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Abstract 18 

1. A time-consuming challenge faced by camera trap practitioners is the extraction of 19 

meaningful data from images to inform ecological management. An increasingly popular 20 

solution is automated image classification software. However, most software solutions are 21 

not sufficiently robust to be deployed on a large scale due to lack of location invariance 22 
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when transferring models between sites. This prevents optimal use of ecological data and 23 

results in significant expenditure of time and resources to annotate and retrain deep 24 

learning models.   25 

2. In this study, we aimed to (a) assess the value of publicly available image datasets in the 26 

training of deep learning models for camera trap object detection focusing on images 27 

obtained from FlickR and iNaturalist (FiN), (b) develop a method to be used by ecologists to 28 

train location invariant image processing object detection models and (c) explore the use of 29 

small subsets of camera trap images in the optimization of FiN training. 30 

3. We collected and annotated 3 datasets of images of the following classes; striped hyena, 31 

rhinoceros and pig, from the image sharing websites, and used transfer learning to train 3 32 

object detection models in the task of animal detection. We compared the performance of 33 

these models to the performance of 3 models trained on the Wildlife Conservation Society 34 

and Camera CATalogue datasets, when tested on out of sample Snapshot Serengeti datasets. 35 

Furthermore, we explored optimization of the FiN trained models via infusion of small 36 

subsets of camera trap images to increase robustness for challenging detection cases.  37 

4. In all experiments, the mean Average Precision (mAP) of the FiN trained models was 38 

significantly higher (82.33-88.59%) than that achieved by the models trained only on 39 

camera trap datasets (38.5-66.74%).  The infusion of camera trap images into FiN training 40 

further improved mAP, with increases ranging from 1.78-32.08%. 41 

5. Ecology researchers can use FiN images for training deep learning object detection 42 

solutions for camera trap image processing to develop location invariant, robust, out-of-the-43 

box software. This would allow AI technologies to be deployed on a large scale in ecological 44 

applications. Datasets and code related to this study are open source and available on this 45 

repository: https://github.com/ashep29/infusion  46 

 47 

https://github.com/ashep29/infusion


 48 

1. Introduction 49 

Automated survey methods such as camera trapping and passive acoustic monitoring are 50 

widely used in ecological research (Rovero and Zimmermann 2016, Sugai, Silva et al. 2018, 51 

Gibb, Browning et al. 2019). These methods provide invaluable insight into a plethora of 52 

ecological information including species occurrence, activity patterns and behavior 53 

(O'Connell, Nichols et al. 2011). However, they often result in the collection of large 54 

quantities of data, which must be processed, requiring a significant commitment of time and 55 

resources for manual or supervised classification (Swinnen, Reijniers et al. 2014, Young, 56 

Rode-Margono et al. 2018). Reducing the processing time and resources necessary for 57 

traditional data analysis such as manual analysis and citizen science (Swanson, Kosmala et 58 

al. 2015, Nguyen, Maclagan et al. 2017) has prompted increasing research into the adoption 59 

of Artificial Intelligence (AI) software in automated data classification (Falzon, Meek et al. 60 

2014, Norouzzadeh, Nguyen et al. 2018, Willi, Pitman et al. 2018). 61 

 62 

Object detector and image classifier software (models) have already been adopted to some 63 

extent in the processing of camera trap images (Yu, Jiangping et al. 2013, Gomez Villa, 64 

Salazar et al. 2016, Norouzzadeh, Nguyen et al. 2018, Willi, Pitman et al. 2018, Tabak, 65 

Norouzzadeh et al. 2019, Falzon, Lawson et al. 2020). These tools rely on data-driven deep 66 

learning to identify complex patterns which can be used for classification without feature 67 

engineering as described by (Miao, Gaynor et al. 2019). However, most solutions presented 68 

thus far have shown limited transferability to image data outside the domain of the training 69 

data (Beery, Van Horn et al. 2018, Willi, Pitman et al. 2018). This results in the need to 70 

develop models specific to each domain, however this process is time and resource 71 

intensive, requiring repeated collection and manual annotation of camera trap data, and 72 



computationally expensive training of deep neural networks (Falzon, Lawson et al. 2020). 73 

Thus, there is a clear need to develop location invariant object detectors, which are deep 74 

learning models that can be transferred from one location to another, achieving acceptable 75 

results without having to be retrained. Such out-of-the-box solutions are attractive due to 76 

their potential for extensive application, particularly in circumstances where the 77 

development of domain or study-specific models is prohibitively expensive or otherwise 78 

unattainable. 79 

 80 

Achieving location invariance requires training data to be characterized by high intra-81 

dataset variability. This is because neural networks learn patterns in data, meaning low 82 

intra-dataset variability can result in learning of domain specific features such as camera 83 

angle, lighting, and vegetation, reducing location invariance (Torralba and Sinha 2003, Miao, 84 

Gaynor et al. 2019, Singh, Lindshield et al. 2020). Therefore, camera trap images must be 85 

obtained from many sources to be able to train effective object detectors and classifiers. 86 

However, the process of collecting camera trap images from an extensive network of 87 

cameras from many domains is time and resource intensive and may be unfeasible for 88 

smaller scale studies or those focusing on rare or elusive species. Even when researchers 89 

have access to camera trap network, collecting enough images for training object detectors 90 

can prove difficult. (Maurice 2019) deployed 15 cameras for 2 months resulting in the 91 

collection of only 41 images of the pangolin (the target species), a number which would be 92 

insufficient for effective neural network training (Shahinfar, Meek et al. 2020). Other factors 93 

which limit the accessibility and availability of camera trap images include the reticence of 94 

researchers to share existing camera trap data, or lack of data for novel species studies. 95 

 96 

These limitations in data accessibility and availability limit the adoption of automated AI 97 



solutions in ecological camera trap image processing (Schneider, Taylor et al. 2018). Thus, 98 

alternative data sources must be identified and evaluated to assist in the development of 99 

object detectors capable of being deployed in any domain, at any location, achieving 100 

acceptable results regardless of camera trap image availability. Possible solutions include 101 

publicly available sources of animal imagery, such as FlickR (flickr.com) and iNaturalist 102 

(inaturalist.org). FlickR is a consumer photo sharing website, hosting approximately 10 103 

billion images, shared by over 90 million monthly users. It is characterized by high intra-104 

dataset variability, high accessibility and a wide range of species types in highly varying 105 

contexts, with minimal unintentional bias, as images are not collected for a specific purpose 106 

(Everingham, Van Gool et al. 2010). It is arguably the most extensively used source of image 107 

data in object detection benchmark datasets, including ImageNet (Deng, Dong et al. 2009), 108 

MS COCO (Lin, Maire et al. 2014), the Open Images Dataset (Kuznetsova, Rom et al. 2020) 109 

and PASCAL VOC (Everingham, Van Gool et al. 2010). iNaturalist contains over 45 million 110 

observations of biodiversity data including both flora and fauna. Labelling of images on 111 

iNaturalist may be more accurate than FlickR due to its purpose as a biodiversity data 112 

sharing website and it does contain more camera trap images than FlickR. Other potential 113 

image sources include Pinterest (www.pinterest.com), Imgur (www.imgur.com), pixabay 114 

(www.pixabay.com) and 500px (www.web.500px.com). These image sources are highly 115 

beneficial in training general, location invariant neural networks as they exhibit an 116 

extensive range of contextual features, not necessarily present in camera trap imagery. 117 

 118 

Despite their benefits as out-of-the-box solutions, universal or general object detectors 119 

usually fail to achieve the high accuracy attainable by domain-specific object detectors 120 

(Rebuffi, Bilen et al. 2017, Wang, Cai et al. 2019). Due to the need to achieve high accuracy 121 

object detection and classification in ecological research, it may therefore be necessary to 122 



optimize location invariant models for domain-specific studies. This is particularly relevant 123 

when processing camera trap imagery characterized by features which differ strongly from 124 

non-camera trap data, including infrared imagery, poor quality illumination and blurry 125 

images. 126 

 127 

Therefore the aims of this study are twofold: 128 

 129 

In this study, we will demonstrate our proposed approach on three single class applications. 130 

The rare species Striped Hyena (Hyaena hyaena) was chosen due to the sparsity of camera 131 

trap training data, and the difficulty in discriminating between the striped hyena and the 132 

more common spotted hyena. Furthermore, other studies have highlighted it as a species of 133 

particular interest due to the difficulty they faced in detecting its presence in camera trap 134 

images, for example, (Willi, Pitman et al. 2018) failed to detect any of the 27 striped hyenas 135 

present in their test dataset. Next, the iconic and critically endangered Rhinoceros 136 

(Rhinocerotidae) was also chosen, due to the high research interest in monitoring its 137 

prevalence and changes in populations. Finally, the pest family Suidae (pigs, boars and hogs) 138 

was included due to the significant role it plays across global ecosystems and its host status 139 

for a range of diseases such as Swine Fever, which are a major threat to agricultural 140 

industries. 141 

i) To evaluate the use of publicly available image sources, in the development 

of location invariant camera trap object detectors. 

ii) To develop an optimization strategy dubbed ‘infusion’ to improve the 

performance of location invariant object detectors in domain-specific 

applications. 



2. Related Work 142 

a. Traditional Methods: Manual Analysis and Citizen Science 143 

The majority of camera trap image processing is achieved by manual analysis 144 

conducted by ecologists, or via citizen science. Manual analysis involves the use of 145 

software programs to manually tag animals in images/capture events. Each image 146 

sequence or capture event is treated as a detection, and the ecologist must manually 147 

select a tag reflecting the identity of the animal. Once tagging is complete, a 148 

verification process is undertaken to identify and correct mistaken classifications. 149 

These tagged images can then be interrogated according to the purpose of the study, 150 

using tools such as R scripts, or specially developed GUI programs. Manual analysis 151 

of images is a significant resource demand on ecologists and research teams, 152 

requiring large expenditures in time and resources, hindering effective biodiversity 153 

management.  154 

 155 

This time-consuming task may also be undertaken by citizen scientists, who are 156 

volunteers that contribute to scientific enquiry by collecting or processing image 157 

data (Nguyen, Maclagan et al. 2017). Large citizen science-based programs such as 158 

Zooniverse (www.zooniverse.org) enable the effective classification of millions of 159 

camera trap images (Jones, Allen et al. 2018). Citizen science projects have many 160 

benefits for researchers including customization of projects and annotation 161 

requirements in accordance with the aims of projects. However, the effectiveness of 162 

citizen science in rapidly processing large volumes of image data with sufficient 163 

accuracy is limited (Meek and Zimmerman 2016), causing large delays between the 164 

data collection and interpretation stages, which may be detrimental to ecological 165 

management (Fox, Bourn et al. 2019). Furthermore, the need to upload significant 166 



amounts of data onto publicly accessible websites may pose privacy risks (Sagarra, 167 

Gutiérrez-Roig et al. 2015) or poaching concerns and undermine the protection of 168 

rare or endangered species by revealing their geographical location and behavioral 169 

habits to poachers (Falzon, Lawson et al. 2020). 170 

 171 

b. Automated Image Processing Using Deep Learning   172 

Due to the shortcomings of traditional methods, research has centered primarily on 173 

integration of automated image processing within camera trap research (Meek, 174 

Fleming et al. 2014, Meek, Ballard et al. 2015, Fegraus and MacCarthy 2016, Willi, 175 

Pitman et al. 2018, Young, Rode-Margono et al. 2018). To achieve this, neural 176 

networks such as Deep Convolutional Neural Networks (DCNNs) are trained on 177 

large amounts of annotated image data (thousands to millions of images) to 178 

recognize discriminative features belonging to target classes (Zhao, Zheng et al. 179 

2019). Handcrafted features specified by researchers are not used, instead the 180 

features are ‘learned’ via updating of weights during training. When the DCNN is 181 

confident in the presence of an object in an image, it maps bounding boxes, 182 

segmentation masks, or classification labels to the image or object (Ren, He et al. 183 

2015).  If a DCNN is very deep, consisting of many layers, it will have many trainable 184 

parameters (usually millions) which gives rise to the need for large annotated image 185 

datasets used in training these parameters from scratch. This is necessary for the 186 

network to learn complex features (Samala, Chan et al. 2016). Although DCNNs can 187 

be used to classify data with high accuracy, their usability can be limited by 188 

insufficient training data which may lead to overfitting (memorization of training 189 

data), and consequently, inability of the model to generalize to new data (Zhao 190 

2017).  191 



 192 

Early attempts at automated camera trap classification and object detection tasks 193 

using neural networks were dependent on significant amounts of pre-processing 194 

(Yu, Jiangping et al. 2013) and resulted in relatively poor accuracy (Swinnen, 195 

Reijniers et al. 2014, Chen, Han et al. 2015). However, most modern solutions use 196 

minimal pre-processing, or automate pre-processing (Giraldo Zuluaga, Salazar et al. 197 

2017). Accuracy and recall attained by deep learning solutions is also increasing 198 

significantly, as large annotated datasets become available and progress is achieved 199 

in training methods, such as the adoption of transfer learning (Gomez Villa, Salazar 200 

et al. 2016, Willi, Pitman et al. 2018). Transfer learning involves the repurposing of 201 

learned features for another task (Yosinski, Clune et al. 2014). This allows general 202 

features learned on a large, highly varied dataset such as ImageNet (Deng, Dong et 203 

al. 2009) which contains 3.2 million images, or Snapshot Serengeti (Swanson, 204 

Kosmala et al. 2015), which contains 7.3 million images to be transferred to a 205 

smaller, similar dataset containing only hundreds to thousands of images. Transfer 206 

learning has been shown to improve accuracy and the ability to generalize as well as 207 

reducing training time and the quantity of data needed (Khan, Hon et al. 2019). Its 208 

effectiveness in ecological camera trap applications has been established by 209 

(Norouzzadeh, Nguyen et al. 2017) and (Willi, Pitman et al. 2018). 210 

 211 

c. Image Classification vs. Object Detection 212 

The majority of camera trap image processing solutions achieve image classification 213 

rather than object detection (Gomez Villa, Salazar et al. 2016, Nguyen, Maclagan et 214 

al. 2017, Norouzzadeh, Nguyen et al. 2017, Willi, Pitman et al. 2018, Miao, Gaynor et 215 

al. 2019, Tabak, Norouzzadeh et al. 2019). Image classification is a process by which 216 



a whole image is labeled as containing a given object, for example, if a pig is featured 217 

in an image, it will be labelled ‘pig. However, image classification is limited in 218 

situations where an image contains more than one species, e.g. a pig and a 219 

wildebeest (Schneider, Taylor et al. 2018). Object localization and counting is also 220 

not effectively achieved by image classification and models tend to struggle to 221 

distinguish between an empty frame and a small background object (Yousif, Yuan et 222 

al. 2019). In contrast, object detection is the process of locating and identifying one 223 

or more objects in an image. The model plots bounding boxes of varying 224 

classification confidence and association class labels, around each object in an image 225 

(see Figure 1 for comparison). It is more useful than image classification because it 226 

allows more information to be extracted from the images, such as the number of 227 

objects in an image, as well as information about reproduction, distribution, 228 

quantification and comparison of behavior across individual animals within a 229 

species group based on factors such as age and gender (Schneider, Taylor et al. 230 

2018).  231 

 232 

Another major benefit of object detection is the reduced impact of background and 233 

environmental features on object classification. Unlike image classifiers, which learn 234 

patterns in the entire image, object detectors only learn patterns within the 235 

constraints of the bounding boxes, and actively negative sample on the image 236 

background (area not included in the bounding boxes) (Wang, Hu et al. 2019, Zhao, 237 

Zheng et al. 2019). This enables object detectors  to better generalize to new 238 

domains, thus facilitating location invariance. Despite these benefits, object 239 

detection necessitates a significantly higher expenditure of time and resources, due 240 

to the need to annotate all training images with bounding boxes and labels. 241 



Consequently, most studies achieve image classification rather than object 242 

detection. In contrast, due to the major benefits provided by object detectors for 243 

automated camera trap image processing , this study focuses on object detection 244 

rather than image classification. For a more detailed overview of available image 245 

classification methods, refer to Appendix S1.   246 

 247 

Several studies have achieved object detection in the context of camera trap image 248 

processing, however none have achieved location invariance, with testing using 249 

restricted to in-sample datasets. (Yousif, Yuan et al. 2019) employed sequence-level 250 

background subtraction using handcrafted Histogram of Oriented Gradient (HOG) 251 

(Dalal and Triggs 2005) features to localize moving objects in camera trap images. 252 

This study did not aim to identify animal species, instead simply distinguished 253 

between humans and animals, and eliminated empty frames. Although it achieved 254 

high accuracy in this task, its application was not extended beyond eastern North 255 

America.  256 

 257 

A novel ecological image processing software solution for use on a laptop by field 258 

ecologists and wildlife managers was developed by (Falzon, Lawson et al. 2020). It 259 

provides object detection and localization as well as species classification and object 260 

counting capabilities via training of YOLOv2 DarkNet-19 (Redmon and Farhadi 261 

2016) Deep Convolutional Neural Networks (DCNN) on both daytime and infrared 262 

imagery. It boasts fast processing speeds and acceptable accuracy, achieved on a 263 

local machine, within a dedicated on-demand application. Tailored models can be 264 

applied to trap sites in Australia, New Zealand, North America, Serengeti and the 265 

USA. However, optimal performance is only achieved when models are trained and 266 



developed for a specific environment, camera trap imaging configuration and 267 

species cohort. Thus, it suffers from lack of location invariance and robustness, as its 268 

accuracy and recall decrease significantly when it is used outside the scope of the 269 

environments on which it was trained.   270 

 271 

(Schneider, Taylor et al. 2018) addressed the problem of object detection in camera 272 

trap images, with the aim of identifying, quantifying and localizing animal species. 273 

They used transfer learning to train a YOLOv2 model, achieving recall of 93% and 274 

accuracy of 80.4% on the Reconyx (www.reconyx.com) and Snapshot Serengeti 275 

(Swanson, Kosmala et al. 2015) datasets. The Reconyx dataset contained 946 images 276 

of 20 species, while the Snapshot Serengeti dataset contained 4,097 images of 48 277 

species. They also trained a Faster R-CNN model (Ren, He et al. 2015) achieving 278 

76.7% recall and 72.2% accuracy. They used a model pretrained on the MS COCO 279 

dataset (Lin, Maire et al. 2014) to initialize transfer learning. However, the 280 

robustness of the model was not evaluated on out of sample images, which is 281 

camera trap imagery obtained from traps and geographical locations not included in 282 

the training data. It also suffered from class imbalance with lower accuracy and 283 

recall for classes with fewer instances. Our research indicates this limitation can be 284 

overcome by sourcing images from publicly available data sources.  285 

 286 

d. Improving Location Invariance via Dataset Construction 287 

The suboptimal performance and inability of neural networks to generalize to 288 

contexts beyond the domain of the training data is a strong area of research interest. 289 

As early as 2008, studies in contextual object detection examined the consequences 290 

of ‘unintentional regularities’ in datasets resulting in object detectors learning 291 



associations between objects and their backgrounds, inhibiting their ability to 292 

detect objects out of context (Hoiem, Efros et al. 2008, Sudderth, Torralba et al. 293 

2008). (Everingham, Van Gool et al. 2010) noted that classifiers tend to learn the 294 

context of an object rather than model the appearance of the object. Thus, when the 295 

object is dissociated with its context, the classifier fails to detect it due to extensive 296 

use of image composition and context, resulting in a significant drop in 297 

performance. These findings were confirmed by (Miao, Gaynor et al. 2019) in an 298 

ecological context via the use of GRAD-CAM technology applied to models trained 299 

solely on camera trap images, illustrating the tendency of neural networks to learn 300 

background features as elements of an object if image background and context is not 301 

highly varied. It is therefore essential to broaden the context of animal imagery to 302 

extend beyond a restricted range of camera traps to ensure robustness and location 303 

and context invariance.  304 

 305 

This phenomena of contextual association was also found by (Everingham, Van Gool 306 

et al. 2010) to be particularly prevalent in neural networks trained on images taken 307 

by researchers for a specific purpose. Consistencies within datasets, such as camera 308 

trap images collected within the context of a specific project, create an inner dataset 309 

bias, which results in the development of models less capable of generalization to 310 

other camera trap contexts. On this basis, we postulate that collection of camera 311 

trap images for neural network training mimics collection of images under 312 

laboratory or controlled conditions, whereby features such as lighting, camera 313 

angle, distance of objects from the camera, and background features are consistent 314 

across many images, thus encouraging contextual association. This is supported by 315 

(Willi, Pitman et al. 2018) who noted that their models, trained on camera trap 316 



images, would need to be retrained for use out of sample in other camera traps 317 

which did not form part of the training set. In contrast, networks trained on data 318 

sourced from consumer photo sharing websites such as FlickR are more capable of 319 

generalization (Torralba and Efros 2011) due to the inherently high intra-dataset 320 

variability and reduced likelihood of inner dataset bias.  321 

 322 

3. Datasets and Annotation 323 

The datasets used in this study were collated using images from FlickR and iNaturalist. We 324 

also used camera trap image datasets obtained from www.lila.science including Snapshot 325 

Serengeti (SS), Wildlife Conservation Society (WCS) Camera Traps, as well as other sites 326 

specified in more detail below. All datasets, annotations, and the algorithms used for dataset 327 

collection and processing, as well as auto-annotation of images are available here: 328 

https://github.com/ashep29/infusion. 329 

 330 

a. FlickR and iNaturalist 331 

We developed and used a Python script to download images from FlickR using the 332 

FlickR API. This allowed us to download images with multiple keywords at once. 333 

The keywords used are shown in Table 1. We downloaded a maximum of 200 334 

images per keyword, to maximize the variety of search results. Our datasets were 335 

restricted to Creative Commons images. We also developed a Python script to 336 

download images from iNaturalist using a csv file containing URLs of relevant 337 

observations downloaded from inaturalist.org.  338 

 339 

 340 

http://www.lila.science/
https://github.com/ashep29/infusion


Table 1: Keyword searches used to download images from FlickR and iNaturalist. 341 

Scientific names tended to return more accurately labelled images. 342 

Rhinocerotidae Hyaena hyaena Suidae 

diceros AND bicornis 

ceratotherium AND simum 

dicerorhinus AND 

sumatrensis 

white AND rhinoceros 

rhinoceros 

striped AND hyena 

Hyaena AND 

hyaena 

Phacochoerus AND africanus 

Sus AND scrofa 

sanglier 

warthog OR warthogs 

wild AND pig OR boar OR hog 

feral AND pig OR boar OR hog 

 343 

Duplicates and near duplicates were removed using a Structural Similarity Index  344 

(SSIM) (Zhou, Bovik et al. 2004) clustering algorithm we developed (see Appendix 345 

S4). We deleted all images with a similarity score above 0.8, where a score of 1.0 346 

represents a 100% similarity between 2 images. Near duplicates are images with 347 

strong visual similarity, containing only small distortions, slight variations and 348 

occlusions (Everingham, Van Gool et al. 2010). Interestingly, the datasets 349 

downloaded from FlickR and iNaturalist were mutually exclusive, with not one 350 

image present on one site, being also present on the other. Although this does not 351 

mean that images obtained from FlickR will not be available via iNaturalist, it does 352 

suggest that users of FlickR may often not be users of iNaturalist. Details about the 353 

final datasets are shown in Table 2. Subsamples of the final datasets are illustrated 354 

by Figure 1. 355 

 356 

 357 



Table 2: Final number of images obtained from FlickR and iNaturalist for both the 358 

single class and multi-class experiments, after duplicate removal and cleaning. 359 

Datasets are referred to hereon according to their source, abbreviated as FiN (FlickR-360 

iNaturalist) and class name. 361 

 362 

 363 

Figure 1: Subsamples of the FiN datasets. Top to bottom: striped hyena, rhinoceros, 364 

and pig. Images of were highly varied, and included both color/daytime and infrared 365 

images, as well as a large range of contexts and distances from the camera.  366 

 367 

b.  Camera Trap Datasets 368 

We obtained all camera trap data of rhinoceros and striped hyena from lila.science 369 

Dataset Name Class FlickR iNaturalist Total 

Images 

FiN_rhino Rhino 784 881 1665 

FiN_striped_hyena Striped 

hyena 

401 71 472 

FiN_pig Pig 606 0 606 



using a Python script we developed, which we have made available on our GitHub 370 

repository. We scoured all images of striped hyena and rhinoceros from both WCS 371 

Camera Traps (WCS_striped_hyena and WCS_rhino) and Snapshot Serengeti 372 

(SS_striped_hyena and SS_rhino) datasets (Swanson, Kosmala et al. 2015). We used 373 

the same script to obtain our EU_pig and NA_pig datasets from the Missouri Camera 374 

Traps (Zhang, He et al. 2016) and North American Camera Trap Images (Tabak, 375 

Norouzzadeh et al. 2018) datasets respectively, also from lila.science. A summary of 376 

all camera trap datasets is provided in Table 3. 377 

 378 

Table 3: Summary of the characteristics of the camera trap datasets used in this 379 

study. The term ‘quality’ refers to characteristics such as blurriness, pixilation, 380 

illumination etc. A poor-quality dataset will contain many images that are over or 381 

underexposed, blurriness caused by poor focus, or other features which make it harder 382 

to distinguish the identity of a target class and distort or damage key features. A visual 383 

subsample of these datasets is provided (see Figure 2). 384 

Dataset Source Location Size Characteristics 

WCS_striped_hyena Wildlife Conservation 

Society 

Multiple 582 Moderate quality 

Night and day 

SS_striped_hyena Snapshot Serengeti Tanzania 478 Moderate quality 

Infrared and day 

Includes partials 

WCS_rhino Wildlife Conservation 

Society 

Multiple 333 Low quality 

Mostly infrared 

Many partials 

SS_rhino Snapshot Serengeti Tanzania 153 Moderate quality 

Daytime 

Many partials 

AU_pig Custom NSW, 

Australia 

589 Low quality 

Mostly infrared 

High occlusion 

High density 

SS_pig Snapshot Serengeti Tanzania 574 Moderate quality 

Mostly daytime 



 385 

The SS_pig dataset is a subset of the Snapshot Serengeti dataset, and CC_pig is a 386 

subset of the Camera CATalogue project conducted by Panthera 387 

(www.panthera.org). Both are available from the Data Repository for the University 388 

of Minnesota, used by (Willi, Pitman et al. 2018) and released under a CC0 1.0 389 

Universal Public Domain Dedication license. The Australian pig dataset (AU_pig) is a 390 

custom dataset, obtained during feral pig trapping and control operations. More 391 

information about each dataset is provided in Table 3, and a subset is shown in 392 

Figure 2.  393 

 394 

 395 

CC_pig Camera CATalogue South 

Africa 

559 Moderate quality 

Partials 

Low density 

NA_pig North America 

Camera Trap Images 

United 

States 

514 High quality 

 

EU_pig Missouri Camera 

Traps 

Europe 501 Difficult 

High occlusion 

http://www.panthera.org/


Figure 2: Subsamples of the camera trap datasets. Top row: SS datasets, left to right; 396 

striped hyena, rhino, and pig. Middle row: WCS datasets, left to right; striped hyena, 397 

rhino, and pig. Bottom row: left; pig from NA_pig, middle; pigs from EU_pig and right; 398 

pigs from AU_pig. 399 

 400 

Each image in the final datasets were annotated with bounding boxes and corresponding 401 

class labels. Bounding box annotation involves the positioning of an axis aligned box 402 

surrounding an object. We used an auto-annotator tool we developed to roughly annotate 403 

all the images. We then edited any suboptimal bounding boxes using the graphical 404 

annotation tool labelImg (Tzutalin 2015)i to ensure all objects were correctly annotated. 405 

Annotations were saved in PASCAL VOC format.  406 

 407 

4. Training and Evaluation Methodology 408 

In this study, we conducted two major experiments. Firstly, we compared the performance 409 

of models trained on FlickR-iNaturalist (FiN) datasets only to those trained only on camera 410 

trap data using evaluation on out of sample test sets. Next, we optimized the FiN models by 411 

infusing small subsets of camera trap imagery into the FiN training set, evaluating 412 

performance on out of sample test sets. Details about the model architecture and training 413 

parameters are provided in Appendix S3. Additional information on transfer learning is also 414 

provided. The experiments outlined in this section were also verified on a multi-class 415 

application documented in Appendix S5.  416 

 417 

a. Comparison between FiN and Camera Trap Data in Developing Location 418 

Invariant Object Detectors 419 

To evaluate the potential for publicly available data from FlickR and iNaturalist to 420 



be used in the development of location invariant object detectors for camera trap 421 

image processing, we trained Keras-RetinaNet (Lin, Goyal et al. 2018) models on FiN 422 

datasets, and compared their performance to that of RetinaNet models trained on 423 

camera trap data when tested on out of sample camera trap images.  424 

 425 

We trained 3 single-class RetinaNet models on FiN datasets. These models are 426 

referred to as FiN_Classname, e.g. FiN_rhino refers to a rhino detector trained on FiN 427 

data. We also trained 2 single class (rhino and striped hyena) RetinaNet models 428 

using the WCS_striped_hyena and WCS_rhino datasets, as well as 4 pig detectors, on 429 

the AU_pig, CC_pig, NA_pig and EU_pig datasets. All models are named based on the 430 

source of their training data. Note, we were able to train 4 pig models due to greater 431 

availability of data when compared with rare species such as rhino and striped 432 

hyena.  433 

 434 

The datasets were randomly split into training and validation sets, with 90% of 435 

images reserved for training, and 10% used for validation. Each training set was 436 

supplemented with 800 explicit negative samples to improve discrimination 437 

between target species and non-target species or background. A detailed 438 

breakdown of the training and validation splits as well as the out of sample test set 439 

is provided in Table 4. 440 

 441 

Table 4: Data distribution for models trained on datasets obtained from 442 

FlickR/iNaturalist, abbreviated as FiN (FlickR-iNaturalist), and models trained using 443 

camera trap images alone abbreviated as follows; WCS (Wildlife Conservation 444 

Society), AU (Australia), NA (North America), CC (Camera CATalogue) and EU 445 



(Europe). All models were tested on out of sample images obtained from Snapshot 446 

Serengeti. 447 

 448  

 449 

 450 

 451 

 452 

 453 

 454 

 455 

All models were tested using out of sample images from the Snapshot Serengeti (SS) 456 

datasets, i.e. SS_striped_hyena, SS_rhino and SS_pig. Each test set was supplemented 457 

with 200 negative samples to prevent biased evaluation of false positives. These 458 

negative samples were derived from the Snapshot Serenget, and consisted of empty 459 

images, or images of non-target species.  For more information relating to the 460 

negative sampling data collection process, refer to Appendix S2. 461 

 462 

b. Infusion: Optimization of Location Invariant Models Using Camera Trap 463 

Imagery 464 

Next, we conducted experiments to evaluate an optimization process that would 465 

allow ecologists to improve object detection performance with minimal infusion of 466 

camera trap images into the FiN training set. Infusion is the process of 467 

supplementing the training set with a small subset of camera trap images, to 468 

improve robustness to the particularities of camera trap data, such as infrared, high 469 

Models Training set 

(90%) 

Validation set 

(10%) 

Out of Sample 

Test set (SS) 

FiN_striped_hyena 425 47 
478 

WCS_striped_hyena 524 58 

FiN_rhino 1499 166 
153 

WCS_rhino 300 33 

FiN_pig 545 61 

574 

 

AU_pig 530 59 

CC_pig 503 56 

NA_pig 463 51 

EU_pig 451 50 



occlusion, blurriness etc. Infusion was conducted both out of sample and in-sample. 470 

Out of sample results are presented in this manuscript. For in-sample results, refer 471 

to Appendix S6. 472 

 473 

Due to the large number of highly similar images present within camera trap 474 

datasets, the infusion subsets were not randomly selected. Instead, our SSIM 475 

algorithm was used to retain only images with low SSIM scores, with the aim of 476 

maximizing intra-dataset variability. The SSIM algorithm allowed us to randomly 477 

select one frame from each cluster of images (usually one capture event, or different 478 

capture events with very similar properties).  479 

 480 

 481 

Figure 3: Graphical illustration of image clustering using an SSIM algorithm. The test 482 

image represented by 1.0 is compared with every other image. Highly dissimilar 483 

images have low SSIM scores (<0.4). 484 

 485 



Our research indicates that image pairs with an SSIM value above 0.4 have 486 

sufficiently high similarity to be clustered. For example, Figure 3 illustrates the 487 

output of the SSIM algorithm graphically, clearly showing the three clusters formed 488 

by visually similar images, the image denoted by the arrow (the test image) is 489 

compared to each other image, with values closest to 1 indicating high similarity 490 

with the test image, This method allows researchers to compile highly varied 491 

datasets automatically, minimizing the need for extensive time-consuming image 492 

sorting and annotation. 493 

 494 

Out of sample infusion was conducted by training 4 additional models for each 495 

species, with incremental infusion of the SSIM sorted camera trap images from the 496 

WCS and CC datasets into the FiN training data. These images were added in 497 

increments of 5% from 5-20%, as shown by Table 5. For example, the FiN_rhino 498 

dataset comprised of 1665 images. To achieve 5% infusion, 83 images from the 499 

WCS_rhino dataset were added to the FiN_rhino dataset. 90% of these images were 500 

retained for training, with 10% reserved for monitoring training via the validation 501 

set. This process was repeated for all percentiles and species shown in Table 5. 502 

 503 



Table 5: Incremental infusion of camera trap images into FiN training. An additional 504 

800 negative samples were included in the training set. Models are named according 505 

to the class name and infusion percentile. Note the infusion images are trap images. 506 

The infusion training set is made up of FiN + infusion images. The validation set is FiN 507 

validation + infusion images. 508 

 509 

The models were then tested on the out of sample Snapshot Serengeti test sets 510 

presented in Section 4(a). Both the training and test sets were supplemented with 511 

negative samples as described in Section 4(a).  512 

 513 

c. Model Evaluation 514 

To evaluate the performance of our models, mean Average Precision (mAP) results 515 

will be provided. mAP is calculated as documented in the PASCAL VOC benchmark 516 

(Everingham, Van Gool et al. 2010). A high mAP indicates that the model is detecting 517 

the majority of objects with high accuracy, and minimal retention of false positives. 518 

Accuracy is measured using Intersection over Union (IoU), which is a measure of the 519 

Class Model name 

Infusion 

Source 

No 

infusion 

images 

Infusion 

training 

set 

Infusion 

Validation 

set 

Hyaena 

hyaena_inf_05 

WCS_hyena 

24 446 50 

hyaena_inf_10 47 467 52 

hyaena_inf_15 71 489 54 

hyaena_inf_20 94 509 57 

Rhino 

rhino_inf_05 

WCS_rhino 

83 1573 175 

rhino_inf_10 167 1649 183 

rhino_inf_15 250 1723 192 

rhino_inf_20 333 1798 200 

Pig  

pig_inf_05 

CC_pig 

30 572 64 

pig_inf_10 61 600 67 

pig_inf_15 91 627 70 

pig_inf_20 121 654 73 



overlap between the detection box and the ground truth bounding box.  520 

 521 

5. Results 522 

a. Comparison between FiN and Camera Trap Data in Developing Location 523 

Invariant Object Detectors 524 

The results of training on FiN data compared with training on camera trap data are 525 

presented in Figure 4. All results were collected on the out of sample Snapshot 526 

Serengeti test sets. The models trained on FiN datasets achieved mAP results 527 

ranging between 82.33% and 88.59%, while the models trained on camera trap data  528 

achieved mAP results ranging from 38.5% to 66.74%. In all cases, the FiN models 529 

outperformed the models trained on camera trap images.  530 

 531 

 532 

Figure 4: Comparison of the mAP results achieved by the models trained on FiN data, 533 

and those trained on camera trap datasets. In all cases, the FiN models outperformed 534 
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the camera trap models.  535 

 536 

The FiN_pig model achieved a mAP of 88.59% when tested on the out of sample 537 

SS_pig dataset. This was far superior to the CC_pig model, which was trained on 538 

camera trap images of warthogs from the Camera CATalogue  (CC) dataset, 539 

achieving a mAP of only 53.87%. Although both the CC_pig dataset and the SS_pig 540 

dataset contained the same subspecies (Phacochoerus africanus), the CC_pig model 541 

did not generalize well to the SS_pig test set. This may be because the SS_pig dataset 542 

was characterized by more variation in background, greater variation in the 543 

distance of pigs from the camera and greater contrast. Notably, the worst 544 

performing pig model was trained on data from Australia (AU_pig). This is very 545 

likely due to the large number of low quality infrared images present in the training 546 

data, which encouraged the model to return a high rate of false positives, and the 547 

large disparity between contextual features such as vegetation and species type (the 548 

Australia subspecies was Sus scrofa, while the SS subspecies was Phacochoerus 549 

africanus).  550 

 551 

In comparison, the significantly greater intra-dataset variability present in the FiN 552 

datasets allowed for better model generalization when compared to the models 553 

trained only on single location camera trap data. This trend was observed across all 554 

classes, with the FiN_striped_hyena and FiN_rhino models significantly 555 

outperforming the WCS_striped_hyena and WCS_rhino models.   556 

 557 

 558 



b. Infusion: Optimization of Location Invariant Models Using Camera Trap 559 

Imagery 560 

The results presented in the previous section indicate that the models trained on 561 

FiN datasets can be used to effectively process images collected at any camera trap 562 

site with an acceptable level of location invariance. However, camera trap images 563 

possess particular characteristics which differentiate them from FiN images. In 564 

difficult cases, the mAP achieved by FiN models may not be sufficiently high for 565 

practical purposes, particularly when higher confidence thresholds are used, for 566 

example, for a given study, the confidence threshold may be set to 50%, meaning all 567 

detections with a classification score lower than 50% would be ignored. Thus, we 568 

present the results of our infusion optimization experiments, illustrated by Figure 5. 569 

In all cases, infusion resulted in an increase in mAP when evaluated on out of 570 

sample images.  571 

 572 



 573 

Figure 5: Results of the infusion experiments on the out of sample SS test set. Infusion 574 

resulted in improvement across all models, particularly when evaluated at higher 575 

confidence thresholds. Infusion of 5% significantly improves performance, however 576 

optimum performance occurs at 10-15%, with the mAP results plateauing beyond 577 

15%. 578 

 579 

At a confidence threshold of 5% (the standard threshold for mAP measurement (Lin, 580 

Goyal et al. 2018)), out of sample infusion did not result in a pronounced 581 
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improvement, with gains in mAP results ranging from 1.78-3.73%. However, in 582 

practical deployment, a confidence threshold of 5% would rarely be used, with 583 

ecologists favoring higher thresholds to ensure confident classification of species. It 584 

is at these higher thresholds that the benefits of infusion are best demonstrated. For 585 

example, at a confidence threshold of 30%, the mAP improved by 7.08-16.54%, 586 

while at a confidence threshold of 50% it improved by 9.11- 32.08%. It is well 587 

established that increasing the confidence threshold decreases recall (the number of 588 

true positives retained in the final output), and consequently decreases mAP (Willi, 589 

Pitman et al. 2018). Note, we did not conduct evaluations of the models at 590 

confidence thresholds above 50% because almost all detections with scores above 591 

50% were true positives, which meant increasing the threshold simply removed 592 

true positives. Selecting a confidence threshold for a given application is highly 593 

dependent on the quality of training data, extent of negative sampling and the model 594 

used. The supplementation of FiN training with out of sample camera trap imagery 595 

is therefore highly beneficial as it allows more true positives to be retained, because 596 

the overall confidence of correctly detected objects is improved. This is a result of 597 

the improved robustness to the particularities of camera trap imagery.   598 

 599 

The results presented in Figure 5 indicate that the addition of a small percentage of 600 

camera trap images into the FiN training dataset can significantly improve 601 

performance. In most cases, the greatest improvement occurred with infusion of 602 

5%, with performance continuing to improve as infusion was increased to 15%. As 603 

infusion was increased beyond 15%, performance plateaued, or decreased, with 604 

only 4 out of 9 results improving beyond 15%. 605 

 606 



6. Discussion  607 

We investigated the use of FiN images as an alternative to camera trap images in the task of 608 

DCNN training for location invariant camera trap image processing tasks, on three case 609 

studies, namely striped hyena, rhinoceros and pig. Specifically, we established the greater 610 

transferability of the FiN trained models when compared to models trained on camera trap 611 

datasets, and their high usability as location invariant object detectors. We then 612 

demonstrated how such models can be optimized via out of sample infusion, which was 613 

shown to increase the confidence of detections, allowing more true positives to be retained 614 

at higher confidence thresholds.  615 

 616 

Our results show that FiN training significantly improves model robustness and location 617 

invariance. Particularly, it provides ecologists with a practical, cost effective, out of the box 618 

solution, capable of detecting animals even in the most challenging camera trap 619 

environments. We not only established that FiN data alone can be used to achieve good 620 

results, but these models can be improved with minimal infusion of camera trap data to 621 

improve robustness to the particularities of camera trap imagery. This suggests that 622 

ecologists can train object detectors using FiN imagery, and if camera trap data is available 623 

for their target species, use it to infuse the FiN training data. This model can then be used to 624 

process out of sample images from any camera trap, achieving a sufficiently high mAP to be 625 

deployed in most applications.  626 

 627 

Furthermore, in circumstances where model performance is still considered suboptimal, 628 

they may then infuse the model with in-sample camera trap images, for further 629 

optimization. Although in-sample infusion makes the model more location variant, it does 630 

provide a means by which ecologists can train powerful models capable of achieving results 631 



in the 90th percentile, with very few training images, as demonstrated by the results of in-632 

sample infusion presented in Appendix S6. As demonstrated by various studies in 633 

automated camera trap image processing, achieving robust object detectors via training 634 

solely on camera trap images usually requires thousands to millions of images 635 

(Norouzzadeh, Nguyen et al. 2017, Willi, Pitman et al. 2018, Tabak, Norouzzadeh et al. 636 

2019). In-sample infusion overcomes this requirement by leveraging off the robustness of 637 

the FiN model, and the strong availability of FiN imagery to allow ecologists to train high 638 

accuracy optimized deep leaning models with very few camera trap images, significantly 639 

reducing the time and resources necessary to develop automated deep leaning object 640 

detectors.  641 

 642 

In light of the growing number of camera trap based projects undertaken by ecologists, this 643 

research provides an invaluable method by which researchers can process extensive image 644 

data regardless of the location from which the images were obtained, and the particularities 645 

of the camera trap site or species. This method has been proven on several species, 646 

including rare species, for which camera trap data for training models is often sparse. As 647 

illustrated by (Willi, Pitman et al. 2018), the lack of camera trap data for rare species poses 648 

significant problems when training multi-class object detectors, as the large class imbalance 649 

between common species and rare species causes object detectors to misclassify species, by 650 

over enthusiastically classifying species based on how common they are in the dataset 651 

rather than via their features. This was observed by (Willi, Pitman et al. 2018) who noted 652 

that insufficient images of the rare striped hyena in their dataset resulted in their model 653 

achieving a mAP of 0% on this class. We have specifically addressed this problem by 654 

proposing the use of FiN images of striped hyena to rectify limitations in data availability.  655 

 656 



The use of FlickR as the principal training data also rectifies another major problem faced 657 

by researchers. Studies have indicated that deep learning models have a tendency to return 658 

overly confident predictions (Willi, Pitman et al. 2018) when trained on camera trap data 659 

and deployed in-sample. This is due to the high consistency in image quality, lighting, 660 

camera angle and geographical and vegetation features in camera trap data. Furthermore, 661 

many trap images feature obscured or poor quality imagery of animals which if used in the 662 

training set, may cause the network to make unrealistically optimistic predictions, by 663 

attributing 100% confidence to visual features which may not display sufficiently distinct 664 

characteristics present solely in the target class. In contrast, the higher resolution of FiN 665 

images and large variations between images forces the model to reduce the confidence 666 

attributed to poor quality or obscured animals. Their greater robustness allows them to be 667 

deployed out of sample, further minimizing this problem. 668 

 669 

One potential benefit in using FiN imagery for training image processing models is the high 670 

availability of already annotated animal images. Because FlickR is a major source of images 671 

used in datasets such as ImageNet and MS COCO, many animal classes have already been 672 

annotated with bounding boxes, which are freely available for downloading. Using the 673 

method proposed in the paper would therefore significantly reduce the time and resource 674 

expenditure necessary for model development, by leveraging off the work already 675 

completed by the broader object detection community. We were unable to use annotated 676 

FlickR images from ImageNet as it was under maintenance, however it may prove to be a 677 

valuable resource in the development of future models. This study was limited to the 678 

evaluation of FlickR and iNaturalist images, and did not evaluate alternative images sources 679 

mentioned in Section 1. 680 

 681 



This research did not investigate the application of the FiN and infusion training method 682 

using alternative object detectors such as YOLO (Redmon and Farhadi 2016), and Faster R-683 

CNN (Ren, He et al. 2015). Applying the findings of this study to these architectures may be 684 

beneficial. YOLO is a faster, more efficient object detector, which may be more suited to 685 

video processing, while Faster RCNN generally achieves higher accuracies, but is slower. 686 

RetinaNet was chosen as it achieves a good balance between the computational efficiency of 687 

YOLO and the accuracy of Faster-RCNN, which made it an appropriate choice for the difficult 688 

task of camera trap image processing. In this study, we have only demonstrated location 689 

invariance using RetinaNet. Although it goes beyond the scope of this study, it would be 690 

interesting to ascertain whether changes in model architecture would influence the 691 

robustness of location invariance models. Another possible area of research could be the 692 

application of this method to object segmentation-based image processing. Object 693 

segmentation builds upon the benefits of object detection by excluding background 694 

features. This limits the influence of contextual features on model performance, thus 695 

improving model accuracy and overall performance, however it is likely that they would 696 

encounter the same modelling bias faced by bounding box-based object detection models.  697 

 698 

One limitation of this study is that it only evaluates the models in terms of the Snapshot 699 

Serengeti dataset. We could only evaluate on one dataset for the classes ‘striped hyena’ and 700 

‘rhinoceros’ due to lack of data availability. To maintain consistency, we also only presented 701 

results for the class ‘pig’ on Snapshot Serengeti in this manuscript. However, to verify the 702 

usability of this method at any location and for any dataset, we present more extensive 703 

results in Appendix S7 for the class pig, for which we had more data available, thus showing 704 

location invariance across 4 extra test locations.  705 

 706 



Finally, the proposed method may be extended to other image modalities. For example, it 707 

could be extended to drone imagery (Kellenberger, Volpi et al. 2017, Xu, Wang et al. 2020). 708 

Drone images are often captured from an aerial perspective, meaning they would contain 709 

quite different features to those present available on FlickR. Applying our findings to object 710 

detection in the context of drone imagery would be interesting, particularly with infusion of 711 

a small subset of drone images to boost performance and allow better generalization to the 712 

particularities of drone imagery. This would determine how transferable FiN images are to 713 

new modalities. It could also be extended to other applications such as underwater animal 714 

imagery (Dawkins, Sherrill et al. 2017, Christensen, Mogensen et al. 2018), surveillance 715 

footage (Raghunandan, Mohana et al. 2018), and thermal camera imagery (Rodin, Lima et al. 716 

2018, Bondi, Jain et al. 2020). This may present opportunities to rectify image shortages, or 717 

problems with low intra-dataset variability, particularly in novel studies.  718 

 719 

 720 

7. Conclusion 721 

This study successfully demonstrated the use of FiN datasets in training location invariant 722 

deep learning object detection models in the task of camera trap image processing. It also 723 

evaluated an optimization process dubbed infusion, to improve robustness to the 724 

particularities of camera trap imagery. Results presented across three single class models 725 

on out of sample test sets indicate the aims of this study have been achieved. However, our 726 

approach is limited by its inability to achieve high precision out of sample object detection, 727 

which is still best achieved via in-sample training or infusion. Furthermore, this method was 728 

not evaluated on alternative object detection frameworks and did not provide findings on 729 

an extensive multi-class dataset. Nevertheless, this study provides a promising pathway to 730 

develop robust, location invariant models using publicly accessible data sources. 731 



Furthermore, development of these models will facilitate the widespread deployment of AI 732 

in ecological management. The findings of this study could also be extended beyond camera 733 

trapping to other object detection tasks and image modalities such as drone imagery. 734 

Furthermore, the methodology of using transfer learning and publicly available datasets 735 

characterized by high intra-dataset variability and minimal unintentional bias to train 736 

location and context invariant AI-based data processing software could be extended beyond 737 

images to other forms of data.  738 

 739 
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