events (Clair et al, 2001; Freedman and Clair, 1987; Wright, 2008; Clair et al., 2011; Watt et al., 97 

2000; Whitfield et al., 2007). Surface waters in the KCC have very low specific conductance 98 

(Clair et al., 2011). Surface water pH in the KCC and in the surrounding region is the lowest in 99 

Canada (outside of point source areas, such as Sudbury, Ontario) (Clair et al., 2007), chronically 100 

remaining below 5.5 with rapid further pH declines during runoff events.  Dissolved organic 101 

matter (averaging to 15.5 ± 0.8 mgL-1 in the Mersey River in KCC; Rotteveel and Stelring 2020) 102 

increases natural acidity rates and is an important influence on biogeochemistry of freshwaters in 103 

the KCC (Clair et al., 2011). 104 

 105 

Geology and Landscape 106 

The KCC are found within the South Mountain and LaHave Drumlin Ecodistricts within Nova 107 

Scotia’s Western Ecoregion (Neily et al., 2017). Bedrock geology consists mainly of granite 108 

family rock or a mix of greywacke and slate, all of which are acidic. Surficial geology is 109 

comprised of relatively thin, coarse, and often stony till deposits, except for drumlin deposits 110 

which are deeper and medium-textured.  Climax forest cover on till-derived soils generally 111 

consist of red spruce and eastern hemlock (Tsuga canadensis), often with a component of eastern 112 

white pine and balsam fir (Abies balsamea). Associated deciduous species include red maple 113 



(Acer rubrum), paper birch (Betula papyrifera), and red oak (Quercus rubrum). More fertile 114 

drumlin deposits can also support stands dominated by yellow birch (B. allegheniensis), sugar 115 

maple (A. saccharum), and red maple along with scattered American beech (Fagus grandifolia). 116 

Wetter sites are common and support peaty swamps containing black spruce (P. mariana), 117 

balsam fir, and red maple.The landscape is a complex mosaic of vegetation types, caused in part 118 

by variable topography and drainage, natural disturbance events (e.g., wind and fire, Taylor et 119 

al., 2020) and a long history of forest harvesting. Most forest soils in the area have seen little to 120 

no recovery from acid deposition impacts, with base saturation values often below 10% (Keys et 121 

al., 2016; Keys, 2018). 122 

 123 

4.0 Research infrastructure 124 

Climate and Atmospheric Deposition data. Kejimkujik 1 climate station (WMO ID 71599), 125 

elevation 125 m, is located within KNP and has been in operation since 1994 measuring 126 

precipitation, air temperature, relative humidity, wind, and air pressure. Earlier data (1966-1994) 127 

were recorded at a nearby climate station in the KNPHS (Kejimkujik Park station, elevation 126 128 

m). Data from both stations may be obtained at 129 

(https://climate.weather.gc.ca/historical_data/search_historic_data_e.html).  130 

 131 

A Canadian Air and Precipitation Monitoring Network (CAPMoN) station was established in 132 

1979 in KNPHS in the Mersey River drainage area, collecting data on wet and dry atmospheric 133 

pollutant deposition and atmospheric chemistry. Data can be accessed at 134 

http://data.ec.gc.ca/data/air/monitor/networks-and-studies/canadian-air-and-precipitation-135 

monitoring-network-capmon/. 136 



 137 

Surface Water Data. Arguably the most valuable asset in the KCC is its long-term surface 138 

water chemistry dataset.  Weekly surface water chemistry measurements began in 1980 on the 139 

Mersey River at Mill Falls (draining a 295 km2 catchment). A further three sites were added in 140 

1983, Moose Pit Brook (17 km2),  Whitebourne Brook and Roger’s Brook which (each ~ 9 km2) 141 

(Clair and Freedman 1986). Sampling at Whitebourne and Roger’s was discontinued in 1987, 142 

and replaced in 1990 by a smaller site, Pine Marten Brook (1.30 km2) (Allen et al., 1992). 143 

Samples are measured for major ions, DOC, nutrients, metals and physical parameters, and 144 

analyzed at the Federal Laboratory in Moncton, New Brunswick. Data may be obtained at 145 

(http://data.ec.gc.ca/data/substances/monitor/national-long-term-water-quality-monitoring-146 

data/maritime-coastal-basin-long-term-water-quality-monitoring-data/?lang=en). Detailed 147 

metadata for sites and chemical analysis methods are described in Rotteveel and Sterling (2020, 148 

Table S2). Sampling frequency was reduced from weekly from 1980s to 1997, to bi-weekly, then 149 

further reduced to monthly in the 2010s.  150 

 151 

Lakes in the KCC form part the long-term regular lake monitoring network, where over 80 lakes 152 

in Atlantic Canada were sampled twice yearly during spring and fall overturns (Kerekes and 153 

Freedman, 1989).  Sampling frequency in this program was cutback in the 2010s to once per 154 

year.  155 

 156 

Terrestrial and Stream Ecology 157 

In 1994 twelve permanent forest plots were established in KNP using the Smithsonian 158 

Institution/Man and the Biosphere (SI/MAB, now known as the Monitoring and Assessment of 159 



Biodiversity Programme), with samples taken every five years (Data accessible at 160 

https://open.canada.ca/data/en/dataset/42de6c1a-6826-4197-bc35-3e099cc9a6f6). 161 

 162 

The abiotic processes of atmospheric deposition, freshwater acidification, catchment-scale 163 

hydrological processes, and organic carbon cycling all affect downstream biotic ecosystems. The 164 

KCC provides an opportunity to pair these long-term abiotic datasets with a substantial amount 165 

of ecological research which has occurred immediately downstream of the KCC, particularly 166 

within Kejimkujik National Park. Some of this ecological data may serve as baseline ‘acidified’ 167 

conditions for long-term comparisons. For example, Kerekes and Freedman (1989) summarise 168 

detailed chemical and biological characteristics of Kejimkijik lake and two other nearby lakes 169 

including descriptions of phytoplankton, zooplankton, benthic invertebrates and fish 170 

communities. Macrophytes have also been extensively surveyed in the region (Catling et al. 171 

1986). Finally, some indicators can be placed in more historical context such as changes in 172 

zooplankton as revealed by sediment coring of Kejimkujik lake where the outflow of KCC enters 173 

via the Mersey River (Korosi et al. 2003, Korosi and Smol 2012). 174 

Additionally, there is a rich body of research describing freshwater mercury dynamics 175 

downstream of the KCC inclusing mercury in fish tissues (e.g., Edmonds et al., 2010; Drysdale 176 

et al. 2005, Burgess and Hobson 2006, Wyn et al. 2010) and piscivorous birds (Burgess et al. 177 

2005, Burgess and Meyer 2008). Considering the presumed relationship between mercury and 178 

biogeochemical processes in this area (O’Driscoll et al. 2005), particularly those related to 179 

freshwater acidification, these data will continue to be relevant as the KCC recovers from 180 

freshwater acidification.  181 

 182 



Non-Profit and Community Groups play a particularly large role in Nova Scotia in the gathering 183 

of ecosystem data (Sterling et al., 2014).  Local groups such as the Mersey-Tobeatic Research 184 

Institute (MTRI) produce numerous reports on the status of the local ecosystems, particularly on 185 

terrestrial and stream biology. Annual reports of research conducted in the KCC and KNPHS 186 

region are also produced by MTRI (http://swnovabiosphere.ca/your-biosphere/science-and-187 

research/kejimkujik-monitoring-reports/). 188 

 189 

A 20 m enhanced digital elevation model is available for the entire KCC area (available at 190 

https://novascotia.ca/natr/meb/download/dp055.asp). Recently, leaf-on topographic LiDAR data 191 

have been collected over much of part the KCC area by the Nova Scotian provincial government 192 

(https://nsgi.novascotia.ca/datalocator/elevation/); increased LiDAR coverage over the KCC is 193 

planned in the next few years.  Land cover data including a 1 m Digital Elevation Model are 194 

available at the Nova Scotian Provincial Geographic Data Directory 195 

(https://nsgi.novascotia.ca/gdd/). 196 

 197 

5.0  Future outlook 198 

The long-time series and rich baseline data from the KCC is extremely valuable in our 199 

understanding of processes and trends in high DOC, low pH, low ionic strength drainage waters 200 

draining low-relief, acidified maritime forest and peatland environments.  The KCC have played 201 

an important role in regional syntheses and in placing SWNS in a global context.  KCC scientists 202 

have contributed data and insights in a number of biogeochemical papers with other groups to 203 

produce large-scale trend and environmental process syntheses. KCC data contributed to regional 204 

synthesizes on acidification (Jeffries, 1995, Stoddard et al. 1999, Dupont et al. 2005, Clair et al. 205 



2007), sulfate and cation catchment budgets (Watmough et al. 2005, Mitchell et al. 2020, Kerr et 206 

al. 2011), mercury in the environment (Dennis et al 2005b, Kamman et al. 2005, Evers et al 207 

2007), freshwater carbon dynamics (Creed et al. 2008, Zhang et al. 2010) and catchment 208 

hydrological dynamics (Godsey et al. 2010). 209 

 210 

Because current acid deposition rates still exceed critical load in SWNS (Clair et al., 2011), and 211 

because of lack of evidence of freshwater and soil recovery from acidification (Sterling et al., 212 

2020; Keys, 2018), data collected at KCC are needed now as much as ever to understand the 213 

impacts of delays in acidification recovery in ecosystems in a warming climate. 214 

 215 
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 349 



Figure 1. Kejimkujik Calibrated Catchments (KCC), adapted from Clair et al., 2008. 350 

 351 



Table 1. Catchment characteristics of the three Kejimkujik Calibrated Catchments with the longest records, adapted from Clair et al., 352 

2005, 2008; Rotteveel and Sterling, 2020; Yanni et al., 2000; Gimbarzevsky, 1975. Lat/long uses NAD83 datum. 353 
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1 Land use/land cover values may not sum to 100% due to overlap of features and presence of lakes, exposed bedrock, and harvested areas. 

2 Forest harvesting data is not publicly available in Nova Scotia (Sterling et al,. 2020) 



NS01ED00

05 

watershed

, forest 

harvesting 

in upper 

watershed 

Moose Pit 

Brook 

(MPB) 

NS01EE00

14 

44.4619,  

-65.0483  

17 100-

150 

3.2-5 4.6 99.0 3.0 0.1  Forest 

harvesting 

in upper 

watershed 

 Continuous 

discharge 

1981-present 

(01EE005) 

Pine Marten 

Brook 

NS01ED01

10 

44.4264, 

-65.2128 

1 120-

190 

n/a  96.2 3.8 0.0 No recent 

disturbanc

e 

 Simulated using 

ForHyM (Yanni 

et al., 2000) 
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 355 


