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1 Introdution

In this paper, we consider the following initial boundary problem for a nonlinear pseudoparabolic
equation containing viscoelastic terms

ut �
�
� (t) + � (t)

@

@t

�
Au+

Z t

0
g (t� s)Au (x; s) ds = f (x; t; u) ; (x; t) 2 (1; R)� (0;1) ; (1.1)

with Robin-Dirichlet conditions

ux (1; t)� h1u (1; t) = u (R; t) = 0; (1.2)

and the initial condition
u (x; 0) = ~u0 (x) ; (1.3)

where Au = uxx +
1
xux, R > 1; h1 � 0 are given constants and �; �; g; f; ~u0 are given functions

satisfying conditions speci�ed later.
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The pseudoparabolic equation

ut � uxxt = F (x; t; u; ux; uxx; uxt) ; 0 < x < 1; t > 0 (1.4)

with the initial condition u(x; 0) = ~u0(x) and with the di¤erent boundary conditions, has been exten-
sively studied by many authors, see for example [9]-[20], [23]-[25], [28]-[37], [41], [44]-[49] among others
and the references given therein. In these works, many results about existence, asymptotic behavior,
blow-up and decay of solutions were obtained.

An important special case of the model (1.4) is the Benjamin-Bona-Mahony-Burgers (BBMB)
equation

ut + ux + uux � �uxx � �2uxxt = 0; (1.5)

it was studied by Amick et al. in [2] with � > 0; � = 1; x 2 R; t � 0, in which the solution of (1.5) with
initial data in L1\H2 decays to zero in L2 norm as t! +1:With � > 0; � > 0; x 2 [0; 1]; t � 0; the
model has the form (1.5) was also investigated earlier by Bona and Dougalis [8], where uniqueness,
global existence and continuous dependence of solutions on initial and boundary data were established
and the solutions were shown to depend continuously on � � 0 and on � > 0. The results obtained in
[2] were developed by many authors, such as by Zhang for equations of the form

ut � �uxx � uxxt � ux + umux = 0; (1.6)

where m � 0; see [25], [47].
The linear version of (1.4) was �rst studied by S.L. Sobolev [40] in 1954. Therefore, the equation

of the form (1.4) is also called a Sobolev type equation. Mathematical study of pseudo-parabolic
equations goes back to works of Showalter (see [36]-[38]) in the seventies, since then, numerous of
interesting results about linear and nonlinear pseudoparabolic equations have been obtained. It is
also well known that the work [38] is the �rst paper on nonlinear pseudoparabolic equation. These
equations appear in the study of various problems of hydrodynamics, thermodynamics and �ltration
theory, see [25] and the references given therein.

The nonlinear pseudoparabolic equations of type (1.1) are related to frameworks of mathematical
models in engineering and physical sciences on second-grade or third-grade �uid �ows, see [3], [4], [19],
[20], [23], [33], [42] and references therein. In [19], some unsteady �ow problems of a second-grade
�uid were also considered. The �ows are generated by the sudden application of a constant pressure
gradient or by the impulsive motion of a boundary. Here, the velocities of the �ows are described
by the partial di¤erential equations and exact analytic solutions of these di¤erential equations are
obtained. Suppose that the second grade �uid is in a circular cylinder and is initially at rest, and the
�uid starts suddenly due to the motion of the cylinder parallel to its length. The axis of the cylinder
is chosen as the z-axis. Using cylindrical polar coordinates, the governing partial di¤erential equation
is 8>><>>:

@w
@t = (� + �

@
@t)
�
@2

@r2
+ 1

r
@
@r

�
w(r; t)�Nw; 0 < r < a; t > 0;

w(a; t) =W; t > 0;

w(r; 0) = 0; 0 � r < a;

(1.7)

where w(r; t) is the velocity along the z-axis, � is the kinematic viscosity, � is the material parameter,
and N is the imposed magnetic �eld. In the boundary and initial conditions, W is the constant
velocity at r = a and a is the radius of the cylinder. Besides, it is well known that the nonlinear
pseudoparabolic equations of type (1.1) also describe a variety of important physical processes such
as the seepage of homogeneous �uids through a �ssured rock [5], the unidirectional propagation of
nonlinear, dispersive, long waves [6], [8] and the aggregation of populations [28].

There were also many profound works on the initial value problems of high order nonlinear
pseudoparabolic equations, for example, we refer to two typical papers [12], [48]. In [48], Zhao and
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Xuan studied the following pseudoparabolic equation of fourth-order

ut � �uxx � 
uxxt + �uxxxx + f(u)x = 0; x 2 R; t � 0: (1.8)

They obtained the existence of the global smooth solutions for the initial value problem of (1.8) and
discussed the convergence of solutions as � ! 0. In [12], Y. Cao et al. established the global existence
of classical solutions and the blow-up in a �nite time for the viscous di¤usion equation of higher order8><>:

ut + k1uxxxx � k2utxx � (� (ux))x +A(u) = 0; 0 < x < 1; t > 0;
u(0; t) = u(1; t) = uxx(0; t) = uxx(1; t) = 0; t > 0;

u(x; 0) = u0(x); 0 < x < 1;

(1.9)

where k1 > 0; k2 > 0 and �(s); A(s) are appropriately smooth, u0 2 C1+� with � 2 (0; 1) and
u0(0) = u0(1) = u0xx(0) = u0xx(1) = 0:

On the other hand, a numerous of nonlocal pseudoparabolic (or parabolic) equations with nonlocal
terms or nonlocal boundary conditions have been widely studied in the last few decades, we refer to
[9], [10], [15]-[18], [27], [35], [41], [49] and the references cited therein. In [9], Bouziani studied the
solvability of solutions for the nonlinear pseudoparabolic equation

ut �
@

@x
(a(x; t)ux)� �

@2

@t@x
(a(x; t)ux) = f (x; t; u; ux) ; � < x < �; 0 < t < T; (1.10)

subject to the initial condition
u(x; 0) = u0(x); � � x � �; (1.11)

and the nonlocal boundary condition

u(�; t) =

Z �

�
u(x; t)dx = 0; (1.12)

with u0(�) =
Z �

�
u0(x)dx = 0: In [15], Dai and Huang considered the well-poseness and solvability of

solutions for the nonlinear pseudoparabolic equation

ut + (a(x; t)uxt)x = F (x; t; u; ux; uxx) ; � < x < �; 0 < t < T; (1.13)

with the initial condition (1.11) and the nonlocal moment boundary conditionsZ �

�
u(x; t)dx =

Z �

�
xu(x; t)dx = 0; 0 � t � T: (1.14)

In [35], Shang and Guo proved the existence, uniqueness, regularities of the global strong solution
and gave some conditions of the nonexistence of global solution for the nonlinear pseudoparabolic
equation with Volterra integral term

ut � f(u)xx � uxxt �
Z t

0
�(t� s) (� (u(x; s); ux(x; s)))x ds = f (x; t; u; ux) ; 0 < x < 1; t > 0: (1.15)

In [27], the following initial boundary value problem for a nonlinear heat equation with viscoelastic
was considered

ut �
@

@x
[�(x; t)ux] +

Z t

0
g(t� s) @

@x
[�(x; t)ux] ds = f(u) + f1(x; t); 0 < x < 1; t > 0; (1.16)
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and existence, uniqueness, regularity, blow-up and exponential decay estimates were established. Zhu
et al. [49] studied the exponent decay behavior and blow-up phenomena of weak solutions for a class
of pseudoparabolic equations with a nonlocal term8><>:

ut � a�ut ��u+ u = bu�u + up�1u; (x; t) 2 
� (0;+1);
u = 0; (x; t) 2 @
� (0;+1);
u(x; 0) = u0(x); x 2 
;

(1.17)

where 
 is a smooth bounded domain in R3; 1 < p < 5; and �u is a Newtonian potential

�u(x) =
1

4�

Z



u2(y)

jx� yjdy; x 2 R
3: (1.18)

We note more that, in many mathematical literatures related to parabolic or pseudoparabolic
equations, many e¤orts with using a variety of methods have been devoted to the study of blow-up
properties if the solutions blow up, see [22], [29]-[31], [41] and the references cited therein. In [22], Li
et al. used a di¤erential inequality technique to derive the lower bound for the blow-up time when
the blow-up occurs. In [41], the authors proved the results of global existence and �nite time blow-up
for the solutions and obtained the upper bound for the blow-up time of the following problem with a
linear memory term and a nonlinear source term8>>><>>>:

ut ��u��ut +
Z t

0
g(t� �)�u(�)d� = jujp�2 u; in 
� (0; T );

u = 0; on @
� (0; T );
u(0) = u0; in 
;

(1.19)

where 
 is a bounded domain of Rn (n � 1) with smooth boundary @
, p > 2, T 2 (0;1], u0 2 H1(
)
and g : R+ ! R+ is a positive nonincreasing function. The concavity method and the improved
potential method were used to have the upper bound for the blow-up time with initial data at arbitrary
energy level.

Motivated by the above mentioned works, because of mathematical context, we study the existence,
uniqueness, blow-up and general decay of solutions for the problem (1.1)-(1.3). In this paper, we will
apply the Faedo-Galerkin method and techniques used in [7] to treat a nonlinear Volterra integral
inequality and then the existence of weak solutions will be proved. Also under suitable conditions
on the initial values and the given functions f; g, using the improved lemma (Lemma 4.4) given in
[43], we obtain the upper bound and the lower bound of the blow-up time when the initial energy is
nonnegative or negative but small, and then the lifespan of the solution is solved. Moreover, we prove
a general decay of the energy function for the global solution. This paper consists of �ve sections.
In Section 2, we present preliminaries. In Section 3, we prove the existence and uniqueness results.
In Section 4, we obtain the existence of solutions which blow up in �nite time with initial data at
suitable energy levels. This section also derives the lifespan for the equation considered via �nding the
upper bound and the lower bound for the blow-up times. Finally, Section 5 is devoted to the proof of
a su¢ cient condition for the global existence and decay of weak solutions.

2 Preliminary results and notations

In order to prove our main results speci�cally, we shall introduce some de�nitions and notations
with some properties as follows. At �rst, we set 
 = (1; R) ; QT = 
 � (0; T ). Let us omit the
de�nitions of the usual function spaces and denote them by the notations

Lp = Lp (
) ; W k;p =W k;p (
) ; Hk =W k;2; k 2 Z+; 1 � p � 1:
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We use k�k ; (�; �) as the norm and the associated scalar product on L2 respectively. We denote by
k�kX the norm of a Banach space X and by X 0 the dual space of X. Let Lp (0; T ;X) ; 1 � p � 1, be
the Banach space of measurable functions u : (0; T ) �! X such that kukLp(0;T ;X) <1, with

kukLp(0;T ;X) =

8>><>>:
�Z T

0
ku(t)kpX dt

�1=p
; if 1 � p <1

ess sup
t2(0;T )

ku(t)kX ; if p =1:

On H1, we shall use the following norm:

kvkH1 =

q
kvk2 + kvxk2: (2.1)

We put
V =

�
v 2 H1 : v (R) = 0

	
: (2.2)

Then V is a closed subspace of H1 and on V; two norms v 7! kvkH1 and v 7! kvxk are equivalent
norms. Note that L2; H1 are also the Hilbert spaces with the corresponding scalar products

hu; vi =
Z R

1
xu (x) v (x) dx; hu; vi+ hux; vxi ; (2.3)

respectively. The norms in L2 and H1 induced by the corresponding scalar products in (2.3) are
denoted by k�k0 and k�k1 ; respectively. We can prove that V is continuously and densely embedded
in L2. Identifying L2 with

�
L2
�0 (the dual of L2), we have

V ,! L2 �
�
L2
�0
,! V 0;

where all the injections are continuous and dense. We remark more that the notation h�; �i is also used
for the pairing between V and V 0.

In what follows, we state the lemmas, they are useful for the proofs in the next sections.
Lemma 2.1. The following inequalities are true

(i) kvk � kvk0 �
p
R kvk ; 8v 2 L2;

(ii) kvkH1 � kvk1 �
p
R kvkH1 ; 8v 2 H1:

(2.4)

Lemma 2.2. The imbedding H1 ,! C
�


�
is compact and

kvkC(
) � �0kvkH1 ; 8v 2 H1; (2.5)

with �0 =

r
1+
p
1+16(R�1)2
2(R�1) .

Lemma 2.3. The imbedding V ,! C
�


�
is compact and

(i) kvkC(
) �
p
R� 1 kvxk ; 8v 2 V;

(ii) kvk � R�1p
2
kvxk ; 8v 2 V;

(iii) kvk0 �
q

R
2 (R� 1) kvxk0; 8v 2 V:

(2.6)

Remark 2.1. On L2, two norms v 7! kvk and v 7! kvk0 are equivalent. So are two norms
v 7! kvkH1 and v 7! kvk1 on H1, and four norms v 7! kvkH1 ; v 7! kvk1; v 7! kvxk and v 7! kvxk0 on
V .
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For convenience, we denote by a (�; �) the symmetric bilinear form on V � V; that is

a (u; v) = hux; vxi+ h1u (1) v (1) =
Z R

1
xux (x) vx (x) dx+ h1u (1) v (1); 8u; v 2 V; (2.7)

with h1 � 0 is a given constant and kvka =
p
a(v; v).

We then have the following lemmas.
Lemma 2.4. The symmetric bilinear form a (�; �) de�ned by (2.7) is continuous on V � V and

coercive on V . Moreover, we have

(i) ja (u; v)j � C1 kuxk0kvxk0; 8u; v 2 V;
(ii) a (v; v) � kvxk20 ; 8v 2 V;

(2.8)

with C1 = 1 + h1 (R� 1).
Lemma 2.5. There exists the Hilbert orthonormal base fwjg of L2 consisting of the eigenfunctions

wj corresponding to the eigenvalue �j such that(
0 < �1 � �2 � � � � � �j � �j+1 � � � � ; lim

j!1
�j =1;

a(wj ; v) = �jhwj ; vi; 8v 2 V; 8j 2 N:

Furthermore, the sequence
n
�
�1=2
j wj

o
is also the Hilbert orthonormal base of V with respect to

the scalar product a (�; �).
On the other hand, we have wj satisfying the following boundary value problem�

�Awj = �jwj ; in 
;
wjx(1) + h1wj(1) = wj(R) = 0; wj 2 V \ C1(�
); 8j 2 N:

The proof of Lemma 2.5 can be found in [39] with H = L2 and bilinear form a (�; �) de�ned by
(2.7).

Lemma 2.6. Assume that O is closed set of
�
RN ; k�k�

�
and f 2 C (O;R). Then there is a

continuous non-decreasing function �f : R+ �! R+ such that

jf (x)j � �f (kxk�) ; 8x 2 O: (2.9)

Proof of Lemma 2.6. First, we assume that f 2 C
�
RN ;R+

�
. With r > 0, we denote

Br =
�
x 2 RN : kxk� < r

	
; �Br =

�
x 2 RN : kxk� � r

	
: (2.10)

We set

'f (r) =

(
sup
x2 �Br

f(x); if r > 0;

f(0); if r = 0:

It is clear that 'f (r) � 0 for all r � 0 and 'f is non-decreasing in R+. We claim that 'f 2
C (R+;R+). Indeed,

(i) We prove that 'f continuous from right at 0.
For all " > 0, by f 2 C

�
RN ;R+

�
, there exists � > 0 such that

jf (x)� f (0)j � "; 8x 2 �B�: (2.11)

From (2.11), we have
f (x) � f (0) + " = 'f (0) + "; 8x 2 �B�: (2.12)
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By de�nition of 'f and (2.12), we have

'f (0) � 'f (r) � 'f (�) � 'f (0) + "; 8r 2 [0; �] :

Therefore 'f continuous from right at 0.
(ii) For all r0 > 0, we will prove that 'f continuous at r0.
(ii.a) We prove that 'f continuous from left at r0.
First, we de�ne

'f (r) =

(
sup
x2Br

f(x); if r > 0;

f(0); if r = 0:

It is obviously to see that 'f (r) � 'f (r) for all r � 0. Fixed r > 0, by de�nition of 'f , we can
assume that

�'f (r) = sup
x2 �Br

f(x) = max
x2 �Br

f(x) = f (x0) ;

with certain x0 2 �Br. We de�ne the sequence fxmg by xm =
�
1� 1

m

�
x0 for all m 2 N. We will have

fxmg � Br and lim
m!1

xm = x0. By de�nition of 'f and continuity of f , we get

'f (r) � lim
m!1

f (xm) = f (x0) = 'f (r) :

It is clear that 'f is non-decreasing in R+. For all " > 0, by de�nition of 'f , there exists y0 2 Br0
such that

'f (r0)� " < f (y0) � 'f (r0) : (2.13)

Put � = r0 � ky0k� > 0. For all r 2 (r0 � �; r0], we have

'f (r0)� " < f (y0) � 'f (ky0k�) = 'f (ky0k�) � 'f (r) � 'f (r0) : (2.14)

From (2.14), we have

'f (r0)� " < 'f (r) � 'f (r0) ; 8r 2 (r0 � �; r0] : (2.15)

Therefore 'f continuous from left at r0.
(ii.b) We prove that 'f continuous from right at r0.
By f 2 C

�
RN ;R+

�
, we have f is uniform continuous on �B2r0 . For all " > 0, there exists � 2

�
0; r02

�
such that

jf (x)� f (y)j � "; 8x; y 2 �B2r0 ; kx� yk� < �: (2.16)

For all r 2 [r0; r0 + �), by de�nition of 'f , there exists xr 2 �Br; yr =
r0
r xr 2 �Br0 such that

'f (r) = f (xr) and
f (xr)� f (yr) � "() f (xr) � f (yr) + ": (2.17)

From (2.17), for all r 2 [r0; r0 + �), we have

'f (r0) � 'f (r) � 'f (kyrk�) + " � 'f (r0) + ": (2.18)

Therefore 'f continuous from right at r0.
Now, with f 2 C (O;R), by Tietze extension theorem, there exists �f 2 C

�
RN ;R

�
such that

�f
��
O = f . We put

�f (r) = 'j �fj (r) ; 8r � 0: (2.19)

For all x 2 U , we have

jf (x)j =
�� �f(x)�� � 'j �fj (kxk�) � �f (kxk�) : (2.20)
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Finally, it is obvious that �f : R+ �! R+ is a continuous non-decreasing function. Lemma 2.6 is
proved. �

Remark 2.2. Lemma 2.6 is a slight improvement of a result used in [27, Appendix 1, p. 2734]
with N = 1 and f 2 C (R;R).

Lemma 2.7. Let x : [0; T ] �! R+ be a continuous function satisfying the inequality

x (t) �M +

Z t

0
k (s)! (x (s)) ds; 8t 2 [0; T ];

where M � 0; k : [0; T ] �! R+ is continuous and ! : R+ �! (0;1) is continuous and nondecreasing.
Set

	(u) =

Z u

0

dy

! (y)
; u � 0:

(i) If
Z 1

0

dy

! (y)
=1 then

x (t) � 	�1
�
	(M) +

Z t

0
k (s) ds

�
; 8t 2 [0; T ]:

(ii) If
Z 1

0

dy

! (y)
<1 then there exists T� 2 (0; T ] such that

x (t) � 	�1
�
	(M) +

Z t

0
k (s) ds

�
; 8t 2 [0; T�];

where Z T�

0
k (s) ds �

Z 1

0

dy

! (y)
:

Proof of Lemma 2.7. See [7].

3 The existence and uniqueness theorem

In this section, we shall study the existence and uniqueness of a weak solution for Prob. (1.1)-(1.3).
De�nition 3.1. A function u is called a weak solution of Prob. (1.1)-(1.3) on (0; T ) if and only

if the function u belongs to the following functional space

WT =
�
u 2 C ([0; T ];V ) : u02 L2 (0; T ;V )

	
; (3.1)

and satis�es the following variational problem:

hu0 (t) ; vi+ � (t) a (u0 (t) ; v) + � (t) a (u (t) ; v)

=

Z t

0
g (t� s) a (u (s) ; v) ds+ hf [u] (t) ; vi ; 8v 2 V; (3.2)

such that
u (0) = ~u0; (3.3)

where
f [u] (x; t) = f (x; t; u (x; t)) : (3.4)

In order to get the existence results, we consider the following hypotheses.

(A1) ~u0 2 V ;
(A2) � 2 C1 (R+) and there exists the positive constant �� such that � (t) � �� for all t � 0;
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(A3) � 2 L1loc (R+) and there exists the positive constant �� such that � (t) � �� for all t � 0;
(A4) g 2 L2loc (R+);
(A5) f 2 C

�

� R+ � R

�
.

Theorem 3.2. Let (A1)� (A5) hold. Then we have
(Case 1) In case of

Z 1

0

dy

1 + y +�2f
�p
y
� = 1; Prob. (1.1)-(1.3) has a global weak solution

u 2WT for all T > 0;

(Case 2) In case of
Z 1

0

dy

1 + y +�2f
�p
y
� <1; there is T� > 0 such that Prob. (1.1)-(1.3) has a

local weak solution u 2WT� .
Furthermore, if in addition the hypotheses ( �A3); ( �A5) as follows

( �A3) � 2 C1 (R+) with the property � (t) � �� for all t � 0, where �� is the positive constant;
( �A5) For all M > 0, there exists `M > 0 such that

jf (x; t; u1)� f (x; t; u2)j � `M ju1 � u2j ; 8x 2 
; t � 0; u1; u2 2 [�M;M ] ;

then the solution obtained in the above cases is unique.
Moreover, denoting by T1 the maximal existence time of the solution u for the Prob. (1.1)-(1.3),

the following alternatives hold
(Alt1) T1 =1;

or
(Alt2) T1 <1 and lim

t!T�1
ku (t)ka =1:

Remark 3.1.
(i) If T1 =1, we say that the solution u is global;
(ii) If T1 < 1, we then have lim

t!T�1
ku (t)ka = 1; we say that the solution u blows up in �nite

time and that T1 is the blow-up time.
Proof of Theorem 3.2. Based on the Faedo-Galerkin method, this proof consists of �ve steps.
Step 1 . Finite-dimesional approximations.
Consider the basis fwjg for V as in Lemma 2.5. We �nd an approximate solution of Prob. (1.1)-

(1.3) in the form
um (t) =

Xm

j=1
cmj (t)wj ; (3.5)

where the coe¢ cients cm1; � � � ; cmm satisfy the system of integro-di¤erential equations

hu0m (t) ; wji+ � (t) a (u0m (t) ; wj) + � (t) a (um (t) ; wj)

=

Z t

0
g (t� s) a (um (s) ; wj) ds+ hf [um] (t) ; wji ; 8j = 1;m;

(3.6)

with the initial conditions

um (0) = u0m =
Xm

j=1
�jwj =

Xm

j=1

a (~u0; wj)

�j
wj ! ~u0 strongly in V as m!1: (3.7)

It is clear that, for each m, there exists a solution um of the form (3.5) which satis�es (3.6) and
(3.7) almost everywhere on t 2 [0; Tm], for some Tm > 0 that is su¢ ciently small. In what follows,
we present a brief proof that a solution of (3.6)-(3.7) of the form (3.5) exists. It is obvious that the
system (3.6)-(3.7) can be rewritten in the vectorial form

c0m (t) + � (t)Am (t) cm (t) = Am (t)

Z t

0
g (t� s) cm (s) ds+ F (cm (t)) ; (3.8)
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with the initial condition
cm (0) = �m; (3.9)

where 8>>>><>>>>:
cm (t) = (cm1 (t) ; � � � ; cmm (t))T ; �m =(�m1; � � � ; �mm)T ;

Am (t) =

�
�j�ij

1 + �j�(t)

�
i;j=1;m

; F (cm (t)) = (F1 (cm (t)) ; � � � ;Fm (cm (t)))T ;

Fj (cm (t)) =
1

1 + �j�(t)
hf [um] (t) ; wji ; 8j = 1;m;

(3.10)

which is also equivalent to the integral equation

cm (t) = �m �
Z t

0
� (s)Am (s) cm (s) ds

=

Z t

0
Am (s) ds

Z s

0
g (s� �) cm (�) d� +

Z t

0
F(cm (s)) ds:

(3.11)

The integral equation (3.11) can be solved by applying Schauder�s �xed point theorem. Therefore,
there exists um of the form (3.5) which satis�es (3.6) and (3.7) almost everywhere on t 2 [0; Tm], where
Tm > 0 is su¢ ciently small.

Step 2 . A priori estimate.
Multiplying the jth equation of (3.6) by c0mj (t) and summing over j and afterwards integrating

with respect to time variable on [0; t]. After some rearrangements, we get

Sm (t) = Sm (0) +

Z t

0
�0 (s) kum (s)k2a ds+ 2

Z t

0
d�

Z �

0
g (� � s) a

�
um (s) ; u

0
m (�)

�
ds (3.12)

+ 2

Z t

0



f [um] (s) ; u

0
m (s)

�
ds

= Sm (0) + J1 + J2 + J3;

with

Sm (t) = � (t) kum (t)k2a + 2
Z t

0

�

u0m (s)

20 + � (s)

u0m (s)

2a� ds: (3.13)

Given T > 0; " > 0, that will be �xed later, we estimate the terms J1; J2; J3 of (3.12) as follows.
First term J1.

J1 =

Z t

0
�0 (s) kum (s)k2a ds �

Z t

0

���0 (s)�� kum (s)k2a ds � k�0kC([0;T ])
��

Z t

0
Sm (s) ds: (3.14)

Second term J2.

J2 = 2

Z t

0
d�

Z �

0
g (� � s) a

�
um (s) ; u

0
m (�)

�
ds (3.15)

� 2
Z t

0
d�

Z �

0
jg (� � s)j

��a �um (s) ; u0m (�)��� ds
� 2

Z t

0



u0m (�)

ad� Z �

0
jg (� � s)j kum (s)kads

�
Z t

0

"
"


u0m (�)

2 + 1"

�Z �

0
jg (� � s)j kum (s)kads

�2#
d�

�
Z t

0

"
"


u0m (�)

2 + kgkL2(0;T )"

Z �

0
kum (s)k2a ds

#
d�

� "

��
Sm (t) +

TkgkL2(0;T )
"

Z t

0
Sm (s) ds:
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Third term J3: It is known that

jum (x; t)j � kum (t)kC(
) �
p
R� 1kumx (t)k0 �

p
R� 1kum (t)ka �

s
R� 1
��

Sm (t): (3.16)

By Lemma 2.6, we have

kf [um] (t)k20 =
Z R

1
xf2 [um] (x; t) dx �

R2 � 1
2

�2f

 
R+ T +

s
R� 1
��

Sm (t)

!
: (3.17)

Therefore

J3 = 2

Z t

0



f [um] (s) ; u

0
m (s)

�
ds � 2

Z t

0

��
f [um] (s) ; u0m (s)��� ds (3.18)

� 2
Z t

0
kf [um] (s)k0



u0m (s)

0ds
� 1

"

Z t

0
kf [um] (s)k20 ds+ "

Z t

0



u0m (s)

20 ds
� R2 � 1

2"

Z t

0
�2f

 
R+ T +

s
R� 1
��

Sm (s)

!
ds+

"

2
Sm (t) :

We continue to estimate the term Sm (0). By means of the convergences in (3.7), we can deduce
the existence of a constant �S0 > 0 such that

Sm (0) = � (0) ku0mk2a � �S0; 8m 2 N: (3.19)

Choosing " = 2+��
��

> 0, from (3.12), (3.14), (3.15), (3.18), (3.19), there exists MT > 0; it is a
constant independent of m such that

Sm (t) � 2 �S0 +MT

Z t

0
! (Sm (s)) ds; (3.20)

where

MT =
k�0kC([0;T ])

��
+
2TkgkL2(0;T ) +R2 � 1

2"
; ! (S) = 1 + S +�2f

 
R+ T +

s
R� 1
��

S

!
: (3.21)

By the convergence of the integrals
Z 1

0

dy

! (y)
and

Z 1

0

dy

1 + y +�2f
�p
y
� , applying Lemma 2.7, we

deduce from (3.20) that

Case1. If
Z 1

0

dy

1 + y +�2f
�p
y
� =1 then

Sm (t) � 	�1
�
	
�
2 �S0

�
+MT t

�
� 	�1

�
	
�
2 �S0

�
+MTT

�
� CT ; 8m 2 N; t 2 [0; T ] : (3.22)

Case2. If
Z 1

0

dy

1 + y +�2f
�p
y
� <1 then

Sm (t) � 	�1
�
	
�
2 �S0

�
+MT t

�
� 	�1

�
	
�
2 �S0

�
+MTT�

�
� CT ; 8m 2 N; t 2 [0; T�] ; (3.23)

where T� 2 (0; T ] is chosen such that T�MT �
Z 1

0

dy

! (y)
.
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This allows one to take the constant Tm = T or Tm = T� for all m 2 N. In what follows, we will
write T for both T and T�.

Step 3 . Passage to the limit.
From (3.13) and (3.22) (or (3.23)), we have

kumkL1(0;T ;V ) �
CT
��
;


u0m

L2(0;T ;V ) � CT

2��
; 8m 2 N: (3.24)

From (3.24), we deduce the existence of a subsequence of fumg denoted by the same symbol such
that

um ! u weakly* in L1 (0; T ;V ) ; (3.25)

u0m ! u0 weakly in L2 (0; T ;V ) :

By the compactness lemma of Lions ([21], p. 57) we can deduce from (3.25) the existence of a
subsequence still denoted by fumg, such that

um ! u strongly in L2 (QT ) and um (x; t)! u (x; t) a.e. (x; t) 2 QT : (3.26)

By the continuity of f , we have

f [um] (x; t) = f (x; t; um (x; t))! f (x; t; u (x; t)) a.e. (x; t) 2 QT : (3.27)

Besides, we also have

jf [um] (x; t)j � sup
(x;t;u)2
�[0;T ]�[�CT ;CT ]

jf (x; t; u)j = CT ; 8m 2 N: (3.28)

Consequently, it follows from the dominated convergence theorem that

f [um]! f (u) strongly in L2 (QT ) : (3.29)

Combining (3.7), (3.25) and (3.29), it is enough to pass to the limit in (3.6) and (3.7) to show
that u satis�es (3.2) and (3.3). In addition, from (3.25), we have u 2 W (T ) : Hence, the proof of the
existence of a weak solution is complete.

Step 4. Uniqueness of the solution.
Suppose u1; u2 are two solutions of Prob. (1.1)-(1.3) on the interval [0; T ] such that u1; u2 2WT .

Then u = u1 � u2 2WT satis�es

u0 (t) ; v

�
+ � (t) a

�
u0 (t) ; v

�
+ � (t) a (u (t) ; v)�

Z t

0
g (t� s) a (u (s) ; v) ds (3.30)

= hf [u1] (t)� f [u2] (t) ; vi ; 8v 2 V;

and
u (0) = 0: (3.31)

Taking v = u (t) in (3.30) and integrating with respect to t, we obtain

% (t) = �
Z t

0

�
2� (s)� �0 (s)

�
ku (s)k2a ds (3.32)

+2

Z t

0
ds

Z s

0
g (s� �) a (u (�) ; u (s)) d� + 2

Z t

0
hf [u1] (s)� f [u2] (s) ; u (s)i ds;

where
% (t) = ku (t)k20 + � (t) ku (t)k

2
a : (3.33)
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As in Step 2, we can easily estimate all terms on the right hand side of (3.32) to obtain

% (t) � DT
Z t

0
% (s) ds; 8t 2 [0; T ] ; (3.34)

where DT > 0. By Gronwall�s lemma, (3.34) leads to % (t) � 0; i.e., u1 � u2.
Step 5. The alternative statement.
The last statement of Theorem 3.2 is proven by a standard continuation argument. Indeed, let

[0; T1) be a maximal existence interval on which the solution of Prob. (1.1)-(1.3) exists. Suppose
that T1 <1. We prove that lim

t!T�1
ku (t)ka =1 (Proof by Contradiction).

Indeed, assume there exists M0 > 0 and ftmg � (0; T1) such that lim
m!1

tm = T1 and ku (tm)ka �
M0 for all m 2 N. As we have proved above, for each m 2 N, there exists a unique weak solution of
Prob. (1.1)-(1.3) with initial data u (tm) on [tm; tm + �] with � > 0 independent of m 2 N. Thus, we
can get T1 < tm + � for m 2 N su¢ ciently large and so, we obtain a contradiction to the maximality
of T1. The proof of Theorem 3.2 is �nished. �

4 Blow-up and lifespan of solutions

Our main objective of this section is to show that the weak solution of Prob. (1.1)-(1.3) blows
up at �nite time at � (t) � �; f (x; t; u) � K (x; t) f (u). We will consider the blow-up property when
the initial energy is negative or nonnegative. We note more that this property still depends on the
variety conditions of the relaxation function g.

Let we �rst state the blow-up result when the initial energy is negative. In this case, we make the
following assumptions.

(A02) � 2 C1 (R+) such that � (t) � �� > 0; �0 (t) � 0 for all t � 0;
(A03) � > 0;
(K1) K; Kt 2 C

�

� R+

�
such that

(i) K (x; t) � 0 for all (x; t) 2 
� R+,
(ii) Kt (x; t) � 0 for all (x; t) 2 
� R+;

(F1) f 2 C1 (R) and there exists the constant p > 2 such that

uf (u) � pF (u) = p
Z u

0
f (z) dz � 0; 8u 2 R;

(G1) g 2 C1 (R+) \ L1 (R+) satis�es
(i) g (t) � 0 for all t � 0,
(ii) g0 (t) � 0 for all t � 0,

(iii) ~g1 � p (p� 2)��
p (p� 2) + 1 where ~g (t) =

Z t

0
g (s) ds and ~g1 =

Z 1

0
g (s) ds.

Let we de�ne the following functionals

E (t) =
1

2
(g ? u) (t) +

1

2
(� (t)� ~g (t)) ku (t)k2a �

Z R

1
xK (x; t)F (u (x; t)) dx; (4.1)

where

(g ? u) (t) =

Z t

0
g (t� s) ku (t)� u (s)k2a ds; (4.2)

and
� (t) =

1

2
ku (t)k20 +

�

2
ku (t)k2a : (4.3)
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Lemma 4.1. Assume that (A1); (A02); (A
0
3); (K1); (F1) and (G1) hold. Then we have

d

dt

�
E (t) +

Z t

0

�

u0 (s)

2
0
+ �



u0 (s)

2
a

�
ds

�
� 0: (4.4)

Moreover, the following energy inequality holds

E (t) +

Z t

0

�

u0 (s)

2
0
+ �



u0 (s)

2
a

�
ds � E (0) : (4.5)

Proof of Lemma 4.1. By multiplying the equation in (1.1) by xut (x; t), integrating over 
, we
obtain

d

dt

�
E (t) +

Z t

0

�
ku0 (s)k20 + � ku0 (s)k

2
a

�
ds

�
=
1

2
�0 (t) ku (t)k2a

�1
2
g (t) ku (t)k2a +

1

2
(g0 ? u) (t)�

Z R

1
xKt (x; t)F (u (x; t)) dx;

(4.6)

for any regular solution u. We can extend (4.6) to weak solutions by using density arguments. Com-
bining (A02); (A

0
3); (K1); (F1) and (G1), the result of Lemma 4.1 is obtained. �

Theorem 4.2. Assume that the assumptions (A02); (A
0
3); (K1); (F1) and (G1) hold. Then, for

any initial conditions ~u0 2 V such that E (0) < 0, the weak solution of the Prob. (1.1)-(1.3) blows up
at �nite time and the lifespan T1 of the solution u satis�es

T1 � � 8 (p� 1) � (0)
(p� 2)2pE (0)

= Tmax1 : (4.7)

Furthermore, if in addition the following assumptions

(K 0
1) K (�; Tmax1 ) 2 C

�


�
; K (�; Tmax1 ) 6= 0;

(F 01) (i) There exists the constant d2 > p such that uf (u) � d2F (u) for all u 2 R,
(ii)

Z 1

0

zdz

z2 + F (z)
<1;

where

F (r) = 'F (r) =

(
sup
juj�r

F (u); if r > 0;

F (0) = 0; if r = 0:

Then, the blow-up time T1 satis�es

T1 �
Z 1

p
2(R�1)��1�(0)

zdz

	1(z)
= Tmin1 ; (4.8)

with

	1(z) =
1

2�

�
� (0) z2 + 2 (R� 1) (1 + d2)




pK (Tmax1 )



2
0
F (z)

�
: (4.9)

Proof of Theorem 4.2. By last statement in Theorem 3.2, it is enough to prove that the solution
obtained here is not a global solution in R+. Indeed, by contradiction, we will assume that weak
solutions exist in the whole interval R+.

For T0 > 0; � > 0 and � > 0 speci�ed later, we de�ne the auxiliary functional

M : [0; T0] �! R

t 7�!M (t) = 2

Z t

0
� (s) ds+ 2 (T0 � t) � (0) + �(t+ �)2 :

(4.10)
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By direct computation, we achieve that

M 0 (t) = 2� (t)� 2� (0) + 2� (t+ �) (4.11)

= 2

Z t

0



u0 (s) ; u (s)

�
ds+ 2�

Z t

0
a
�
u0 (s) ; u (s)

�
ds+ 2� (t+ �) ;

and
M 00 (t) = 2



u0 (t) ; u (t)

�
+ 2�a

�
u0 (t) ; u (t)

�
+ 2�: (4.12)

Since (4.10) and (4.11), we see that M (t) > 0 for all t 2 [0; T0] and M 0 (0) = 2�� > 0.
By multiplying the equation in (1.1) by xu (x; t), and then integrating over 
, we obtain

M 00 (t) = 2� � 2� (t) ku (t)k2a + 2
Z t

0
g (t� s) a (u (s) ; u (t)) ds+ 2 hK (t) f (u (t)) ; u (t)i : (4.13)

From (4.13), we have

M 00 (t)M (t) = 2M (t)

�
� � � (t) ku (t)k2a +

Z t

0
g (t� s) a (u (s) ; u (t)) ds+ hK (t) f (u (t)) ; u (t)i

�
:

(4.14)
Now, we put

� (t) =

�
2

Z t

0
� (s) ds+ �(t+ �)2

��Z t

0

�

u0 (s)

2
0
+ �



u0 (s)

2
a

�
ds+ �

�
: (4.15)

By the fact that�Z t

0



u0 (s) ; u (s)

�
ds

�2
�

Z t

0



u0 (s)

2
0
ds

Z t

0
ku (s)k20 ds; (4.16)�

�

Z t

0
a
�
u0 (s) ; u (s)

�
ds

�2
� �2

Z t

0



u0 (s)

2
a
ds

Z t

0
ku (s)k2a ds;

2� (t+ �)

Z t

0



u0 (s) ; u (s)

�
ds � �(t+ �)2

Z t

0



u0 (s)

2
0
ds+ �

Z t

0
ku (s)k20 ds;

2�� (t+ �)

Z t

0
a
�
u0 (s) ; u (s)

�
ds � ��(t+ �)2

Z t

0



u0 (s)

2
a
ds+ ��

Z t

0
ku (s)k2a ds;

and

2�

Z t

0



u0 (s) ; u (s)

�
ds

Z t

0
a
�
u0 (s) ; u (s)

�
ds (4.17)

� �

Z t

0
ku (s)k20 ds

Z t

0



u0 (s)

2
a
ds+ �

Z t

0



u0 (s)

2dsZ t

0
ku (s)k2a ds;

so we imply from (4.15)-(4.17) that

� (t) � 1

4

��M 0 (t)
��2; for all t 2 [0; T0] : (4.18)

Therefore. by direct computation, we get

2pM (t)

�Z t

0

�

u0 (s)

2 + � 

u0 (s)

2
a

�
ds+ �

�
� 2p� (t) � p

2

��M 0 (t)
��2: (4.19)

From (4.18) and (4.19), we get

M 00 (t)M (t)� p
2

��M 0 (t)
��2 � 2M (t)D (t) ; (4.20)
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with

D (t) = � � � (t) ku (t)k2a +
Z t

0
g (t� s) a (u (s) ; u (t)) ds (4.21)

+ hK (t) f (u (t)) ; u (t)i � p
�Z t

0

�

u0 (s)

2 + � 

u0 (s)

2
a

�
ds+ �

�
:

We can easily estimate the third and fourth terms on the right hand side of (4.21) as followsZ t

0
g (t� s) a (u (s) ; u (t)) ds � �p

2
(g ? u) (t) +

�
1� 1

2p

�
~g (t) ku (t)k2a ; (4.22)

and

hK (t) f (u (t)) ; u (t)i � p
Z R

1
xK (x; t)F (u (x; t)) dx: (4.23)

It implies from (4.5), (4.21)-(4.23) that

D (t) � � � � (t) ku (t)k2a �
p

2
(g ? u) (t) +

�
1� 1

2p

�
~g (t) ku (t)k2a (4.24)

+ p

Z R

1
xK (x; t)F (u (x; t)) dx� p

�Z t

0

�

u0 (s)

2 + � 

u0 (s)

2
a

�
ds+ �

�
= (1� p)� � p

�
E (t) +

Z t

0

�

u0 (s)

2
0
+ �



u0 (s)

2
a

�
ds

�
+

��p
2
� 1
�
� (t) +

�
1� 1

2p
� p
2

�
~g (t)

�
ku (t)k2a

� (1� p)� � pE (0) +
��p
2
� 1
�
�� +

�
1� 1

2p
� p
2

�
~g1

�
ku (t)k2a

� (1� p)� � pE (0) :

Choosing �; 0 < � � pE(0)
1�p , from (4.20), (4.21) and (4.24), we have

M (t) �
h�
1� p

2

�
M

�p
2 (0)M 0 (0)t+M1� p

2 (0)
i� 2

p�2
; 8t 2 [0 T0]: (4.25)

If we choose � > 2�(0)
(p�2)� and T0 �

��2

(p�2)���2�(0) , we will have

T� = �
M1� p

2 (0)�
1� p

2

�
M

�p
2 (0)M 0 (0)

=
2M (0)

(p� 2)M 0 (0)
=
2T0� (0) + ��

2

(p� 2)�� 2 (0; T0] : (4.26)

From (4.25), we get lim
t!T��

M (t) =1. This is a contradiction. Consequently, the solution blows up

at �nite time.
Now, we will seek the upper bound for T1. It is clear to see that

T1 � 2T1� (0) + ��2

(p� 2)�� () T1 � ��2

(p� 2)�� � 2� (0) ; 8 (�; �) 2
~
(~u0); (4.27)

where
~
(~u0) =

�
(�; �) 2 R2+ : 0 < � �

pE (0)

1� p ; � >
2� (0)

(p� 2)�

�
: (4.28)
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For all (�; �) 2 ~
(~u0), we have

��2

(p� 2)�� � 2� (0) �
�
�
4�(0)
(p�2)�

�2
(p� 2)� 4�(0)

(p�2)� � 2� (0)
(4.29)

=
8� (0)

�(p� 2)2
� 8� (0)

pE (0)

1� p (p� 2)
2
= � 8 (p� 1) � (0)

p(p� 2)2E (0)
:

From (4.27) and (4.29), we get T1 � � 8 (p� 1) � (0)
p(p� 2)2E (0)

= Tmax1 .

Next, we seek a lower bound for the blow-up time T1 for the solution u. We have

�0 (t) = �� (t) ku (t)k2a + hK (t) f (u (t)) ; u (t)i+
Z t

0
g (t� s) a (u (s) ; u (t)) ds: (4.30)

We can easily estimate third term on the right hand side of (4.30) as followsZ t

0
g (t� s) a (u (s) ; u (t)) ds � 1

2
(g ? u) (t) +

3

2
~g (t) ku (t)k2a : (4.31)

In order to continue process, by using Lemma 2.6 with O = R; N = 1; f = F � 0, we note that
the function F : R+ �! R+ is nondecreasing satisfying F (u) � F (juj) ; for all u 2 R:

Combining (4.5), (4.30) and (4.31), it leads to

�0 (t) � �� (t) ku (t)k2a + hK (t) f (u (t)) ; u (t)i+
1

2
(g ? u) (t) +

3

2
~g (t) ku (t)k2a (4.32)

= E (t) +
1

2
� (t) ku (t)k2a � 2 (� (t)� ~g (t)) ku (t)k

2
a +

Z R

1
xK (x; t)F (u (x; t)) dx

+ hK (t) f (u (t)) ; u (t)i

� 1

2
� (0) ku (t)k2a + (1 + d2)

Z R

1
xK (x; t)F (u (x; t)) dx

� � (0)

�
� (t) + (1 + d2)

Z R

1
xK (x; Tmax1 )F (ju (x; t)j) dx

� � (0)

�
� (t) + (1 + d2)




pK (Tmax1 )



2
0
F
�p
R� 1ku (t)ka

�
� � (0)

�
� (t) + (1 + d2)




pK (Tmax1 )



2
0
F
�p

2 (R� 1)��1� (t)
�

=
�

R� 1	1
�p

2 (R� 1)��1� (t)
�
:

From (4.32), we get

t �
Z p2(R�1)��1�(t)
p
2(R�1)��1�(0)

zdz

	1(z)
: (4.33)

Hence, we derive the lower bound for T1; by (4.33), as follows

T1 �
Z 1

p
2(R�1)��1�(0)

zdz

	1(z)
= Tmin1 : (4.34)

The proof is complete. �
Next, we state the blow-up result when the initial energy is nonnegative. In this case, we make

the following assumptions
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(K2) K; Kt 2 C
�

� R+

�
such that

(i) 0 � K (x; t) � K1 for all (x; t) 2 
� R+ with K1 > 0,
(ii) Kt (x; t) � 0 for all (x; t) 2 
� R+;

(F2) f 2 C1 (R) and there exist constants d2 > 0; d2 > p > 2; qi > p for all i = 1; N , satisfying
(i) uf (u) � pF (u) � 0 for all u 2 R,

(ii) uf (u) � d2F (u) � d2d2
�
jujp +

NP
i=1
jujqi

�
for all u 2 R:

First, by (4.1), (K2) and (F2), we have

E (t) =
1

2
(g ? u) (t) +

1

2
[� (t)� ~g (t)] ku (t)k2a �

Z R

1
xK (x; t)F (u (x; t)) dx (4.35)

� 1

2
[� (t)� ~g (t)] ku (t)k2a �RK1d2

Z R

1

 
ju (x; t)jp +

NX
i=1

ju (x; t)jqi
!
dx

=
1

2
[� (t)� ~g (t)] ku (t)k2a �RK1d2

 
ku (t)kpLp +

NX
i=1

ku (t)kqiLqi

!

� 1

2
[� (t)� ~g (t)] ku (t)k2a �RK1d2

 eDpp ku (t)kpa + NX
i=1

eDqiqi ku (t)kqia
!

� 1

2
y2 (t)�RK1d2

 eDppL� p
2 yp (t) +

NX
i=1

eDqiqiL� qi
2 yqi (t)

!
= H (y (t)) ;

where

L = �� � ~g1 = �� �
Z 1

0
g (s) ds > 0; eDp = sup

0 6=v2V

kvkLp
kvka

; y (t) =
p
� (t)� ~g (t)ku (t)ka; (4.36)

and
H : R+ �! R

� 7�! H (�) = �2

2 �RK1d2
� eDppL� p

2�p +
NP
i=1

eDqiqiL� qi
2 �qi

�
:

(4.37)

Before stating our main results, we give a useful lemma as follows. The proof of this lemma is not
di¢ cult, so we omit it.

Lemma 4.3.
(i) The equation H0 (�) = 0 has a unique positive solution �0 satis�es

1�RK1d2

 
p eDppL� p

2�p�20 +
NX
i=1

qi eDqiqiL� qi
2 �qi�20

!
= 0; (4.38)

(ii) H (0) = 0; lim
�!1

H (�) = �1;
(iii) H0 (�) > 0 if � 2 (0; �0) and H0 (�) < 0 if � 2 (�0;1).
The following lemma will play an essential role in this paper, and it is similar to the lemma used

�rstly by E. Vitillaro in [43].
Lemma 4.4. Assume that E (0) < H (�0). Then
(i) If k~u0ka <

�0p
� (0)

then exists �̂1 2 [0; �0) such that

y (t) � �̂1; 8t 2 [0; T1) ; (4.39)
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(ii) If k~u0ka >
�0p
� (0)

and E (0) � 0 then exists �̂2 2 (�0;1) such that

y (t) � �̂2; 8t 2 [0; T1) : (4.40)

Proof of Lemma 4.4. Sine 0 � E (0) < H (�0), there are constants 0 � �̂1 < �0 < �̂2 such that

H(�̂1) = H(�̂2) = E (0) : (4.41)

First, we assume that k~u0ka <
�0p
� (0)

. We have

H(�̂1) = E (0) � H (y (0)) = H
�p

� (0)k~u0ka
�
: (4.42)

By Lemma 4.3, from (4.42), we get k~u0ka �
�̂1p
� (0)

. We claim that y (t) � �̂1 for all t 2 [0; T1).

Suppose, by contradiction, there exists t0 2 [0; T1) such that y (t0) > �̂1.
By the continuity of y, without loss of generality, we may assume that y (t0) 2

�
�̂1; �0

�
. By

Lemma 4.1 and 4.3, we get
E (t0) � H (y (t0)) > H(�̂1) = E (0) ; (4.43)

this is an contradiction, because of E (t0) � E (0).
Now, we assume that k~u0ka >

�0p
� (0)

. We have

H(�̂2) = E (0) � H (y (0)) = H
�p

� (0)ku0ka
�
: (4.44)

By Lemma 4.3, from (4.44), we get k~u0ka �
�̂2p
� (0)

. We claim that y (t) � �̂2 for all t 2 [0; T1).

By the same arguments as above, we suppose by contradiction that there exists t0 2 [0; T1) such that
y (t0) < �̂2. By the continuity of y, without loss of generality, we may assume that y (t0) 2

�
�0; �̂2

�
.

By Lemmas 4.1 and 4.3, we get

E (t0) � H (y (t0)) > H(�̂2) = E (0) ; (4.45)

in contradiction with E (t0) � E (0). Lemma 4.4 is proved. �
Theorem 4.5. Assume that the assumptions (A02); (A

0
3); (K2); (F2) and (G1) hold. Then, for

any initial conditions ~u0 2 V such that k~u0ka >
�0p
� (0)

and

0 � E (0) < min

8<:H(�0);
h
(p� 1)2L� ��

i
�̂
2

2

2p2� (0)

9=; ;
the weak solution of the Prob. (1.1)-(1.3) blows up at �nite time and the lifespan T1 of the solution u
is de�ned by

T1 � 16p (p� 1)� (0) � (0)
(p� 2)2

h�
(p� 1)2L� ��

�
�̂
2

2 � 2p2� (0)E (0)
i = Tmax1 ; (4.46)

and

T1 �
Z 1

�(0)

dz

	2(z)
= Tmin1 ; (4.47)

19



where

	2(z) = E (0) +
� (0)

�
z + (1 + d2)RK1d2

" eDpp� 2�
� p

2

z
p
2 +

XN

i=1
eDqiqi� 2�

� qi
2

z
qi
2

#
: (4.48)

Proof of Theorem 4.5. By the same method in the proof of Theorem 4.2, with T0 > 0; � > 0 and
� > 0 are chosen later, we de�ne the functional

M : [0; T0] �! R

t 7�!M (t) = 2

Z t

0
� (s) ds+ 2 (T0 � t) � (0) + �(t+ �)2 :

(4.49)

From (4.24) and Lemma 4.4, we get

D (t) � (1� p)� � pE (0) +
��p
2
� 1
�
�� +

�
1� 1

2p
� p
2

�
G1

�
�̂
2

2

� (0)
(4.50)

= (1� p)� � pE (0) +

h
(p� 1)2L� ��

i
�̂
2

2

2p� (0)
:

Choosing �; 0 < � � [(p�1)2L���]�̂
2
2�2p2�(0)E(0)

2p(p�1)�(0) , it follows from (4.20), (4.21) and (4.50) that

M (t) �
h�
1� p

2

�
M

�p
2 (0)M 0 (0)t+M1� p

2 (0)
i� 2

p�2
; 8t 2 [0; T0] : (4.51)

If we choose � > 2�(0)
(p�2)� and T0 �

��2

(p�2)���2�(0) , we will have

T� = �
M1� p

2 (0)�
1� p

2

�
M

�p
2 (0)M 0 (0)

=
2M (0)

(p� 2)M 0 (0)
=
2T0� (0) + ��

2

(p� 2)�� 2 (0; T0] : (4.52)

From (4.52), we get lim
t!T��

M (t) =1. This is also a contradiction, hence the solution blows up at

�nite time.
As in proof of Theorem 4.2, we have

T1 � 16p (p� 1)� (0) � (0)
(p� 2)2

h�
(p� 1)2L� ��

�
�̂
2

2 � 2p2� (0)E (0)
i = Tmax1 : (4.53)

Finally, we seek a lower bound for the blow-up time T1 for the solution u. We have

�0 (t) � E (0) + � (0)
�
� (t) + (1 + d2)

Z R

1
xK (x; t)F (u (x; t)) dx (4.54)

� E (0) + � (0)
�
� (t) + (1 + d2)RK1d2

Z R

1

 
ju (x; t)jp +

NX
i=1

ju (x; t)jqi
!
dx

= E (0) +
� (0)

�
� (t) + (1 + d2)RK1d2

 
ku (t)kpLp +

NX
i=1

ku (t)kqiLqi

!

� E (0) + � (0)
�
� (t) + (1 + d2)RK1d2

 eDpp ku (t)kpa + NX
i=1

eDqiqi ku (t)kqia
!

� E (0) + � (0)
�
� (t) + (1 + d2)RK1d2

" eDpp� 2�
� p

2

�
p
2 (t) +

NX
i=1

eDqiqi� 2�
� qi

2

�
qi
2 (t)

#
= 	2 (� (t)) :
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From (4.54), we get

T1 �
Z 1

�(0)

dz

	2 (z)
= Tmin1 : (4.55)

Theorem 4.5 is proved. �

5 Global existence and decay of solutions

To give the theorem on global existence and decay, we make following assumption
(G3) g 2 C1 (R+) \ L1 (R+) satis�es

(i) g (t) � 0 for all t � 0,
(ii) L = �� �

Z 1

0
g (s) ds > 0,

(iii) There exists a function � : R+ �! R+ such that

g0 (t) � �� (t) g (t) ; �0 (t) � 0; 8t � 0;
Z 1

0
� (s) ds =1:

We have the following lemmas.
Lemma 5.1. Suppose that ~u0 2 V and the assumptions (A02); (A

0
3); (K2); (F2); (G3) hold. Then

the energy functional E (t) satis�es

E0 (t) � �1
2
� (t) (g ? u) (t)�

Z R

1
xK (x; t)F (u (x; t)) dx � 0: (5.1)

Proof of Lemma 5.1. It is similar to proof of Lemma 4.1, we can use the similar computation to
obtain this result. �

Lemma 5.2. Assume that the assumptions (A02); (A
0
3); (K2); (F2) and (G3) hold. Then, for any

initial conditions ~u0 2 V such that k~u0ka <
�0p
� (0)

; E (0) < H (�0), the weak solution of the Prob.

(1.1)-(1.3) is global on R+.
Proof of Lemma 5.2. It is su¢ cients to combine the last statement in Theorem 3.1 and the estimate

given in Lemma 4.4. Then, Lemma 5.2 is proved. �
We de�ne the following functionals:

I (t) = (� (t)� ~g (t)) ku (t)k2a � p
Z R

1
xK (x; t)F (u (x; t)) dx; (5.2)

and
L (t) = E (t) + � (t) : (5.3)

Lemma 5.3. Assume that the assumptions (A02); (A
0
3); (K2); (F2) and (G3) hold. Then, for any

initial conditions ~u0 2 V such that k~u0ka <
�0p
� (0)

; E (0) < H (�0), there exist positive constants �1;

�2 such that
�1E1 (t) � L (t) � �2E1 (t) ; 8t � 0; (5.4)

where
E1 (t) = (g ? u) (t) + ku (t)k2a : (5.5)

Proof of Lemma 5.3. From (5.2), (A02); (A
0
3); (K2); (F2) and (4.36), we have

�� ku (t)k2a � I (t) � � (0) ku (t)k
2
a ; 8t � 0; (5.6)
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where

�� = L

"
1� pRK1d2

 eDppL� p
2 �̂
p�2
1 +

NX
i=1

eDqiqiL� qi
2 �̂

qi�2
1

!#
> 0: (5.7)

Note that

L (t) = E (t) + � (t)

=
1

2
(g ? u) (t) +

�
1

2
� 1
p

�
(� (t)� ~g (t)) ku (t)k2a +

I (t)

p
+ � (t)

� 1

2
(g ? u) (t) +

(p� 2)L
2p

ku (t)k2a � �1E1 (t) ;

where �1 =
1
2 min

n
1; (p�2)Lp

o
.

On the other hand, we have

L (t) = E (t) + � (t)

=
1

2
(g ? u) (t) +

�
1

2
� 1
p

�
(� (t)� ~g (t)) ku (t)k2a +

I (t)

p
+
�

2
ku (t)k2a +

1

2
ku (t)k20

� 1

2
(g ? u) (t) +

1

2

"
� (0) + �+

R(R� 1)2

2

#
ku (t)k2a � �2E1 (t) ;

where �2 =
1
2 max

n
1; � (0) + �+ R(R�1)2

2

o
. Thus, Lemma 5.3 is proved. �

Finally, we have the following theorem.
Theorem 5.4. Assume that the assumptions (A02); (A

0
3); (K2); (F2) and (G3) hold. Then, for any

initial conditions ~u0 2 V such that k~u0ka <
�0p
� (0)

; E (0) < H (�0) and

�� +
p

d2
�� � � (0) > 0; (5.8)

there exists C� > 0; 
� > 0 such that

E1 (t) � C� exp
�
�
�

Z t

0
� (s) ds

�
; 8t � 0: (5.9)

Proof of Theorem 5.4. First, we have

�� (t) ku (t)k2a � ��� ku (t)k
2
a ; (5.10)Z t

0
g (t� s) a (u (s) ; u (t)) ds � p

4 (d2 � p)
(g ? u) (t) +

d2
p
~g (t) ku (t)k2a ; (5.11)

and

hK (t) f (u (t)) ; u (t)i � d2
Z R

1
xK (x; t)F (u (x; t)) dx (5.12)

=
d2
p

h
(� (t)� ~g (t)) ku (t)k2a � I (t)

i
� d2
p
(� (0)� ~g (t)) ku (t)k2a �

d2��
p
ku (t)k2a :
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From (4.30), (5.10)-(5.12), we have

�0 (t) � p

4 (d2 � p)
(g ? u) (t)� d2

p

�
�� +

p

d2
�� � � (0)

�
ku (t)k2a (5.13)

=
p

2 (d2 � p)
(g ? u) (t)� p

4 (d2 � p)
(g ? u) (t)� d2

p

�
�� +

p

d2
�� � � (0)

�
ku (t)k2a

� p

2 (d2 � p)
(g ? u) (t)� �3E1 (t) ;

where �3 = min
n

p
4(d2�p) ;

d2
p

�
�� +

p
d2
�� � � (0)

�o
> 0.

Combine (5.3), Lemma 5.1 and (5.13), it gives that

L0 (t) � �0 (t) � p

2 (d2 � p)
(g ? u) (t)� �3E1 (t) : (5.14)

From (5.14), we obtain

� (t)L0 (t) � p

2 (d2 � p)
� (t) (g ? u) (t)� �3� (t)E1 (t) � �

p

d2 � p
E0 (t)� �3� (t)E1 (t) : (5.15)

We de�ne the functional
L1 (t) = � (t)L (t) +

p

d2 � p
E (t) : (5.16)

By direct computation, it implies that

L01 (t) = �
0 (t)L (t) + � (t)L0 (t) + p

d2 � p
E0 (t) (5.17)

� ��3� (t)E1 (t) � �
�3
�2
� (t)L (t)

� ��3
�2

�
� (0) +

p

d2 � p

��1
� (t)L1 (t) = �
�� (t)L1 (t) :

Also by directly integrating (5.17), we deduce

E1 (t) �
d2 � p
p�1

L1 (t) � C� exp
�
�
�

Z t

0
� (s) ds

�
; 8t � 0; (5.18)

where C� =
d2�p
p�1

L1 (0). Theorem 5.4 is proved. �
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