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ABSTRACT

Multi-domain proteins are not only formed through natural  evolution but can also be

generated by recombinant DNA technology. Because many fusion proteins can enhance

the  selectivity  of  cell  targeting,  these  artificially  produced  molecules,  called  multi-

specific  biologics,  are  promising  drug  candidates,  especially  for  immunotherapy.

Moreover,  the  rational  design  of  domain  linkers  in  fusion  proteins  is  becoming  an

essential  step  toward  a  quantitative  understanding  of  the  dynamics  in  these

biopharmaceutics. We developed a computational framework to characterize the impacts

of  peptide  linkers  on  the  dynamics  of  multi-specific  biologics.  We  constructed  a

benchmark containing six types of linkers that represent various lengths and degrees of

flexibility  and  used  them  to  connect  two  natural  proteins  as  a  test  system.  The

microsecond dynamics of these proteins generated from Anton were projected onto a

coarse-grained  conformational  space.  The  similarity  of  dynamics  among  different

proteins in this low-dimensional space was further analyzed by a neural network model.

Finally, hierarchical clustering was applied to place linkers into different subgroups based

on the neural network classification results. The clustering results suggest that the length

of linkers used to spatially separate different functional modules plays the most important

role in regulating the dynamics of this fusion protein. Given the same number of amino

acids,  linker flexibility  functions as a regulator of protein dynamics.  In summary, we

illustrated that a new computational strategy can be used to study the dynamics of multi-

domain  fusion  proteins  by  a  combination  of  long  timescale  molecular  dynamics

simulation, coarse-grained modeling, and artificial intelligence. 
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Introduction

Through evolutionary pathways, the majority of proteins are encoded with at least

two structurally conserved domains in genomes of many organisms . Nowadays, domains

from different species can also be genetically fused by recombinant DNA technology .

Domains in either native or artificially generated fusion proteins are connected by peptide

regions  called  domain  linkers  .  While  the  tertiary  structure  of  the  individual  domain

remains  unchanged,  linkers  are  closely  related  to  the  relative  orientation  between

different domains . For native proteins, these diversities of inter-domain positions and

resulting dynamics are essential in many biological processes, such as signal transduction

or transcriptional regulation . Thus, characterizing the impacts of linkers on the dynamics

of multi-domain proteins is particularly important to understand their cellular functions.

Moreover,  multi-domain  fusion  proteins  are  becoming  a  promising  category  of  bio-

therapeutics,  known  as  multi-specific  biologics  .  The  interplay  among  various

pharmaceutical  modules  in  these  biologics  is  predominantly  determined  by  linker

properties. Direct fusion of functional modules without a linker often leads to impaired

bioactivities . As a result, quantifying the dynamics of multi-specific biologics through

the rational design of specific linkers is thought to be a crucial yet underexplored strategy

in the development of next-generation biopharmaceutics .

Computational  modeling possesses unique advantages  over labor-intensive and

time-consuming experimental approaches to test conditions that are difficult to attain in

the laboratory on a systematic level. Among a large variety of different computational

techniques,  molecular  dynamics  (MD)  simulation  has  already  turned  into  a  mature

method that allows us to study the dynamics of biomolecules on atomic details . It has

been used to analyze the positional fluctuations and correlated motions in multi-domain

proteins . However, due to the intense consumption of computational resources, current

applications of MD simulations are limited by the timescale they can reach. Fortunately,

Anton—a supercomputer specializing in MD simulations—has recently become publicly

available. The simulation performance on Anton and its upgraded version, Anton 2 , is

nearly two orders of magnitude faster than other traditional supercomputers. In contrast,

the new advancements in artificial intelligence (AI) have gained increasing attention from
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the field of bioinformatics and demonstrated huge successes in its application to protein

structure prediction . Therefore, the combination of AI and MD simulations provides a

way to capture the complicated features in biomolecular systems. For instance, machine

learning–based  algorithms  have  been employed  to train  force  fields   or  explore  new

conformational states  by the given data generated from MD simulations.

In this work, we develop a computational framework to characterize the dynamics

of  multi-domain  proteins.  Two  different  ligands  of  immune  receptors,  major

histocompatibility  complex  (MHC)  and  programmed  death-ligand  1  (PD-L1)  ,  are

artificially connected by a peptide linker as a test model for multi-specific biologics. In

the traditional two-signal hypothesis of T cell activation , an initial signal is provided by

adhesion between T cell receptors (TCRs) on the surfaces of T cells and specific MHC-

epitope molecules on the surface of antigen-presenting cells (APCs). This initial signal is

followed  by  a  secondary  pathway  through  the  engagement  between  co-regulatory

receptors on T cell surfaces and their ligands on APCs. Secondary modulation can lead to

either stimulatory signal (e.g., through the binding between tumor necrosis factor [TNF]

and TNF receptor)  or inhibitory signal (e.g., through the binding between PD-L1 and

PD-1). Analogous to the natural response, we assume that, in our test system, the module

of  MHC can  target  the  fusion  protein  to  the  specific  T  cell  clones,  while  the  other

module, PD-L1, can direct the co-regulatory signal to inhibit the targeted T cells . As a

result, this bi-specific biologics can hypothetically allow T cell targeting and modulation

without the encounter of specific APCs. 

For the test model, we construct a benchmark containing six types of linkers that

connect MHC and PD-L1 with various lengths and degrees of flexibility. We utilize the

supercomputer Anton 2 to carry out microsecond-level MD simulations on these linker-

specific fusion proteins. Their dynamics are projected onto a low-dimensional space by

coarse-graining the protein structure with a vector-based representation. We use a neural

network–based  classifier  to  compare  the  low-resolution  motions  between  proteins  of

different  linkers  and further build a phylogenetic  tree to  summarize  the classification

results.  We find  that  the  six  linkers  hierarchically  cluster  into  groups  based on their

length and dynamic features, suggesting that the global dynamics of this protein can be
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effectively  identified  by  its  linker  properties.  Therefore,  our  results  highlight  the

importance of linkers in orchestrating the motions between MHC and PD-L1 modules in

this test system of bi-specific biologics. The computational strategy adopted in this study

will potentially be useful to design new fusion proteins for future biopharmaceutics.

Methods

Linker benchmark and system preparation

The  structural  model  of  our  test  system  was  computationally  constructed  by

fusing two functionally independent protein modules with a peptide linker. The structure

of the MHC module was adopted from the protein databank (PDB) ID 3NWM, while the

structure of the other PD-L1 module was adopted from the PDB ID 4Z18. The MHC

module consists of 375 amino acids, including a heavy chain H-2Kd with 275 amino acids

and a light chain β2m with 100 amino acids . To avoid instability during simulations, the

target peptide in the groove of the original MHC was not modeled in the system. The PD-

L1  module,  in  contrast,  consists  of  two immunoglobulin  structural  domains,  each  of

which contains about 100 amino acids . The linker region connects the C-terminus of the

MHC light chain with the N-terminal domain of PD-L1. There are many linkers in the

literature with different sequences and lengths. In order to provide a comprehensive and

systematic study, we constructed a benchmark that contains six types of typical linkers.

The first linker is called GS15, with a total length of 15 amino acids. The linker contains

three repeats of a small  fragment with four glycine followed by a serine.  The second

linker  is  called  GS30,  with  six  copies  of  GGGGS fragments.  These  two  linkers  are

assumed to be intrinsically disordered due to the flexible feature of glycine . As a result,

the initial structures of these two linkers were built by ModLoop . The third linker is

called PLP15, which contains 15 consecutive prolines. The peptide of poly-proline can

form  the  structure  of  α-helix  with  either  right-handed  or  left-handed  symmetry  .

Therefore,  the  initial  structure  of  this  linker  was  built  by  following  the  standard

configuration of a right-handed α-helix. The fourth and fifth linkers are called PLPII15

and PLPII30, in which there are 15 and 30 consecutive proline, respectively. Different

from  PLP15,  the  initial  structures  of  these  two  linkers  were  built  by  following  the

configuration of more extended left-handed α-helix . Finally, the sixth linker is called
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PLrigid. It contains 20 amino acids with four repeats of fragments in total. Each fragment

starts with a glutamic acid, followed by three consecutive amino acids of alanine, and

finally, an arginine . The initial structure of this linker was built by following the standard

configuration of a right-handed α-helix. The overall information of the linker benchmark

is summarized in Table 1. The initial structures of six constructed fusion proteins using

these  linkers  are  shown in  Figure  1a  to  Figure  1f.  Their  biological  context  will  be

described in the discussion.

The protocol of the Anton MD simulation

All  equilibrium  simulations  of  constructed  fusion  proteins  with  six  different

linkers were run on the Anton 2 supercomputer at the Pittsburgh Supercomputing Center .

Proteins were solvated with water molecules and neutralized by adding Na+ and Cl– ions.

As a result,  the systems contain an average number of 252,000 atoms. For all  Anton

production  runs,  the  isothermal–isobaric  (NPT)  ensemble  was  used  with  constant

pressure (1 atm) and physiological temperature (310 K) using a Nosé–Hoover thermostat.

We adopted the orthorhombic cells with approximate dimensions of 125 Å × 120 Å ×

160  Å  as  simulation  boxes  for  all  systems,  and  periodic  boundary  conditions  were

imposed. A 2 fs time step was used for all simulations. We chose the CHARMM36m

force field for proteins and the TIP4P-D  water model. The water dispersion interactions

were increased in the TIP4P-D model, enabling more accurate simulation of dynamics for

proteins  with  intrinsic  flexible  linkers  .  The  system-optimized  simulation  parameters

were chosen by the Anton software. The Gaussian-split Ewald algorithm  was used to

compute the long-range electrostatic interactions with a 64 × 64 × 64 Å mesh. The cutoff

for short-range non-bonded interactions was chosen to be at least 11 Å for all  boxes.

Consequently, a 2.5 µs trajectory was collected from the Anton 2 supercomputer for each

bi-specific linker. This gives a total of six trajectories and an aggregate simulation time of

15 µs.

Vector-based coarse-graining of protein dynamics

The global  conformation of a  fusion protein can be described by a  simplified

vector-based model  ,  if  one only  focuses  on the  relative  orientation  between its  two
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functional  modules.  The procedure to construct this  model  consisted of the following

steps: First,  a set of representative points was selected from the protein.  These points

were the center of the binding interface on the MHC, the center of mass of the MHC, the

starting residue of the linker, the ending residue of the linker, the center of mass of PD-

L1, and the center of the binding interface on PD-L1. After the selection of these points, a

series of vectors were built by connecting these points with each other in the above order.

Given these coarse-grained vectors as a virtual skeleton of the protein, the degrees of

freedom  that  define  its  conformational  changes  were  embodied  through  the  internal

coordinates along these vectors.  These internal  coordinates include the length of each

vector between two consecutive points, the angle between every two consecutive vectors,

and the dihedral formed among three consecutive vectors. Finally, if we neglected the

local  conformational  fluctuations  within  each  functional  module,  the  conformations

between two functional modules could be described by a minimal number of only six

degrees  of  freedom along the  vectors.  They are the  length  of  the linker  (r),  the  two

packing angles between functional modules and linkers (θ1 and  θ2), and three packing

dihedrals  describing the relative  rotations  of  functional  modules  (φ1,  φ2, and  φ3).  The

vector-based virtual skeleton of the fusion protein and the definition of the six internal

coordinates  are  illustrated  in  Figure  1g.  As  a  result,  the  large-scale  conformational

changes of the fusion proteins within a certain amount of time Δt can be reflected by the

difference in the values of these six internal coordinates between time t and t+Δt.

Identify dynamic similarity between linkers via a machine learning algorithm

A machine learning algorithm was used to identify the dynamics of fusion protein

with one type of linker from another type in the benchmark. In detail,  a feedforward

back-propagation  network  was implemented.  For  a  specific  pair  of  linkers,  the  input

neurons of the network are in six dimensions, the same as the internal coordinates along

the virtual skeleton that are used to represent the global dynamics of fusion proteins. As

described in  the last  section,  each  dimension gives  the variation  in  the values  of the

corresponding internal coordinates from time t to time t+Δt, in which Δt is the time step

providing information about the temporal correlation of conformational dynamics. The

output  is  in  one  dimension,  corresponding  to  the  type  of  linker  in  comparison.  The
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network further contains a single hidden layer with four neurons. In this study, a sigmoid

activation function was adopted. The weight of each neuron was modified using the back-

propagation learning algorithm with a sum of square error function . The magnitude of

the error sum in the learning process was monitored in each cycle, and the learning was

terminated when the network converged.

The neural network algorithm was applied to all pairs of six linkers. For each pair,

we used leave-one-out cross-validation to calibrate the test results after learning. Because

the dynamics of fusion proteins for each linker can be represented by 2,000 sets of six-

dimensional vectors, there are 4,000 vectors for a corresponding pair of linkers. As a

result, the total cross-validation procedure for this pair of linkers contains 4,000 steps.

Within each step, one vector was selected for testing, while the remaining vectors were

used for training. During the learning process, vectors in the training set were fed into the

neural network in a random order. After the network was trained, it was used to predict

the type of given linker in the test set as input. When all 4,000 cross-validations were

completed, the accuracy of prediction could be calculated. The accuracy is defined as the

total percentage of correctly recognized linkers, belonging to either type of linkers in the

pair,  among all  4,000 predictions.  High accuracy indicates  that  one of  the  linkers  is

highly  distinguishable  from  the  other  one  in  the  pair,  suggesting  that  the  dynamics

between  two fusion  proteins  are  different.  In  contrast,  low accuracy  means  that  two

linkers cannot be distinguished from each other based on their dynamic properties. After

the calculations for accuracy, we can define the similarity between all the linkers in the

benchmark.

The  source  codes  and  analysis  results  from  our  neural  network–based

classification  program  are  available  for  download

(https://github.com/wulab-github/AntonCGNN). This package also contains the structural

ensembles generated from the Anton 2 simulations for all six types of linkers. They have

been converted into the vector-based representation and are used as inputs of the neural

network  model.  The  source  codes  of  the  classification  program are  in  FORTRAN77

format. The executable file is also provided. Detailed instructions about the program and
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its output can be found in the repository. The program is free for academic users and

works on a Linux platform.

Results

All linkers show large conformational fluctuations based on the MD simulation results

The  MD  simulations  of  the  fusion  proteins  were  carried  out  on  Anton  2

supercomputers  based  on  their  all-atom structural  models.  The  detailed  procedure  of

system  preparation  and  simulation  setups  are  described  in  the  methods.  A  2.5

microsecond-long trajectory was generated to sample the conformational space for each

of these six systems. For each system, the first 500 nanoseconds of the trajectory are used

for equilibrium, while the next phase of 2 µs trajectory is used for recording. During the

second phase,  the conformation of each protein was recorded every 1 ns. In order to

identify global conformational fluctuations of the proteins from the local conformational

changes of the linker regions, we analyzed both the global root-mean-square difference

(RMSD) of the entire protein and the local RMSD of the residues only in the linkers. The

newly updated conformation was first superimposed onto the initial conformation of the

recording phase by rigid-body superposition. We then calculated the backbone RMSD

between the coordinates of Cα atoms in the new and initial conformations. The algorithm

of  rigid-body  superposition  uses  the  least-square  minimization  to  generate  the  best

rotation that fits the two sets of coordinates . This rotation is then applied to the new

conformation so that it  can be spatially aligned to the initial  conformation before the

calculation  of  RMSD.  All  the  Cα  atoms  were  used  in  the  superposition  in  order  to

calculate the global RMSD, while only the Cα atoms in the linker region were used in the

superposition and the calculation of the local RMSD.

We first plotted the local RMSD as a function of simulation time for all six types

of linkers, as shown in Figure 2a. The color index of the curves in the figure is given on

the top. The figure shows that the linker GS30 has the highest RMSD due to its length

and high flexibility (red curve in  Figure 2a). On the other hand, the linker PLP15 has

much lower RMSD than all the other linkers (blue curve in  Figure 2a). The average

value of RMSD was less than 2 Å, indicating that the secondary structure of the right-
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handed α-helix in the linker of PLP15 was maintained throughout the simulations. It is

worth  mentioning  that  the  values  of  RMSD are  dependent  on  the  size  of  molecular

systems. As a result, it is more meaningful to focus on the comparison of linkers with the

same length. For instance, Figure 2a shows that, although the secondary structure of left-

handed α-helix in the linker of PLPII15 was also maintained throughout the simulations,

its RMSD (purple curve in  Figure 2a) is much larger than that of the right-handed α-

helix linker PLP15. This suggests that the more extended configuration of left-handed α-

helix  is  much  more  flexible  than  right-handed  α-helix  is.  In  contrast,  GS15  has  the

highest RMSD value (black curve in Figure 2a) among all three linkers consisting of 15

residues. Similarly, the RMSD of the linker PLPII30 (green curve in Figure 2a) is only

slightly lower than GS30 (red curve in Figure 2a), confirming the flexibility of the left-

handed α-helix. The observation of high flexibility in the left-handed α-helix is consistent

with  previous  studies  [42],  which could be due to  the  lack  of  a  stabilizing  effect  of

intramolecular hydrogen bonds. Another possible reason is that the left-handed α-helices

have a rise per residue that is almost twice as great as that of the right-handed α-helices,

which makes them more exposed to solvent.

More interestingly, the linker of PLrigid shows a transition from low RMSD to

high  RMSD  around  0.15  µs  after  equilibrium  (orange  curve  in  Figure  2a).  Some

snapshots of the linker  configuration  were taken from the trajectory  around this  time

window, as shown in  Figure 3. The figure suggests that the linker still had the helical

structure at the time of 0.125 µs after equilibrium (Figure 3a). However, soon after that,

the secondary structure at both ends of the linker started to melt (Figure 3b and 3c). At

0.2 µs after equilibrium, all hydrogen bonds in the helical structure of the linker were

broken (Figure 3d). Therefore, the low-RMSD to high-RMSD transition for PLrigid is

because of its loss of secondary structure. The breaking of hydrogen bonds in the α-helix

is further due to the reason that the Anton simulation was performed under a relatively

high temperature of 310 K. While this  temperature is biologically  more relevant,  our

results demonstrated that some rigid linkers could be more flexible than was originally

considered under room temperature.
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The global RMSD for all residues in the fusion proteins is plotted as a function of

simulation time for all six types of linkers in Figure 2b. The same color index is used.

Different  from the  local  RMSD,  which  highly  depended  on  the  type  of  linkers,  we

observed high values of global RMSDs for all six systems. For example, although the

local RMSD of linker PLP15 is lower than 2 Å through all  the 2 µs simulations, the

global RMSD of the entire protein with PLP15 linker on average is around 20 Å (blue

curves in Figure 2a and 2b). Figure 4 shows a few snapshots of the global configuration

for this protein from the trajectory. The MHC module is highlighted in red, while the PD-

L1 module is highlighted in green, and the linker in the middle is highlighted in gray.

These  snapshots  clearly  show  that  the  local  configuration  of  the  linker  region  was

maintained  as  α-helix  throughout  the  entire  simulation,  while  the  changes  in  tertiary

structures  within  each  module  can  also be  neglected.  However,  there  are  remarkable

fluctuations in the relative orientations between the two modules, which results in the

high  value  of  the  global  RMSD.  Therefore,  our  results  indicate  that  small  structural

variations in rigid linkers can still lead to large inter-domain conformational fluctuations.

In summary, our microsecond MD simulations  revealed that the levels of local

structural  dynamics  are  highly  dependent  on  the  sequence  composition  of  different

linkers. We also observed the loss of the presumably formed secondary structure during

the simulation. However, the orientations between two modules show large fluctuations

for all six fusion proteins, even if the linker itself is rigid. It is difficult to distinguish their

differences purely based on the calculations of the global RMSD. Therefore, in the next

section, we will use a set of simplified coordinate systems to quantitatively analyze the

orientation between two modules.

The coarse-grained model captures the conformational preference for different linkers.

It is not sufficient to interpret the conformational fluctuations of proteins solely

based on their RMSD profiles. In contrast, the impacts of different linkers on the global

dynamics of multi-domain proteins can only be derived by focusing on a limited number

of large-scale degrees of freedom. Therefore, we coarse-grained the protein structures by

a  vector-based  model,  as  described  in  the  Methods  section.  Using  this  model,  the

variations of protein structure between two functional modules were projected from MD
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simulation trajectories onto a conformational space with six dimensions, {r, θ1, θ2, φ1, φ2,

φ3}, as shown in Figure 1g. We calculated the distribution of each of these six internal

coordinates for each fusion protein in the benchmark. The means and standard deviations

of these distributions, as well as their correlation coefficients for all six fusion proteins,

can be found in the Supporting Information as Table S1. In order to show the similarity

and difference between specific distributions, a few examples were further selected from

the table and plotted in Figure 5 for a more detailed comparison.

The statistical distribution of linker length r in the protein with linker PLP15 was

calculated from Anton simulation and plotted as the red histogram in Figure 5a. In the

same plot, the distribution of linker length in the protein with another linker GS30 forms

the  black  histogram.  The  figure  shows  that  the  black  histogram  has  a  much  wider

distribution than the red histogram does, indicating that the variations of linker length in

GS30 are much larger than they are in PLP15. This is because multiple hydrogen bonds

formed in the poly-proline helix, making the linker PLP15 difficult to stretch. In contrast,

the linker GS30 not only contains more amino acids but is also more flexible. Therefore,

the two modules connected by this linker can be either much closer or much farther apart

than  the  modules  that  are  connected  by  PLP15.  Similarly,  the  comparisons  of  two

packing angles  and dihedral  between these two linkers  are  plotted  in  Figure 5b and

Figure  5c,  respectively.  The  two  packing  angles  of  both  linkers  show  normal

distributions. The peaks of both packing angles for PLP15 are around 135 degrees (blue

and purple histograms), while the peaks of both packing angles for GS30 are around 45

degrees (red and black histograms). Moreover, the distributions of PLP15 show much

smaller standard deviations. In terms of the packing dihedral φ2, Figure 5c shows PLP15

for a normal distribution with a peak at  180 degrees,  while a uniform distribution is

observed with the range from −180 degrees to +180 degrees for GS180. These statistical

results suggest that the relative orientations between modules in these two linkers have

different preferences, and the packing in linker PLP15 is restricted to a smaller area of the

conformational space.

In addition to the overall  conformational  preference,  kinetic  information about

protein conformational changes within a given time window was obtained by analyzing
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the variations of six internal coordinates from time t to t+Δt, which is defined as {Δr, Δθ1,

Δθ2, Δφ1, Δφ2, Δφ3}. For example, the variation of linker length Δr within the time interval

Δt was derived by calculating the difference between the linker length at time t and the

linker length at time t+Δt, while the time t was moved from the beginning to the end of

the simulation trajectory and the window Δt was fixed to reflect the temporal correlation

of conformational dynamics. We calculated these variations of all six internal coordinates

for all six protein systems so that their distributions can be compared across systems with

different  types  of  linkers  for  a  specific  internal  coordinate.  The  means  and standard

deviations for distributions of conformational variations can be found in the Supporting

Information as  Table S2 for all internal coordinates of six fusion proteins, as well as

their  correlation  coefficients.  Moreover,  the  entire  distributions  of  conformational

variations  along  all  internal  coordinates  were  plotted  in  supplemental  Figure  S3 as

histograms with different color bars for all the linkers. In order to show the similarity and

difference between specific distributions, a few examples were further selected from the

table and plotted in Figure 6 for a more detailed comparison.

In  Figure 6a,  the variations of linker length are compared between GS15 and

GS30. The distribution of  Δr obtained in linker GS15 was plotted by black histograms,

while the same distribution obtained in GS30 was plotted by red histograms in the figure.

The time interval of 1 ns was used to calculate the variations. In Figure 6b, we show the

comparison  of  variations  in  packing  angle  θ1 between  the  same  linkers.  The  black

histograms give the distribution of Δθ1 obtained in linker GS15, and the red histograms

give the distributions of linker GS30 within the same time interval of 1 ns. Both Figure

6a and  Figure 6b show that  distributions  in linker  GS30 are much wider,  indicating

larger variations along the internal coordinates in GS30 than in GS15. Given the same

short amount  of time,  this  statistical  result  suggests that  the protein containing  linker

GS30 undergoes much more diverse conformational changes than the protein containing

linker  GS15  does.  Different  from  the  comparison  between  GS15  and  GS30,  the

comparison between PLP15 and PLPII15 shows similar distributions of variations formed

in these two linkers. The variations of linker length in linkers PLP15 and PLPII15 are

plotted as black and red histograms in Figure 6c, while the variations of packing angle θ1

in linkers PLP15 and PLPII15 are plotted as black and red histograms in Figure 6d. The

13



2020-05-30 Dynamics of Multidomain Fusion Proteins

time interval used to calculate the variation is also 1 ns. The overall distributions in these

two linkers are very close, except that the variation of packing angle in PLPII15 is a little

larger than that in PLP15, as shown in  Figure 6d. This is due to the fact that the left-

handed helix formed in PLPII15 is more flexible than the right-handed helix formed in

PLP15.

It  is  worth  mentioning  that,  although  the  conformational  spaces  of  our  tested

proteins  were  sampled  by  the  atomic  scale  simulations,  a  large  amount  of  derived

information  was  discarded  after  the  vector-based  coarse-graining.  However,  the

application of supercomputer Anton 2 is still a necessary strategy for generating more

realistic  structural  ensembles  for  these multi-domain  proteins.  The simulations  purely

based on the lower resolution models are not sufficient to capture their global dynamics.

For instance, the coarse-grained force fields, such as MARTINI, suffer from not being

able to appropriately maintain the secondary structures that are present in native proteins .

Especially for the systems that contain disordered regions, even the simulation based on

traditional  all-atom  force  fields  and  water  models  could  lead  to  over-compactness

compared with the estimation  from experiments  .  Therefore,  coarse-grained structural

modeling  based  on  more  advanced  atomic  simulations  is  an  optimal  combination  to

explore the low-dimensional conformational dynamics of different domain linkers with

both accuracy and efficiency.

In summary,  based on the  statistical  analysis  of  simulations,  we revealed  that

conformational  variations  are  highly  distinctive  between  certain  pairs  of  linkers  but

highly  similar  between  others.  In  the  next  part,  this  kinetic  similarity  will  be

systematically evaluated via a neural network algorithm among all pairs of the six linker

types.

Neural network classification results in a hierarchical structure of the linker benchmark

Using the vector-based coarse-grained model, the relative positions between two

modules of a fusion protein can be represented by a low-dimensional space. Based on the

definition of six internal coordinates in this space, we further discretized the dynamics of

the protein’s large-scale conformational changes by calculating the variation along all the
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internal  coordinates  between  two  specific  time  steps  of  the  Anton  MD  simulations.

Assuming that the basic features of different linkers are incorporated in these variations,

we deduce that they can be used to characterize the dynamics of inter-module correlation

of  fusion  proteins.  Practically,  for  a  group  of  proteins,  the  characterization  of  their

dynamics  can  be implemented  by performing all  pairwise  comparisons  in  the  group.

Here, these pairwise comparisons were carried out using the neural network classification

method. Given a specific time interval, the discretized conformational variations along

the internal coordinates were used as inputs to the algorithm. The underlying hypothesis

is that the neural network method will be more likely to identify a pair of proteins from

one another if the calculated variations in these two proteins are less similar. Conversely,

the neural network method will not be able to identify a pair of proteins from each other

if the variations in these two proteins are highly similar.

Based  on  this  hypothesis,  and  following  the  procedure  of  cross-validation

described  in  the  Methods,  we  applied  a  feedforward  back-propagation  algorithm  to

estimate the dynamic similarity between all pairs of fusion proteins with six different

types  of linkers in the benchmark.  For a specific  pair,  we calculated  the accuracy of

classification  from  the  cross-validation,  defined  as  the  total  percentage  of  correct

prediction.  Our  calculations  for  all  pairwise  combinations  are  plotted  as  a  two-

dimensional matrix in Figure 7a. The indexes of the linker type are listed along the x and

y axes, and the color scales of accuracy are shown next to the matrix. The figure indicates

that the accuracy of identifying the protein dynamics with linker GS15 from linker GS30

is higher than 95%, suggesting that the conformational variations caused by these two

linkers are highly distinguishable from each other. This is what we observed in Figure 6a

and  Figure 6b.  From the contour plot,  we also find that the accuracy to identify the

protein dynamics with linker PLP15 from linker PLPII15 is lower than 50%, indicating

that the neural network failed to identify the differences between these two linkers. This

suggests  that  their  conformational  variations  are  highly  similar,  corresponding to  our

observations  in  Figure  6c and  Figure  6d.  In  order  to  test  the  robustness  of  our

classification algorithm, we changed the architecture  of the neural  network.  Different

numbers of hidden layers were added. For each layer, we further tried different numbers

of neurons. Detailed analysis results for different  architectures of neural networks are
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summarized in the supplemental  Figure S2. The figure shows that similar patterns of

accuracy  for  all  linker  pairs  were  obtained  from  different  architectures  of  network

models, indicating the robustness of our classification results.

The time interval used to construct the conformational variations for the neural

network was fixed at 1 ns. In order to test the protein dynamics under a longer timescale,

we  generated  the  conformational  variations  of  proteins  with  different  values  of  time

intervals and fed them into the neural network. Figure 7b shows the classification results

between linker GS15 and GS30 when the time interval increased from 1 ns to 100 ns. For

each data point, the accuracy was calculated based on the cross-validation results. The

accuracy and time intervals are plotted as x and y coordinates of the curve. The figure

shows that the accuracy drops rapidly when the time interval increases from 1 ns to 10 ns.

After 10 ns, however, the accuracy is gradually stabilized and oscillates around a lower

value.  This  result  suggests  that  the  differences  in  conformational  variations  between

linker GS15 and GS30 are larger within a relatively shorter time scale than 10 ns.

Based  on  the  pairwise  comparison  of  dynamic  similarity  between  every  two

linkers in the benchmark, hierarchical clustering was further applied to organize these

linkers into a higher-level structure. More specifically, the top-down divisive clustering

algorithm was adopted. All six linkers were initially placed in one cluster. It was then

split  into  two  by  a  flat  clustering  method  and  the  similarity  among  all  linkers,

corresponding to the accuracy calculated by neural network classification. The splitting

process was iterated until each linker was in its own singleton cluster. As a result, the

linkers with the lowest similarity were divided first, while the most similar linkers were

placed in different branches on the lowest level. The clustering result was plotted as a

phylogenetic tree  in Figure 7c. The figure suggests that the six linkers in the benchmark

can be split into two large groups. The first one contains GS15, PLP15, and PLPII15, in

which PLP15 and PLPII15 are more similar  in  terms of their  effect  on the protein’s

global conformational dynamics. Thus, these two linkers form a further subgroup. The

other group contains the remaining three linkers—GS30, PLPII30, and PLrigid. Within

this  group,  the  conformational  dynamics  mediated  by  GS30  and  PLPII30  are  more

similar, so they are put into a subgroup. We found that the first group contains all small
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linkers with 15 amino acids,  but they are further separated based on flexibility.  As a

result, all longer linkers are in the second group, in which they are divided again based on

the number of amino acids in each linker. Therefore, our results suggest that the length of

linkers  (number  of  amino  acids  in  the  linkers)  used  to  spatially  separate  different

functional modules play the most important role in regulating the dynamics of proteins.

Given the same number of amino acids, linker flexibility—caused by the types of amino

acids in the linkers—can function as a regulator of protein dynamics at the next level.

Concluding Discussion

Polypeptide linkers are used to spatially tether two contiguous protein domains.

They allow sufficient flexibility in multi-domain proteins, facilitating versatile functions

through regulating their inter-domain motions . Domain linkers can vary in composition,

length, and structure. As a result, we constructed a benchmark that contains six different

types of peptide segments. They are formed either by repeats of flexible and hydrophilic

residues or by repeats of more rigid and hydrophobic ones. To test the impacts of these

linkers on the dynamics of multi-domain proteins, we applied the benchmark to fusion

proteins in which two functional modules are artificially connected with different linkers.

The microsecond dynamics of all fusion proteins were simulated by a supercomputer at

the atomic level. We showed that all six systems in the benchmark undergo large global

conformational  fluctuations,  even if  the local  structures of some linkers are relatively

well-preserved. The large-scale motions between the two functional modules were further

described  by a  limited  number  of  coarse-grained  degrees  of  freedom.  The  variations

along these degrees of freedom are used as input for a multi-layer  neural network to

identify  proteins  with  different  linkers.  While  the  AI  algorithm  could  successfully

recognize the difference between some linkers, it failed in some other cases, indicating

that  the  inter-domain  dynamics  between  these  linkers  are  highly  similar.  After  the

similarities of dynamics between all pairs of six linkers were calculated, they could be

hierarchically classified into a tree-like topology. We found a correlation between the

hierarchical structure and the linker properties, suggesting that a linker is an important

determinant  in  mediating  the  dynamics  of  this  multi-domain  protein.  Altogether,  we
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demonstrated the feasibility of a new computational strategy to study protein dynamics

by a combination of long timescale MD simulation, coarse-grained modeling, and AI.

This  paper  demonstrated  the  possibility  of  analyzing  protein  dynamics  by

combining MD simulation with AI. We admit that the algorithms applied in our study or

their parameters might not be the optimal choices. For instance, CHARMM36m is the

force field used in our all-atom MD simulation. It is the recently updated version of the

original CHARMM36 force field . CHARMM36m has been shown to greatly improve

the  structural  properties  of  conformational  ensembles  generated  for  small,  disordered

peptides. However, we noticed the availability of other force fields that can also be used

to  simulate  multi-domain  proteins  with  disordered  linkers.  In  particular,  a  newly

developed  force  field  called  Amber99SB-disp  has  been  benchmarked  to  attain  high

accuracy in simulations of disordered proteins . This force field used the combination of

the TIP4P-D water model and the Amber99SB-ILDN force field as a starting point. The

parameters  in torsional  angles,  as well  as in  the Van der Waals  interactions  between

protein  and  water,  were  then  optimized  iteratively  until  the  observed  discrepancies

between simulations and experimental measurements were minimized on a benchmark

dataset. It would be interesting to compare the dynamic properties of domain linkers from

MD simulations generated from these different force fields.

The  neural  network  model  was  selected  in  this  study  simply  as  a  tool  to

distinguish the dynamics between different linkers. This task can be carried out by many

other classification algorithms,  including principal  component  analysis  (PCA) and the

classifier  based on Kullback–Leibler (KL) divergence or Mahalanobis distance.  Given

the distributions of conformational variations in all six linkers, as illustrated in Figure S3,

we  admit  that  the  similar  classification  results  can  be  archived  by  these  traditional

methods. Therefore, for the datasets compared in current study, the neural network model

is not computationally superior. However, as the future extension to more complicated

systems with a higher level of divergence in the dynamics of linker regions, we expect

that  the  neural-network-based  model  would  provide  more  insights.  PCA  is  more

commonly used for high-dimensional datasets. It is not very efficient for application to

our vector space, which only contains six degrees of freedom. The classifiers based on
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Mahalanobis  distance  or  KL  divergence  assume  that  the  underlying  probabilities  of

comparing datasets follow Gaussian distributions . In contrast, there are no assumptions

regarding the underlying distributions of datasets for neural network–based classifiers. As

a  result,  they  are  more  flexible  in  identifying  datasets  with  unknown or  complicated

distribution functions. There are other more advanced machine learning–based algorithms

for data classification,  such as supporting vector machine (SVM) and random forest .

However, a systematic comparison of performance among these approaches is beyond the

scope of this paper. Finally, it is worth mentioning that ENCORE is a software package

that  was  recently  developed  to  compare  conformational  ensembles  generated  from

computational simulations . It would be interesting to apply ENCORE to the structural

ensemble derived by this study and compare the outputs with our neural network model.

In order to verify whether the 2 µs MD simulations  reached convergence,  we

calculated  the  root-mean-squared  average  correlation  (RAC) for  all  six  systems.  The

RAC function as recently developed to quantitatively analyze the convergence of time-

series data under different time scales of a single trajectory . A more detailed definition of

RAC can be found in the Supporting Information and supplemental Figure S1. Figure

S1a shows that all calculated RAC curves decay as time interval increases. In order to

further assess the convergence within a given simulation more carefully, we plotted the

amplitude of slope in the RAC curves of all six systems in Figure S1b. The figure shows

that the slopes of all RAC curves approach to zero when the length of time intervals

increases to its maximal value. A closer look to the slope of RAC curves at the longest

time scales is plotted by the inserted panel. The figure shows that although the amplitudes

of slopes in all six systems are very small,  they are still  above 0, as indicated by the

orange dashed line in the panel. This result suggests that the MD simulations in these six

systems have not completely converged yet. This observation, however, would not affect

the  major  conclusion  drawn  from  our  classification  results.  Instead  of  the  entire

conformational  distributions,  we  are  mainly  focusing  on  the  global  conformational

changes  of  a  fusion  protein  within  a  short  time  scale  of  nanosecond,  and  further

comparing  these  changes  among  proteins  with  different  linkers.  The  uniform  or

Gaussian-like distributions of these conformational changes (Figure S3) indicate that the

statistical  convergence  about  the  information  of  nanosecond-scale  conformational
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changes has been captured. The differences of conformational changes between linkers

can  further  be  appropriately  characterized  by  the  variations  in  these  distributions.

Therefore, we believe that our classification results would not be significantly changed

by using MD simulations with longer timescale.

We have shown that the dynamics of bi-specific biologics studied in this work are

closely related to the properties of the linker region. The dynamic properties of different

linkers  can be validated  by various  experimental  approaches.  For  instance,  the  linker

dynamics embedded in the structure ensembles generated from MD simulations can be

captured by the profiles derived from small angle scattering (SAXS) experiments . The

conformational  dynamics  of  linkers  are  also  reflected  by  variations  in  the  distance

between MHC and PD-L1, which can be validated by experiments, such as fluorescent

resonance energy transfer (FRET) experiments. By further assuming that biologics with

linkers of similar dynamic features have similar binding properties with their targeted

receptors, our results offer the possibility to design linkers of multi-specific biologics so

that their binding behaviors can be modulated. For instance, intuitively, the linkers in the

subgroups  of  GS30  and PLPII30  can  capture  more  cell  surface  receptors  than  other

groups can due to their ability to search the local conformational space more thoroughly.

As a result, we expect that these types of linkers are more sensitive to mediate the T cell

co-regulatory pathways; this prediction can potentially be validated by T cell stimulation

assays. The detailed analysis of how different linkers can regulate the binding between

biologics and their corresponding receptors on T cell surfaces is beyond the scope of this

work.  Such research  will  be  conducted  in  a  follow-up study that  integrates  the  MD

simulations into our previously developed multiscale modeling framework .

Finally,  our  method serves  as  a  foundation  to  evaluate  the  dynamics  of  other

multi-domain biologics in which linkers are used to fuse different protein modulators. For

instance, bi-specific T cell engagers (BiTEs) are a class of immunotherapeutic molecules

that stimulate cytokine production by physically linking a T cell to a tumor cell . These

molecules are also constructed of two protein fragments connected by a linker. While one

fragment binds to a T cell-specific molecule, such as CD3, the other binds to an antigen

on tumor  cells.  By future  extension  of  our  method,  we will  be  able  to  estimate  the
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impacts of linkers on the dynamics of these systems and provide further insights into their

effectiveness in T cell activation and tumor killing.
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Figure Legends

Figure 1: In our test  system, we computationally  fused two functionally independent

protein modules with six types of peptide linker. The structural models of these fusion

proteins are shown in the figure. One module of the fusion proteins is MHC, which is

shown in red, while the other is PD-L1, shown in green. The linkers connecting these two

modules are shown in gray. The names of these linkers are as follows:  (a) GS15,  (b)

GS30, (c) PLP15, (d) PLPII15, (e) PLPII30, and (f) PLrigid. We further coarse-grained

these protein structures by a vector-based model so that the variations of protein structure

between two functional modules could be represented by six internal coordinates (g).

Figure 2: We analyzed the RMSD of six proteins from their MD simulation results. The

local  RMSD  of  the  residues  only  in  the  linkers  are  plotted  in  (a) as  a  function  of

simulation time. The global RMSD for all residues in the fusion proteins is plotted in (b).

The colors of the curves correspond to the type of linkers, which are given on top of the

figure. The figure shows that the levels of local structural dynamics are highly dependent

on the sequence composition of different linkers. In contrast, the orientations between

two modules show large fluctuations for all six fusion proteins, even if the linker is rigid.

Figure 3: The linker  of  PLrigid  shows a transition  from low RMSD to high RMSD

around 0.15 µs after equilibrium. Some snapshots of the linker configuration were taken

from the trajectory around this time window. These snapshots indicate that the linker still

had the helical structure at the time of 0.125 µs after equilibrium (a). However, soon after

that, the secondary structure at both ends of the linker started to melt, as shown in (b) and

(c). At 0.2 µs after equilibrium, all hydrogen bonds in the helical structure of the linker

were broken (d).

Figure 4: We notice that although the local RMSD of linker PLP15 is lower than 2 Å

through all the 2 µs simulations, the global RMSD of the entire protein with PLP15 linker

on average is around 20 Å. Therefore, a few snapshots were taken from the trajectory of

the protein with linker PLP15 to show its dynamics of global configuration. The snapshot

in (a) is at the time of 0.25 µs after equilibrium. The snapshot in (b) is at the time of 0.5

µs after equilibrium. The snapshot in  (c) is at the time of 1.0 µs after equilibrium. The
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snapshot in (d) is at the time of 2.0 µs after equilibrium. The MHC module is highlighted

in red, while the PD-L1 module is highlighted in green, and the linker in the middle is

highlighted in gray.

Figure 5: We calculated the conformational distribution along the six internal degrees of

freedom  from  the  MD  simulations  and  compared  them  between  different  linkers.

Specifically,  the  distribution  of  linker  length  r  in  the  protein  with  linker  PLP15  is

compared with linker GS30 in (a). Similarly, the comparisons of two packing angles and

dihedral between these two linkers are plotted in (b) and (c), respectively.

Figure 6: Information about protein conformational changes within a given time window

was  obtained  by  analyzing  the  variations  of  six  internal  coordinates  within  the  time

window Δt. We calculated these variations along six internal coordinates and compared

them across systems with different types of linkers. Specifically, the variations of linker

length are compared between GS15 and GS30 in (a). In (b), we show the comparison of

these two linkers for their variations in packing angle θ1. In (c) and (d), the variations of

linker  length  and  packing  angle  θ1 are  compared  between  PLP15  and  PLPII15,

respectively.

Figure 7: We applied the neural network algorithm to estimate the dynamic similarity

between  all  six  different  types  of  linkers  in  the  benchmark.  For  a  specific  pair,  we

calculated  the  accuracy  of  classification  from  the  cross-validation.  All  pairwise

combinations of calculated accuracy are plotted as a two-dimensional matrix in (a). We

further  increased  the  time  interval  from 1  ns  to  100  ns.  For  each  time  interval,  we

calculated the accuracy based on the cross-validation results. The accuracy to identify

GS15 from GS30 is plotted in  (b)  as a function of time interval. Finally, based on the

pairwise comparison of similarity among all linkers, we organized them into a hierarchic

structure, which is plotted as a phylogenetic tree in (c).
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Figure 1
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Figure 2
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Figure 3
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Figure 4
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Figure 5
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Figure 6
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Figure 7
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Linker Name Dynamic Property Initial Structure Sequence

GS15 Flexible Loop (GGGGS)×3

GS30 Flexible Loop (GGGGS)×6

PLP15 Rigid Right-handed helix 15 prolines

PLPII15 Medium Left-handed helix 15 prolines

PLPII30 Medium Left-handed helix 30 prolines

PLrigid Rigid Right-handed helix (EAAAR)×4

Table 1: Detailed information about the six linkers used in this study
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