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Abstract

In this article, we successfully construct various kinds of exact traveling wave solutions like, hyperbolic (kink

and singular kink-shaped soliton), trigonometric (periodic and singular periodic) as well as rational function

solutions for the best known mixed hyperbolic-elliptic system of conservation laws, namely the van der Waals

gas system in the viscosity-capillarity regularization version by means of (G
′

G2 )-expansion and advanced e−φ(τ)-

expansion functions methods. These techniques are very useful and exceptionally helpful in a contrast with

other analytical schemes, which show the effectiveness and the simplicity to discuss the exact solutions. 3D

and contour figures are sketched in order to understand the physical movement of the gained results under the

selections ofunknown parameters.

keyword: Exact solutions; van der Waals gas equation; (G
′

G2 )-expansion; advance e−φ(τ)-expansion functions

1 Introduction

NLPDEs are widely used to discuus a number of physical and intricate phenomena that arises in several fields

of nonlinear sciences like fluid mechanics, solid state physics, quantum field theory, hydro magnetic wave, bio-

physics, biology, nonlinear optics, plasma physics and many others [1–8]. It has become an important bottom-line

to explore the analytical solutions to these kinds of equations. In this manner, the basic focus to the experts is to

extract the exact solutions. Due to this different computationl powerful strategies [9–18] have been designed for

explaining behvior of NLPDEs by using various symbolic computation like Matlab, Mathematica, and Maple etc.

Exact solutions also help us to apprehend the intricacy of the phenomena, endorse the results of numerical

analysis and explore the stability of these equations. Mixed-type hyperbolic systems of conservation laws have

been employed to depict the various aspect of physical phenomena which find in different kinds of fluid dynamics

and solids. For instance, the systems show the dynamical phase transitions in the propagating phase boundaries

in solids and the van der Waals fluid [19]. Different numeric-analytic attempts on solving mixed systems have

been carried out in previous studies [20–27]. The key rule of this contribution is to extract different solutions

like hyperbolic, trigonometry and rationales by two integration schemes [28, 29] for the best known mixed-type

hyperbolic-elliptic system of conservation laws, called as p-system in the form of van der Waals gas equations in
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the viscosity-capillarity version [30].

ut + (p(v))x = ηuxx − ωη2uxxx and vt − ux = 0, (1)

where uqx denotes the qth partial derivative w.r.t x. u(x, t) and v(x, t) are the velocity and the volume respectively,

while p(v) represents the pressure of gas. By taking η and ω are constants which considered to be positive,

whereas ωη2 represent the coefficient of interfacial capillarity. ±
√
−p(v) are equivalent eigenvalues of Eq. (1)

which represents the one dimensional longitudinal isothermal motion in fluids or elastic bars. For various material

problems or models, the mixed system of hyperbolic-elliptic type since the constitutive pressure function may not

be monotone.

This piece of article has the following arrangement: In section 2, key points of the proposed methods. In

section 3, applications and finally paper comes to end with conclusion in section 4.

2 Key points of the proposed methods

Let us consider the NLPDE as

S(Φ,Φt,Φx,Φtt,Φxt,Φxx, ...) = 0, (2)

where u = u(x, t) is an empirical function, S is a polynomial of Φ(x, t) and its partials derivatives in which higher

order derivatives and nonlinear terms are involved. For finding the traveling wave solutions of Eq. (2), we introduce

traveling wave transformation as: Φ(x, t) = u(τ) and τ = (x + αt), where α represents the wave speed. After

putting this transformation into Eq. (2), we get nonlinear ODE in the following form.

D(u, u′, u′′, u′′′, ...) = 0, (3)

where ′ denotes the derivative w.r.t τ .

2.1 Algorithm of Advanced e−φ(τ)-expansion function method

For this method, we take the travelling wave solution to the Eq. (3) in the following way.

u(τ) =

N∑
i=0

ai[e
−φ(τ)]i ai 6= 0, (4)

where ai are constants to must be find and φ = φ(τ) holds the following ODE

φ′ + λeφ + µe−φ = 0, λ, µ ∈ < (5)

Eq. (5) has the following kinds of general solutions as follow:

Case I (Trigonometric function solution): When λµ > 0, then

φ(τ) = − ln

(√
λ

µ
tan

(√
λµ (τ + c0)

))
,



and,

φ(τ) = − ln

(
−

√
λ

µ
cot

(√
λµ (τ + c0)

))
.

Case II (Hyperbolic function solution): When λµ < 0 then,

φ(τ) = − ln

(√
λ

−µ
tanh

(√
−λµ (τ + c0)

))
,

and,

φ(τ) = − ln

(√
λ

−µ
coth

(√
−λµ (τ + c0)

))
.

Case III (Rational function solution): When λ = 0 and µ > 0 then,

φ(τ) = − ln

(
− 1

µ(τ + c0)

)
,

Case IV (Rational function solution): When λ ∈ < and µ = 0 then,

φ(τ) = − ln

(
λ(τ + c0)

)
,

Where a0, a1, a2, ....aN , co are non-zero constants identified later. The positive integers N can be identified by

taking the balance principle between the highest order derivatives and the highest degree of non-linear terms in

Eq. (3). For detail see reference [28].

2.2 Algorithm of (G
′

G2 )-expansion method

Suppose that Eq. (3) has the solitary wave solution of the the form for (G
′

G2 )-expansion method

u(τ) = a0 +
N∑
n=1

(
αn

(
G′

G2

)n
+ βn

(
G′

G2

)−n)
,

where G = G(τ) holds (
G′

G2

)′
= ζ + ϕ

(
G′

G2

)2

,

with ϕ 6= 0, ζ 6= 1 being integers. The unknown constants a0, αn, βn(n = 1, 2, 3, . . . , N) must be found. The

general solution of (G
′

G2 ) has three possibilities as enumerated below:

Case-1: Trigonometric function solutions:

If we take ζ ϕ > 0, then

(
G′

G2

)
=

√
ζ

ϕ

(
E cos

√
ζϕτ + F sin

√
ζϕτ

F cos
√
ζϕτ − E sin

√
ζϕτ

)
, (6)



Case-2: Hyperbolic function solutions:

If we have ζ ϕ < 0, then(
G′

G2

)
= −

√
|ζϕ|
ϕ

(
E sinh(2

√
|ζϕ|τ) + E cosh(2

√
|ζϕ|τ) + F

E sinh(2
√
|ζϕ|τ) + Ecosh(2

√
|ζϕ|τ)− F

)
, (7)

Case-3: Rational function solutions:

When ζ = 0, ϕ 6= 0 then rational solution can be written as(
G′

G2

)
=

(
− E

ϕ(Eτ + F )

)
, (8)

where E and F are constants. Three types of the solution can be obtained by substituting the values of unknowns

a0, αn, βn (n = 1, 2, 3, . . . N). For detail [29].

3 Applications

For Eq. (1) with constitutive function p(v) = v− v3, will be obtained in this section. By using the traveling wave

variable τ = x+ αt, Eq. (1) is carried into following ordinary differential system:

αu′ + (v − v3)′ = ηu′′ − ωη2u′′′ and αv′ − u′ = 0, (9)

Once integrating of Eq. (9) w.r.t τ , and equating the integration constants to zero yields,

αu+ (v − v3) = ηu′ − ωη2u′′ and αv − u = 0. (10)

3.1 Advanced e−φ(τ)-expansion function method

By balancing the highest order derivative and nonlinear term appear in u′′ and u3, as well as for v′′ and v3 yields,

n = 1 implies the formal solutions:

u(τ) = a0 + a1e
−φ(τ) and v(τ) = b0 + b1e

−φ(τ), (11)

Substituting Eq. (11) and its derivative into Eq. (10), and the coefficients, with the same power of −φ(τ),

equating to zero and resultantly we have following set of algebraic equations. By using Mathematica, two clusters

of solutions are obtained as follows:

Set-1

a1 = −
2
(
9a0η

2λµω +
√

3
)

9ηλ
, b0 = − 1√

3
,

b1 = −1

3

√
2

√
−3
√

3a0η2µ2ω −
µ

λ
, α = −2η2λµω .

Set-2

a1 = αηω
√

2αω , b0 = −
√
αω

3
√

2µ
, b1 = ηω

√
2αω ,

α =
ψ ±

√
ψ2 − 144ωµ4

12ωµ2
, ψ = ω2

(
ω − 12η2λµ3

)
.



For Set-1: When λµ > 0, then we have the following trigonometric function solutions:

u1,1(x, t) = a0 −
2
(
9a0η

2λµω +
√

3
)

9ηλ

(√
λ

µ
tan

(√
λµ (τ + co)

))
, (12)

v1,1(x, t) = − 1√
3
− 1

3

√
2

√
−3
√

3a0η2µ2ω −
µ

λ

(√
λ

µ
tan

(√
λµ (τ + co)

))
, (13)

u1,2(x, t) = a0 +
2
(
9a0η

2λµω +
√

3
)

9ηλ

(√
λ

µ
cot

(√
λµ (τ + co)

))
, (14)

v1,2(x, t) = − 1√
3

+
1

3

√
2

√
−3
√

3a0η2µ2ω −
µ

λ

(√
λ

µ
cot

(√
λµ (τ + co)

))
. (15)



(a) u1,1(x, t)

(b) u1,1(x, t)

(c) v1,1(x, t)

(d) v1,1(x, t)

Figure 1: Graphics of the solution equations u1,1(x, t) and v1,1(x, t) for a0 = 2, ω = 2, η = 3 , λ = 3, µ = 2 and
c0 = 2.

For Set-1: When λµ < 0 then, we have the following hyperbolic function solutions:

u1,3(x, t) = a0 −
2
(
9a0η

2λµω +
√

3
)

9ηλ

(√
λ

−µ
tanh

(√
−λµ (τ + co)

))
, (16)

v1,3(x, t) = − 1√
3
− 1

3

√
2

√
−3
√

3a0η2µ2ω −
µ

λ

(√
λ

−µ
tanh

(√
−λµ (τ + c0)

))
, (17)

u1,4(x, t) = a0 −
2
(
9a0η

2λµω +
√

3
)

9ηλ

(√
λ

−µ
coth

(√
−λµ (τ + co)

))
, (18)

v1,4(x, t) = − 1√
3
− 1

3

√
2

√
−3
√

3a0η2µ2ω −
µ

λ

(√
λ

−µ
coth

(√
−λµ (τ + co)

))
. (19)



For Set-1: When λ ∈ <, µ = 0 then, we have the following rational function solution:

u1,5(x, t) = a0 −
2
√

3

9ηλ

(
λ(τ + c0)

)
, (20)

For Set-2: When λµ > 0, then we have the following trigonometric function solutions:

u2,1(x, t) = a0 + αηω
√

2αω

(√
λ

µ
tan

(√
λµ (τ + co)

))
, (21)

v2,1(x, t) = −
√
αω

3
√

2µ
+ ηω

√
2αω

(√
λ

µ
tan

(√
λµ (τ + co)

))
, (22)

u2,2(x, t) = a0 − αηω
√

2αω

(√
λ

µ
cot

(√
λµ (τ + co)

))
, (23)

v2,2(x, t) = −
√
αω

3
√

2µ
− ηω

√
2αω

(√
λ

µ
cot

(√
λµ (τ + co)

))
. (24)

For Set-2: When λµ < 0 then, we have the following hyperbolic function solutions:

u2,3(x, t) = a0 + αηω
√

2αω

(√
λ

−µ
tanh

(√
−λµ (τ + co)

))
, (25)

v2,3(x, t) = −
√
αω

3
√

2µ
+ ηω

√
2αω

(√
λ

−µ
tanh

(√
−λµ (τ + co)

))
, (26)

u2,4(x, t) = a0 + αηω
√

2αω

(√
λ

−µ
coth

(√
−λµ (τ + co)

))
, (27)

v2,4(x, t) = −
√
αω

3
√

2µ
+ ηω

√
2αω

(√
λ

−µ
coth

(√
−λµ (τ + co)

))
. (28)

For Set-1: When λ = 0, µ > 0 then, we have the following rational function solution:

u2,5(x, t) = a0 + αηω
√

2αω

(
− 1

µ(τ + co)

)
, (29)

v2,5(x, t) = −
√
αω

3
√

2µ
+ ηω

√
2αω

(
− 1

µ(τ + co)

)
, (30)

Where α =
ψ±
√
ψ2−144ωµ4
12ωµ2

and ψ = ω2
(
ω − 12η2λµ3

)
.



(a) u2,4(x, t) (b) u2,4(x, t)

(c) v2,4(x, t) (d) v2,4(x, t)

Figure 2: Graphics of the solution equations u2,4(x, t) and v2,4(x, t) for a0 = 1, ω = 1, η = 2 , λ = 1, µ = −1 and
c0 = 4.

3.2 (G
′

G2 )-expansion method

Balancing the highest order derivative and nonlinear term appear in u′′ and u3, as well as for v′′ and v3 yields,

n = 1 implies the formal solutions:

u(τ) = a0 + a1

(
G′

G2

)
+ b1

(
G′

G2

)−1
and v(τ) = c0 + c1

(
G′

G2

)
+ d1

(
G′

G2

)−1
, (31)

Substituting Eq. (31) and its derivative into Eq. (10), and equating the coefficients, with the same power of (G
′

G2 ),

to zero and resultantly we get the following set of algebraic equations. By using Mathematica, three clusters of

solutions as obtained as follows:

Set-1

a0 = 18c30ω

(
8c20 − 2

c20(36δ − 3) + 1
+ 3

)
, a1 = −108c30ηϕω

2 ,

b1 = 0 , c1 = −6c0ηϕω , d1 = 0 , α =
−36c20δ + 3c20 − 1

18c20ω
.



Set-2

a0 = 18c30ω

(
8c20 − 2

c20(36δ − 3) + 1
+ 3

)
, a1 = 0 , b1 = 108c30ζηω

2,

c1 = 0 , d1 = 6c0ζηω , α =
−36c20δ + 3c20 − 1

18c20ω
.

Set-3

a0 =
18c30ω

(
c20(432δ − 1) + 1

)
3c20(48δω − 1) + 1

, a1 = −108c30ηϕω
2, b1 = 108c30ζηω

2,

c1 = −6c0ηϕω, d1 = 6c0ζηω, α =
−144c20δ + 3c20 − 1

18c20ω
,

where δ = ζη2ϕω2.

For Set-1 When ζϕ > 0, the trigonometric solution can be expressed as:

u1,1(x, t) = 18c30ω

(
8c20 − 2

c20(36δ − 3) + 1
+ 3

)
− 108c30ηϕω

2

(√
ζ

ϕ

(
E cos(

√
ζϕ τ) + F sin(

√
ζϕ τ)

F cos(
√
ζϕτ)− E sin(

√
ζϕ τ)

))
, (32)

v1,1(x, t) = c0 − 6c0ηϕω ×
(√

ζ

ϕ

(
E cos(

√
ζϕ τ) + F sin(

√
ζϕ τ)

F cos(
√
ζϕτ)− E sin(

√
ζϕ τ)

))
. (33)

For Set-1 When ζϕ < 0, the hyperbolic solution can be expressed as:

u1,2(x, t) = 18c30ω

(
8c20 − 2

c20(36δ − 3) + 1
+ 3

)
− 108c30ηϕω

2

×
(
−
√
|ζϕ|
ϕ

(
E sinh(2

√
|ζϕ| τ) + E cosh(2

√
|ζϕ| τ) + F

E sinh(2
√
|ζϕ| τ) + E cosh(2

√
|ζϕ| τ)− F

))
, (34)

v1,2(x, t) = c0 − 6c0ηϕω

(
−
√
|ζϕ|
ϕ

(
E sinh(2

√
|ζϕ| τ) + E cosh(2

√
|ζϕ| τ) + F

E sinh(2
√
|ζϕ| τ) + E cosh(2

√
|ζϕ| τ)− F

))
, (35)

For soliton solution, take E = F , we get singular kink-shaped soliton solution as:

u1,2(x, t) = 18c30ω

(
8c20 − 2

c20(36δ − 3) + 1
+ 3

)
− 108c30ηϕω

2

(
coth(

√
|ζϕ| τ)

)
, (36)

v1,2(x, t) = c0 − 6c0ηϕω

(
coth(

√
|ζϕ| τ)

)
. (37)

For Set-2 When ζϕ > 0, the trigonometric solution can be expressed

u2,1(x, t) = 18c30ω

(
8c20 − 2

c20(36δ − 3) + 1
+ 3

)
+ 108c30ζηω

2

×
(√

ζ

ϕ

(
E cos(

√
ζϕ τ) + F sin(

√
ζϕ τ)

F cos(
√
ζϕτ)− E sin(

√
ζϕ τ)

))−1
, (38)



v2,1(x, t) = c0 + 6c0ζηω ×
(√

ζ

ϕ

(
E cos(

√
ζϕ τ) + F sin(

√
ζϕ τ)

F cos(
√
ζϕτ)− E sin(

√
ζϕ τ)

))−1
. (39)

For Set-2 When ζϕ < 0, the hyperbolic solution can be expressed as:

u2,2(x, t) = 18c30ω

(
8c20 − 2

c20(36δ − 3) + 1
+ 3

)
+ 108c30ζηω

2

×
(
−
√
|ζϕ|
ϕ

(
E sinh(2

√
|ζϕ| τ) + E cosh(2

√
|ζϕ| τ) + F

E sinh(2
√
|ζϕ| τ) + E cosh(2

√
|ζϕ| τ)− F

))−1
, (40)

v2,2(x, t) = c0 + 6c0ζηω

(
−
√
|ζϕ|
ϕ

(
E sinh(2

√
|ζϕ| τ) + E cosh(2

√
|ζϕ| τ) + F

E sinh(2
√
|ζϕ| τ) + E cosh(2

√
|ζϕ| τ)− F

))−1
, (41)

For soliton solution, take E = F , we get kink-shaped soliton as:

u2,2(x, t) = 8c30ω

(
8c20 − 2

c20(36δ − 3) + 1
+ 3

)
+ 108c30ζηω

2

(
tanh(

√
|ζϕ| τ)

)
, (42)

v2,2(x, t) = c0 + 6c0ζηω

(
tanh(

√
|ζϕ| τ)

)
. (43)

For Set-3 When ζϕ > 0, the trigonometric solution can be written as:

u3,1(x, t) =
18c30ω

(
c20(432δ − 1) + 1

)
3c20(48δω − 1) + 1

− 108c30ηϕω
2

×
(√

ζ

ϕ

(
E cos(

√
ζϕ τ) + F sin(

√
ζϕ τ)

F cos(
√
ζϕ τ)− E sin(

√
ζϕ τ)

))
+ 108c30ζηω

2

×
(√

ζ

ϕ

(
E cos(

√
ζϕ τ) + F sin(

√
ζϕ τ)

F cos(
√
ζϕ τ)− E sin(

√
ζϕ τ)

))−1
, (44)

v3,1(x, t) = c0 − 6c0ηϕω

(√
ζ

ϕ

(
E cos(

√
ζϕ τ) + F sin(

√
ζϕ τ)

F cos
√
ζϕ τ)− E sin(

√
ζϕ τ)

))

+6c0ηζω

(√
ζ

ϕ

(
E cos(

√
ζϕ τ) + F sin(

√
ζϕ τ)

F cos(
√
ζϕ τ)− E sin(

√
ζϕ τ)

))−1
, (45)

By choosing, E = F , we have periodic solution as:

u3,1(x, t) =
18c30ω

(
c20(432δ − 1) + 1

)
3c20(48δω − 1) + 1

− 216c30η
√
ζϕω2

(
tan(2

√
ζϕ τ)

)
, (46)

v3,1(x, t) = c0 − 12c0η
√
ζϕω

(
tan(2

√
ζϕ τ)

)
. (47)



(a) u3,1(x, t) (b) u3,1(x, t)

(c) v3,1(x, t) (d) v3,1(x, t)

Figure 3: Graphics of the solution equations u3,1(x, t) and v3,1(x, t) for E = F, ω = 1, η = 1.5 , ζ = 1.2, ϕ = 1.5
and c0 = 0.5.

For Set-3 When ζϕ < 0, the hyperbolic solution can be written as:

u3,2(x, t) =
18c30ω

(
c20(432δ − 1) + 1

)
3c20(48δω − 1) + 1

− 108c30ηϕω
2

×
(
−
√
|ζϕ|
ϕ

(
E sinh(2

√
|ζϕ| τ) + E cosh(2

√
|ζϕ| τ) + F

E sinh(2
√
|ζϕ| τ) + E cosh(2

√
|ζϕ| τ)− F

)
+ 108c30ζηω

2

×
(
−
√
|ζϕ|
ϕ

(
E sinh(2

√
|ζϕ| τ) + E cosh(2

√
|ζϕ| τ) + F

E sinh(2
√
|ζϕ| τ) + E cosh(2

√
|ζϕ| τ)− F

)))−1
, (48)

v3,2(x, t) = c0 − 6c0ηϕω

(
−
√
|ζϕ|
ϕ

(
E sinh(2

√
|ζϕ| τ) + E cosh(2

√
|ζϕ| τ) + F

E sinh(2
√
|ζϕ| τ) + E cosh(2

√
|ζϕ| τ)− F

)
+6c0ηζω ×

(
−
√
|ζϕ|
ϕ

(
E sinh(2

√
|ζϕ| τ) + E cosh(2

√
|ζϕ| τ) + F

E sinh(2
√
|ζϕ| τ) + E cosh(2

√
|ζϕ| τ)− F

)))−1
, (49)

For soliton solution, take E = F , we get singular kink-shaped soliton solution as:

u3,2(x, t) =
18c30ω

(
c20(432δ − 1) + 1

)
3c20(48δω − 1) + 1

− 216c30η
√
ζϕω2

(
tanh(

√
|ζϕ| τ)− coth(

√
|ζϕ| τ)

)
, (50)

v3,2(x, t) = c0 − 12c0η
√
ζϕω

(
tanh(

√
|ζϕ| τ)− coth(

√
|ζϕ| τ)

)
, (51)



where, τ = (x+ αt).

(a) u3,2(x, t)

(b) u3,2(x, t)

(c) v3,2(x, t)

(d) v3,2(x, t)

Figure 4: Graphics of the solution equations u3,2(x, t) and v3,2(x, t) for E = F, ω = 1, η = 2 , ζ = −2, ϕ = 1.5
and c0 = 2.

4 Conclusion

In this work, we have investigated diverse traveling wave solutions like, hyperbolic (kink and singular kink-shaped

soliton), trigonometric as well as rational function solutions to van der waals gas equation via (G
′

G2 ) and advanced

e−φ(τ)-expansion function schemes. These various kinds of the solutions are favourable for explaining diverse

non-linear physical phenomena. The calculations also reveals us the importance of these methods to achieve the

solutions in a more broad manner. We plot some of our obtained solutions Figures [1-4] show the solitary and

contour profiles of these solutions. The earned solitary solutions discuss the physical features of this model. At

least, the study describes that the applied methods are very, reliable, consistent, efficient, and much more practical

to obtain the exact solitary wave solutions for complicated PDE,s in many fields like engineering, mathematical

biology, physics, chemistry and vice versa.
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