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1 | INTRODUCTION

It is well known that the number of solid-phase elements (nuclei) in a metastable melt determines the final structure of the crys-
tallized material and its properties.' =3 Since each crystallite grows from one nucleus, the total number of nuclei characterizes
the size of the grains formed during crystallization. To achieve good mechanical properties of materials (for example, strength
properties), it is necessary to obtain a fine-grained structure. For this, it is necessary that the largest possible number of crystal-
lization centers appear in the crystallizing melt. As this takes place, the rate of melt cooling should be chosen so that the formed
crystallization centers are capable of further growth. The first crystallites formed will grow until they meet with neighboring
particles. If the time between the acts of the appearance of crystallization centers is long enough, then the crystallites grow large
and during their growth, they can capture a certain number of potential crystallization centers. At large initial supercooling, a
significant amount of particles present in the melt can become centers of crystallization before they are captured by neighboring
crystals. At the same time, the addition of impurities, which are crystallization centers, makes it possible to control the dynamics
of supercooling and the process of nucleation and growth of crystals.*

The above shows the importance of mathematical modeling of the process of phase transformation from a metastable state.
Since various stages of such a process (initial, intermediate, and concluding) are described by different mathematical models,
it is not possible to give a complete theoretical consideration within the framework of one approach. For instance, the initial
stage of nucleation proceeds at practically constant supercooling (supersaturation), when the number of nuclei may be small.
The intermediate stage of the process is characterized by the simultaneous occurrence of the processes of nucleation of new
crystallites and the growth (enlargement) of already existing crystals.>~!3 At the same time, the growing crystals release the
latent heat of phase transformation, which leads to the melt desupercooling. In the absence of heat removal (system cooling), the
process smoothly moves to the concluding stage, characterized by low supercooling. At this final stage, the density of crystals
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in the melt becomes significant and they interact with each other through the processes of Ostwald ripening, coagulation, and
disintegration. 419

In this work, we investigate the intermediate stage of the phase transformation process, where the individual crystals of
ellipsoidal shape evolve. Note that in many real processes the shape of crystals differs from the spherical shape (for example, the
shape of crystals can be ellipsoidal?*~2° ), which is a frequently used model approximation. The growth rates of the volumes of
ellipsoidal crystals found in this work for supercooled one-component and binary melts, as well as for supersaturated solutions,
generalize the previously known growth laws for spherical particles’*~3? and have the corresponding limiting transition.

2 | THE EVOLUTION OF AN ELLIPSOIDAL PARTICLE IN A METASTABLE LIQUID

For the convenience of the mathematical description of the growth of an ellipsoidal crystal, we use the coordinate system of a
prolate ellipsoid®® (Figure[l )

x? =a? (0'2 - 1) (1 - 12) cos’ @,
y¥=a*(c*-1) (1 -7%)sin’ @, 1)
Z=dao7T

Here x, y, and z are the Cartesian coordinates, a is a constant parameter defining the size of growing particle, o, 7, and ¢ are
the ellipsoidal coordinates satisfying the following inequalities

c>1,-1<7<1,0<¢p<L2x.

Note that the coordinate ¢ denotes the perpendicular direction to the surface of an ellipsoidal crystal.
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FIGURE 1 An ellipsoidal particle shown in the prolate ellipsoidal coordinates .

To write out the heat and mass balance boundary conditions at the surface of an ellipsoidal crystal in coordinates (I)), we
calculate the Lame coefficients

o
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For the sake of simplicity, and also based on the corresponding theory of the growth of spherical crystals,>*~3¢ everywhere

below we use the quasi-stationary approximation for the temperature field and the field of impurity concentration around the
growing particle, i.e. V2T = 0 and V>C = 0, where T and C stand for the temperature and concentration distributions in the
liquid phase (at ¢ > o0y); 0, designates the surface of an ellipsoidal crystal). Also, to find the quasi-stationary solution, we assume
that the temperature and concentration distributions depend on only one variable o, i.e. T = T'(c) and C = C(0). In addition,
we assume that the temperature field inside the ellipsoidal crystal (in the solid phase) is constant and neglect the diffusion of
impurity in the solid phase.

2.1 | Ellipsoidal crystal in a supercooled single-component melt

Let us now consider the growth of an ellipsoidal crystal in one-component melt (C = 0), which is caused by its instant cooling.
The temperature field satisfies the quasi-stationary thermal conductivity equation, which reads as

d 2 dT]
— -1)—|=0. 3
do (0' ) do )
The heat balance condition at the surface of an ellipsoidal crystal can be written in the form of
psL
V,=-VTn, “
4

where p, represents the density of the solid material, L is the latent heat parameter, 4, is the thermal conductivity of liquid, V,,
is the normal growth velocity, and n is the normal vector to the ellipsoidal surface.
Taking into account that the normal velocity can be expressen in terms of the growth rate 6, of the surface coordinate ¢ = o,

as V, = H_6,, and rewriting V in the ellipsoidal coordinates, we arrive at
A[ dT _ ﬁ*

Zplde ~a p=T) o= ®

where T, represents the phase transition temperature, f, is the kinetic coefficient, and

1 [o62—-10T
V7). = -4 ———.
VI, aV ¢2—-120c

The second (kinetic) boundary condition (3 shows that the growth rate 6 at o = o, is defined by the crystallization driving
force T, —T.
To close the problem, we also assume that the temperature is fixed at a large distance from the ellipsoidal particle, i.e.

T—>T,o>1. (6)

Solving the problem (3))-(6), we come to the temperature profile T (¢) in the liquid phase and the crystal growth rate 6, in the
form of

T(@)=T,+C, ln(Z—__Fi), C, = (ﬁ*/ao?o(fpl_n) —
WJ@m<%+l>_%:1
5 = —22511 (B./a) (fpl—Tz) - 2,11L. o
o5~ (ﬂ*/a)ln<zz+1>_(,—2£_ll ap,

0
The volume V of an ellipsoidal particle and its growth rate d V' /dt can be easily found with allowance for the crystal semiaxes

a /63 — 1 and ao, (Figure and read as
dv _ 4

4 .
V= §7ra3 (o5 = 1) oy, o= §7ra3 (305 — 1) 6. (8)

Analysing expressions (7)) we see that 6, = &, (60, AT), where AT =T, — T, stands for the melt supercooling. In addition,
expression (8) demonstrates that o, = 6 (V). This dependence is defined by the cubic equation

o} — o = 3V
0 07 4zad

®
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Keeping this in mind we express the crystal volume growth rate d V' /dt in terms of two variables V and AT in the form of
dv _ 4 .
= gnaS [3o;(V)=1] 64 (0p(V),AT), AT =T, - T,. (10)
For the convenience of analyzing the dynamics of the growth rate (I0), we introduce the dimensionless variables and
parameters

= —, Al = s t] = , a4 = ,
4ra’ T, a 2ag,

_av, (Bog — DA,

-1\’
1—a1(a§—1)1n<20+1>
0

where V|, A, t;, and G represent the dimensionless volume, supercooling, time, and volume growth rate. This rate is shown
in Figure 2 Jas a function of crystal volume ¥, for different supercoolings A;. As would be expected, the crystal volume growth
rate increases with increasing V; and A,.
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dimensionless volume of ellipsoidal particles, V;

FIGURE 2 The dimensionless volume growth rate G of ellipsoidal crystals crystals at fixed dimensionless supercoolings A;.
Parameters used in calculations are:** 4, =63Jm™ K™'s™, L, =p L =7-10°Tm>,a=126-10"m, f, =107 ms~!
K-

2.2 | Ellipsoidal crystal in a supercooled binary melt

Let us now analyze the growth of an ellipsoidal crystal in a binary melt where the phase transition temperature depends on the
impurity concentration C. In this case, the moving-boundary problem in the steady-state approximation becomes3?

i[(az_l)d_T]=0’ 4 (62_1)£]=0’ (11)
do do do do
A dT _ b, D dC
A _Pr _me-T), A-k)Co=-245 -0, 12
a’pLdo a (T, —m ) ¢ 0)C6 2do ° 70 12)
T->T,C—-C,o>1 (13)

where k, and m are the equilibrium partition coefficint and the liquidus slope, D is the diffusion coefficient of impurity dissolved
in the melt, and C; is a constant impurity concentration far from the growing particle.



NIKISHINA AND ALEXANDROV 5

The solution to the problem (TI)-(I3) reads as

T(a)—T+Cln(—"_1) Co)=C +C1n(”_1) ] (14)
o c+1/° ST e 1) 0T o2 -1 ’
-1
b T, =T, - mC, — mCyn 22
a oy+1 DC,
C = = , (15)
p. oy—1 2¢g, oy —1
—1In - a*e (1 —ky) |C,+Cyln
a oy +1 O'S -1 oy + 1
where C, is defined by the following quadratic equation
aC; + pCy+y =0, (16)

oy — 1
o+ 1

a = f,mag (1 — ky)In? ( ) .7 ==B. (T, — T, — mC,) ae, (1 — k)C,.
2¢,D

L
601

oy—1
oy +1
An important point is that & is a function of 6, and the melt supercooling A = T, — T, — mC; for a binary system, i.e.
6y = 6, (60, AT) (see, for details, expressions —). Then, by analogy with expression , the crystal volume growth
rate dV /dt represents a function of two variables V and AT
% = %‘mﬁ [3c;(V) = 1] 64 (09 (V),AT), AT =T, - T, — mC, (17)
where o, (V') is a root of the cubic equation @) and &, = &, (o (V), AT) is defined by expressions -.

f=pIn < > [mC,ael(l — ky) + g — (T, =T, = mC,) ae, (1 - ko)] -

2.3 | Ellipsoidal crystal in a supersaturated solution

Now we consider the evolution of an ellipsoidal crystal in a supersaturated solution. In this case, the mass transfer boundary-value
problem takes the form

d ) dc]
= —-1)=|=0, 18
do (6 )dO' (%)
D dc b,
=—— = -2 (C-=C),0c=0, 19
2(1 - ko)C do 2 ))- 0= 0 (19
C—->C,o>1. (20)

Here C, stands for the concentration at saturation, and f, represents the kinetic coefficient, which is measured in other units
than the previously introduced kinetic coefficient for crystal growth in melts.
The boundary-value problem (T8)-(20) takes the following solution

c(g)=c,+c31n<(f_—1>,¢0=&[Ac+c31n<60_1>], QD
c+1 a oy +1
where Cj; is defined by the quadratic equation
ln2<60_1>C2+bC +C,AC =0 (22)
co+1) 3 s ’

oy—1 oy—1
b=C,1n<O >+AC1n<0 >+ 2D )
oo+ 1 oo+ 1 ap,(1 = ko)oj — 1)
and AC = C, — C,, is the supersaturation.
Itis significant to note that 6, is a function of ¢, and the supersaturation AC, i.e. 6, = 6 (60, AC) (see, for details, expressions

(21) and (22))). In this case, the crystal volume growth rate d V' /dt represents a function of two variables ¥ and AC and reads as

(ii_lt/ = %‘mﬁ 3620) = 1] 64 (0, (V). AC) , AC=C, - C,, 23)

where o (V') is a root of the cubic equation (@) and 6, = 6, (ao V),AC ) is defined by expressions and .
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Let us especially highlight that the analytical solutions (9), (I0), (I7) and (23) describing the ellipsoidal particles correspond
to the case of spherical crystals if 6, > 1.%7 Indeed, the larger the volume of an ellipsoidal crystal, the less it differs from
a spherical particle (Figure [3_]). This means that the greatest difference in the growth dynamics of ellipsoidal crystals from
spherical ones occurs at the initial stages when the particle sizes are small enough and the contribution from their ellipsoidal
shape is significant.

=2

"”MIM

-
Momy.
0

=3

FIGURE 3 Cross-sections of ellipsoidal crystals with different surfaces ¢ = o,.

3 | CONCLUSION

In summary, new expressions for crystal volume growth rates (I0), (I7) and (23) describing the evolution of individual aggre-
gates in supercooled one-component and binary melts as well as in supersaturated solutions are derived with allowance for the
prolate ellipsoidal coordinates. These steady-state expressions determine the volume growth rate dV /dt as a function of cur-
rent particle volume V' and supercooling AT (supersaturation AC). As this takes place the liquid supercooling (supersaturation)
should be different for each of the metastable systems under consideration. To study the evolution of a particulate ensemble of
ellipsoidal crystals using the growth rates (I0), (I7), or (23, we need to analyze an integro-differential system of kinetic and
balance equations for the crystal-volume distribution function and liquid metastability (supercooling or supersaturation). Such a
model can be formulated by analogy with the previously known model of the evolution of an ensemble of spherical crystals.>’
In addition, to study a simultaneous occurrence of the directional and bulk crystallization a mushy layer theory describing
the growth of dendrite-like structures and nucleation of crystals should be taken into consideration.®=#3 These tasks form the
directions of future research, taking into account the ellipsoidal shape of crystals.
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