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1 Introdution

In this paper, we consider the following initial boundary problem for a nonlinear pseudoparabolic
equation containing viscoelastic terms

ut—<,u(t)+a(t)§t>Au+/Og(t—s)Au(x,s)ds:f(:c,t,u), (z,t) € (1,R) x (0,00), (1.1)

with Robin-Dirichlet conditions
ug (1,t) — hiu (1,t) = u (R, t) =0, (1.2)

and the initial condition
u(z,0) =1y (z), (1.3)

where Au = ugz; + %ux, R > 1, hy > 0 are given constants and pu, «, g, f, 4 are given functions
satisfying conditions specified later.



The pseudoparabolic equation
Up — Upgt = F (2,8, U, Uy, Ugy Ugy) , 0 <z <1, >0 (1.4)

with the initial condition u(z,0) = tg(z) and with the different boundary conditions, has been exten-
sively studied by many authors, see for example [9]-[20], [23]-[25], [28]-[37], [41], [44]-[49] among others
and the references given therein. In these works, many results about existence, asymptotic behavior,
blow-up and decay of solutions were obtained.
An important special case of the model (1.4) is the Benjamin-Bona-Mahony-Burgers (BBMB)
equation
Ut + Uy + Uy — VUgy — Q@ Uggt = 0, (1.5)

it was studied by Amick et al. in [2] with v > 0, « = 1, z € R, ¢t > 0, in which the solution of (1.5) with
initial data in L' N H? decays to zero in L? norm as t — +oo. With v > 0, a > 0, x € [0, 1], ¢ > 0, the
model has the form (1.5) was also investigated earlier by Bona and Dougalis [8], where uniqueness,
global existence and continuous dependence of solutions on initial and boundary data were established
and the solutions were shown to depend continuously on v > 0 and on a > 0. The results obtained in
[2] were developed by many authors, such as by Zhang for equations of the form

Up — VUgg — Uggt — Up + U Uy = 0, (16>

where m > 0, see [25], [47].

The linear version of (1.4) was first studied by S.L. Sobolev [40] in 1954. Therefore, the equation
of the form (1.4) is also called a Sobolev type equation. Mathematical study of pseudo-parabolic
equations goes back to works of Showalter (see [36]-[38]) in the seventies, since then, numerous of
interesting results about linear and nonlinear pseudoparabolic equations have been obtained. It is
also well known that the work [38] is the first paper on nonlinear pseudoparabolic equation. These
equations appear in the study of various problems of hydrodynamics, thermodynamics and filtration
theory, see [25] and the references given therein.

The nonlinear pseudoparabolic equations of type (1.1) are related to frameworks of mathematical
models in engineering and physical sciences on second-grade or third-grade fluid flows, see [3], [4], [19],
[20], [23], [33], [42] and references therein. In [19], some unsteady flow problems of a second-grade
fluid were also considered. The flows are generated by the sudden application of a constant pressure
gradient or by the impulsive motion of a boundary. Here, the velocities of the flows are described
by the partial differential equations and exact analytic solutions of these differential equations are
obtained. Suppose that the second grade fluid is in a circular cylinder and is initially at rest, and the
fluid starts suddenly due to the motion of the cylinder parallel to its length. The axis of the cylinder
is chosen as the z-axis. Using cylindrical polar coordinates, the governing partial differential equation
is

%z(u+a%) (%—i—%%) w(r,t) — Nw, 0 <r <a,t>0,
w(a,t) =W, t >0, (1.7)
w(r,0)=0,0<r<a,

where w(r, t) is the velocity along the z-axis, v is the kinematic viscosity, « is the material parameter,
and N is the imposed magnetic field. In the boundary and initial conditions, W is the constant
velocity at 7 = a and a is the radius of the cylinder. Besides, it is well known that the nonlinear
pseudoparabolic equations of type (1.1) also describe a variety of important physical processes such
as the seepage of homogeneous fluids through a fissured rock [5], the unidirectional propagation of
nonlinear, dispersive, long waves [6], [8] and the aggregation of populations [28].

There were also many profound works on the initial value problems of high order nonlinear
pseudoparabolic equations, for example, we refer to two typical papers [12], [48]. In [48], Zhao and



Xuan studied the following pseudoparabolic equation of fourth-order
Ut — Qg — YUyt + Blzaze + () =0, z € R, ¢t > 0. (1.8)

They obtained the existence of the global smooth solutions for the initial value problem of (1.8) and
discussed the convergence of solutions as f — 0. In [12], Y. Cao et al. established the global existence
of classical solutions and the blow-up in a finite time for the viscous diffusion equation of higher order
ut + K1Upzee — koUtzr — (P (ug)), + A(u) =0, 0 <2 < 1,t >0,
u(0,t) = u(l,t) = uzx(0,t) = uge(1,£) =0, ¢ > 0, (1.9)
u(z,0) = up(z), 0 <z <1,

where k; > 0, ks > 0 and ®(s), A(s) are appropriately smooth, ug € C'*8 with 8 € (0,1) and
’U,()(O) = U()(l) = u()m(O) = ’U,Om;(l) = 0.

On the other hand, a numerous of nonlocal pseudoparabolic (or parabolic) equations with nonlocal
terms or nonlocal boundary conditions have been widely studied in the last few decades, we refer to
[9], [10], [15]-[18], [27], [35], [41], [49] and the references cited therein. In [9], Bouziani studied the
solvability of solutions for the nonlinear pseudoparabolic equation

2

“aior (a(z,t)uy) = f(z, t,u,uy), a<z < B, 0<t<T, (1.10)

up — — (a(x, t)uy)

ox

subject to the initial condition
u(z,0) = up(z), a <z <p, (1.11)

and the nonlocal boundary condition

u(a,t) = /Bu(x,t)da: =0, (1.12)

B
with ug(a) = / up(x)dx = 0. In [15], Dai and Huang considered the well-poseness and solvability of

solutions for the nonlinear pseudoparabolic equation
w + (a(x, ), = F (2,8, 0, Uz, Uge) , a <z <, 0<t<T, (1.13)

with the initial condition (1.11) and the nonlocal moment boundary conditions
B B
/ u(z, t)dr = / zu(z,t)de =0, 0 <t <T. (1.14)
(e e

In [35], Shang and Guo proved the existence, uniqueness, regularities of the global strong solution
and gave some conditions of the nonexistence of global solution for the nonlinear pseudoparabolic
equation with Volterra integral term

ut — f(u)xac — Ugxt — /Ot)\(t - S) (U (U(.’L‘, S)vux(xa S)))x ds=f (SU,t,U,’LLI) , 0<z <1, ¢>0. (115)

In [27], the following initial boundary value problem for a nonlinear heat equation with viscoelastic
was considered

up — ((;1 [u(x, t)uy] + /0 g(t — 8)8856 [z, )ug]ds = f(u) + fi(z,t), 0<z <1, t>0, (1.16)



and existence, uniqueness, regularity, blow-up and exponential decay estimates were established. Zhu
et al. [49] studied the exponent decay behavior and blow-up phenomena of weak solutions for a class
of pseudoparabolic equations with a nonlocal term

ug — alAuy — Au+ u = bud, +uPlu, (x,t) € Q x (0, +00),

u=0, (z,t) € 0Q x (0,+00), (1.17)
u(z,0) = up(z), v € Q,

where Q is a smooth bounded domain in R?, 1 < p < 5, and ®,, is a Newtonian potential

1 [ w?(y)

o = —
u(@) dr Jolr —y|

dy, x € R3. (1.18)

We note more that, in many mathematical literatures related to parabolic or pseudoparabolic
equations, many efforts with using a variety of methods have been devoted to the study of blow-up
properties if the solutions blow up, see [22], [29]-[31], [41] and the references cited therein. In [22], Li
et al. used a differential inequality technique to derive the lower bound for the blow-up time when
the blow-up occurs. In [41], the authors proved the results of global existence and finite time blow-up
for the solutions and obtained the upper bound for the blow-up time of the following problem with a
linear memory term and a nonlinear source term

t
up — Au — Aug + t — D) Au(r)dr = |uP"2u, in Q x (0,T
g ) 9 b
0

u =0, on 00 x (0,7, (1.19)

u(0) = ug, in €,

where  is a bounded domain of R™ (n > 1) with smooth boundary 9Q, p > 2, T € (0, 0], ug € H(2)
and g : Rt — RT is a positive nonincreasing function. The concavity method and the improved
potential method were used to have the upper bound for the blow-up time with initial data at arbitrary
energy level.

Motivated by the above mentioned works, because of mathematical context, we study the existence,
uniqueness, blow-up and general decay of solutions for the problem (1.1)-(1.3). In this paper, we will
apply the Faedo-Galerkin method and techniques used in [7] to treat a nonlinear Volterra integral
inequality and then the existence of weak solutions will be proved. Also under suitable conditions
on the initial values and the given functions f, g, using the improved lemma (Lemma 4.4) given in
[43], we obtain the upper bound and the lower bound of the blow-up time when the initial energy is
nonnegative or negative but small, and then the lifespan of the solution is solved. Moreover, we prove
a general decay of the energy function for the global solution. This paper consists of five sections.
In Section 2, we present preliminaries. In Section 3, we prove the existence and uniqueness results.
In Section 4, we obtain the existence of solutions which blow up in finite time with initial data at
suitable energy levels. This section also derives the lifespan for the equation considered via finding the
upper bound and the lower bound for the blow-up times. Finally, Section 5 is devoted to the proof of
a sufficient condition for the global existence and decay of weak solutions.

2 Preliminary results and notations

In order to prove our main results specifically, we shall introduce some definitions and notations
with some properties as follows. At first, we set Q@ = (1,R), Qr = Q x (0,7). Let us omit the
definitions of the usual function spaces and denote them by the notations

P =LP(Q), WHP =WkP(Q), HF =W*2 ke Z,, 1 <p< .



We use ||-||, (+,-) as the norm and the associated scalar product on L? respectively. We denote by
-]l x the norm of a Banach space X and by X’ the dual space of X. Let LP (0,75 X), 1 < p < oo, be
the Banach space of measurable functions w : (0,T) — X such that [[u| ;s 7, x) < 00, with

T 1/p
([ moma) " r<p<o
= 0

llull Lo 0,1,
rOI) esssupllu(t)| if p = oco.
te(0,T)

On H', we shall use the following norm:
2 2
[l = A/ llolI” + JJoe]™ (2.1)

V={veH :v(R)=0}. (2.2)

We put

Then V is a closed subspace of H! and on V, two norms v + ||| 1 and v +— ||v.|| are equivalent
norms. Note that L%, H! are also the Hilbert spaces with the corresponding scalar products

R
(u,v) = /1 zu (z)v (z)de, (u,v) + (Uz, v, (2.3)

respectively. The norms in L? and H' induced by the corresponding scalar products in (2.3) are
denoted by |||, and [|-||; , respectively. We can prove that V' is continuously and densely embedded
in L2. Identifying L? with (L?)" (the dual of L?), we have

Ve L2 = (L2), — V'

where all the injections are continuous and dense. We remark more that the notation (-, ) is also used
for the pairing between V and V.
In what follows, we state the lemmas, they are useful for the proofs in the next sections.
Lemma 2.1. The following inequalities are true

@ ol < llvllp < VR Jloll, Yo € L2,

2.4
(@) Tols < ol < VR ol o€ Y 24

Lemma 2.2. The imbedding H' — C (ﬁ) is compact and
lollogm) < aollelp, o e B, (25)

14++/1+16(R—1)?
2(R—1) :

Lemma 2.3. The imbedding V — C (ﬁ) s compact and

with o =

@) lvllo@y < VE=Tlwl, eV,
(i) Jloll < 27 Izl Vo€V, (2.6)

() 1ol < /% (B = 1) sl Yo € V-

Remark 2.1. On L2, two norms v — [v|| and v — |[jv[|, are equivalent. So are two norms
v [[v]| g1 and v — [jv]|; on H!, and four norms v — |[v|| g1, v+ |[v]l;, v [lug| and v [lvg], on

V.



For convenience, we denote by a (-, -) the symmetric bilinear form on V' x V, that is
R
a(u,v) = (U, vz) + hiu (1) v (1) = / xuy () vy (z) dz + hiu (1) v (1), Yu,v €V, (2.7)
1

with h; > 0 is a given constant and |jv]|, = y/a(v,v).

We then have the following lemmas.

Lemma 2.4. The symmetric bilinear form a(-,-) defined by (2.7) is continuous on V x V and
coercive on V. Moreover, we have

(1) fa(u, )] < Crllucllollvzlly, Yu,v eV,

2.8
(i) a(v,0) > w2, VeV, (28)

with C1 =1+ h; (R—1).
Lemma 2.5. There exists the Hilbert orthonormal base {w;} of L? consisting of the eigenfunctions
wj corresponding to the eigenvalue A\j such that

O0< A <A< <A <A <+, lim A = oo,
j—00
a(wj,v) = Aj{w;,v), Yo € V, ¥j € N.

Furthermore, the sequence {)\j_l/ij} is also the Hilbert orthonormal base of V with respect to

the scalar product a (-,-).
On the other hand, we have w; satisfying the following boundary value problem

—ALUj = )\jwj, m Q, B
wjz(1) + hiw;(1) = wj(R) = 0, wj € VN C®(Q), Vj € N.

The proof of Lemma 2.5 can be found in [39] with H = L? and bilinear form a (-,-) defined by
(2.7).

Lemma 2.6. Assume that O is closed set of (R™,|]|,) and f € C(O;R). Then there is a
continuous non-decreasing function ®y : Ry — Ry such that

If (@) < @5 ([Jz]l,), Yz € O, (2.9)
Proof of Lemma 2.6. First, we assume that f € C (RN; R+). With r > 0, we denote
B.={zeR":|z|,<r}, B,={zeRY:||z|, <r}. (2.10)

We set
sup f(z), if r >0,

P = { ?E(]gs, ifr=0.

It is clear that @, (r) > 0 for all 7 > 0 and @ is non-decreasing in Ry. We claim that @, €
C (R4;R4). Indeed,

() We prove that p, continuous from right at 0.

Foralle >0,by feC (RN;R+), there exists § > 0 such that

|f (z) = f(0)| <e, Vo € Bs. (2.11)

From (2.11), we have
f(2) < f(0)+e=5;(0)+e, Vz € Bs. (2.12)



By definition of ¥y and (2.12), we have

?r(0) <@ (r) <ps(0) <P (0) +¢, Vr €10,6].

Therefore p; continuous from right at 0.

(ii) For all ro > 0, we will prove that %, continuous at ro.
(ii.a) We prove that ; continuous from left at ro.

First, we define

IEBT

sup f(z), ifr >0,
oy _{ £(0), it = 0.

It is obviously to see that ¢ (1) < @, (r) for all ¥ > 0. Fixed r > 0, by definition of @, we can
assume that

$y(r) = sup f(z) = maxf(z) = f(wo),
€D, z€By

with certain zo € B,. We define the sequence {z,,} by @, = (1 — 1) 20 for all m € N. We will have
{*m} C By and lim x,, = xo. By definition of ¢, and continuity of f, we get
m—0o0

@p(r) > lim f(xn)=f(20) =@ (r).

m—00

It is clear that ¢ is non-decreasing in R. For all € > 0, by definition of ¢, there exists yo € By,
such that

pr(ro) —e < f(yo) < ¢f(ro)- (2.13)
Put § =79 — ||yoll, > 0. For all r € (ro — J, 7], we have

¢r(ro) —e < f(yo) <Ps(lyoll.) = ¢y (lvoll,) < @f (1) < g (ro0) - (2.14)

From (2.14), we have

Ps(ro) —e <@g (r) <@y (ro), Vr € (ro—d,m0] - (2.15)

Therefore p; continuous from left at ro.

(ii.b) We prove that %, continuous from right at ro.

By feC (RN; R+), we have f is uniform continuous on Ba,,. For all ¢ > 0, there exists § € (O7 %0)
such that

If (@) = f W)l <&, Yo,y € By, [z —yll, <. (2.16)

For all r € [rg,r9+ 0), by definition of #y, there exists z, € By, yr = Pa, € B, such that
?5(r) = f(2,) and
fe) = fly) <e = f(zr) < flyr) te (2.17)

From (2.17), for all r € [rg, 79 + 0), we have
@y (ro) <@y (r) <2y (lyrlly) + 2 <@p (r0) + & (2.18)

Therefore p continuous from right at ro.
Now, with f € C(O;R), by Tietze extension theorem, there exists f € C (RY;R) such that

ﬂo = f. We put
Qs (r) = 27| (r), ¥Yr >0. (2.19)

For all x € U, we have

@)= 7@ <7y (lel.) < @5 (lell,) (2.20)



Finally, it is obvious that ®; : R, — R, is a continuous non-decreasing function. Lemma 2.6 is
proved. O

Remark 2.2. Lemma 2.6 is a slight improvement of a result used in [27, Appendix 1, p. 2734]
with N =1 and f € C (R;R).

Lemma 2.7. Let x:[0,7] — Ry be a continuous function satisfying the inequality

x(t)SM—i-/O kE(s)w(z(s))ds, ¥t €[0,T],

where M >0, k : [0,T] — Ry is continuous and w : Ry — (0, 00) is continuous and nondecreasing.

Set “ g
Y

U (u —/ ——, u>0.
(u) 0 w(y)

] ~ _dy = oo then
(i) If/0 oW th

2 (t) < 0! <xp (M)+/0tk(s)ds) vt e [0,1].

* d
(i) If / W < o then there exists T, € (0,77 such that
0o w(y)

z(t) < vt <\1: (M) + /Otk(s) ds) , Vt €[0,T],

/]T*k(s)dsg/ow%.

where

Proof of Lemma 2.7. See [7].

3 The existence and uniqueness theorem

In this section, we shall study the existence and uniqueness of a weak solution for Prob. (1.1)-(1.3).
Definition 3.1. A function u is called a weak solution of Prob. (1.1)-(1.3) on (0,7") if and only
if the function u belongs to the following functional space

Wr={ueC(0,T;V):u'e L*(0,T;V)}, (3.1)
and satisfies the following variational problem:

(W' (t),0) +at)a (W (t),v) +p(t)a(u(t),v)

t 3.2
= [9t-9a@) 0ds+GR© .0 voev, O
0
such that
u (0) = o, (3.3)
where
flul(z,t) = f(zt,u(z,1)). (3.4)
In order to get the existence results, we consider the following hypotheses.
(Al) 17,() S V;

(A2) p e C'(Ry) and there exists the positive constant p, such that u(t) > p, for all £ > 0;



(A3) a € L. (Ry) and there exists the positive constant a, such that o (t) > ay for all ¢ > 0;
(A1) g€ L2, (R.)

(A45) feC(QxRyxR).

Theorem 3.2. Let (A1) — (A4s) hold. Then we have

(Case 1) In case of dy2 = 00, Prob. (1.1)-(1.3) has a global weak solution
o 1+y+27 ()

u € Wr for oll T > 0;
(Case 2) In case of /
0

local weak solution v € Wr,. ) )
Furthermore, if in addition the hypotheses (As), (As) as follows
(A3) a € C(Ry) with the property o (t) > ax for all t > 0, where o is the positive constant;
(As) For all M > 0, there exists {3y > 0 such that

dy
1+y+ % (\/9)

< 00, there is Ty > 0 such that Prob. (1.1)-(1.3) has a

’f($7t7u1) —f(.T,t,UQN SKM‘ul_u2|7 Va Eﬁv tzoa Uy, U2 € [_M7M]7

then the solution obtained in the above cases is unique.
Moreover, denoting by Ts the mazimal existence time of the solution u for the Prob. (1.1)-(1.3),
the following alternatives hold

(Altl) Too = o0
or
(Alt2) Too < 00 and lim |u ()|, = oo.
t—T
Remark 3.1.

(i) If Too = 00, we say that the solution u is global;
(ii) If Teo < oo, we then have lim |[lu(t)|, = oo, we say that the solution u blows up in finite

t—
time and that T is the blow-up time.
Proof of Theorem 3.2. Based on the Faedo-Galerkin method, this proof consists of five steps.

Step 1. Finite-dimesional approximations.
Consider the basis {w;} for V' as in Lemma 2.5. We find an approximate solution of Prob. (1.1)-
(1.3) in the form

la
o0

(1) = D ey (1) wj, (3.5)

where the coefficients ¢p,1, -« - , ¢ satisfy the system of integro-differential equations

{ug (8),wj) + a(t) a(up, (), w;) + 1 (8) @ (um (£) , w;)

t
) 3.6
= / g (t—s)a(um(s),w;)ds + (f [um] (t) ,w;), Vj=1m, (3.6)
0
with the initial conditions
Um (0) = uom = Z;n:l ajw; = Z;nzl a(u;)\;wj)wj — g strongly in V' as m — oc. (3.7)

It is clear that, for each m, there exists a solution u,, of the form (3.5) which satisfies (3.6) and
(3.7) almost everywhere on t € [0,T,,], for some T}, > 0 that is sufficiently small. In what follows,
we present a brief proof that a solution of (3.6)-(3.7) of the form (3.5) exists. It is obvious that the
system (3.6)-(3.7) can be rewritten in the vectorial form

Cm () + 1 () A (2) em (t) = Am (2) /0 gt —s)cm (s)ds + F (cm (1)), (3.8)



with the initial condition

cm (0) = am, (3.9)
where
em (t) = (em1 gf)é’ “ 5 Cmm (t))T> o = (1, ’amm)T»
= |7 c — c . c T
)= [ P40] @ =) Fae ),
Fjlem(t) = (f [um] (t) ,wj), Vj = 1,m,

14+ Aja(t)
which is also equivalent to the integral equation

t
cm () = ayp — s) A (8)em (s)ds
(1) /Om () em (5) | .

:/OtAm (s)ds/osg(s—T)cm (T)dT—i—/O]:(cm (s))ds.

The integral equation (3.11) can be solved by applying Schauder’s fixed point theorem. Therefore,
there exists u,, of the form (3.5) which satisfies (3.6) and (3.7) almost everywhere on t € [0,71},], where
Ty, > 0 is sufficiently small.

Step 2. A priori estimate.

Multiplying the j*" equation of (3.6) by c;nj (t) and summing over j and afterwards integrating
with respect to time variable on [0,¢]. After some rearrangements, we get

Sm (t) = Sm (0) + /0 11 (8) 1t ()12 ds + 2/0 dr /OTg (1 —s)a(um (s),up, (1)) ds (3.12)

+2/0 <f[um](s), Uy, ( >ds
:Sm(0)+J1+J2+J3,
with .
S 8) = 100) s (12 +2 ([ )3+ 0 (5) i (52 s (313)

Given T > 0, ¢ > 0, that will be fixed later, we estimate the terms Jy, Jo, J3 of (3.12) as follows.
First term Jq.

t t 4] t
B [ @ @) < [ 9] s (a5 < =20 [Ts, (as. (314)

Second term Js.

Ja :2/0 dT/OTg(T—s)a(um (s),up, (1)) ds (3.15)

2/0th/07|9(7—3)|!a(um(s),u'm(T))!ds

2 [t @ [l =) 5
/lsHu A+ 2([Clo = 9 01 d)] r
/[Hm I+ W/(JT\\um<s>\st]dT

T
< —Sm (t) + 7Hg”L2(OT / S (8) ds.
Mo € 0

IN

IN

IN
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Third term Js. It is known that

R—-1

|t (2, 8)] < [lum O)llo@) = VE = Huma ($)llo = VR = Lllum @), < Sm (). (3.16)

By Lemma 2.6, we have

R? —

1 [um] (D112 = /leﬂ ] (@, ) dz < %2 <R+ A LY, (t)) 3
Therefore
J3 = 2/{: (f [um] (), uzy (5)) ds < 2/{: [(f [um] (s) s up, (5))| ds (3.18)
<2 [ 1F i) () ()

Il @ ds+e [ @) as

R2-1 [, R—1 .
- /0<I>f<R+T+ * Sm(s)>ds+25m(t).

IN

IN

We continue to estimate the term Sy, (0). By means of the convergences in (3.7), we can deduce
the existence of a constant Sy > 0 such that

Sm (0) = p(0) [[uom||> < So, ¥m € N, (3.19)

Choosing ¢ = 2:& > 0, from (3.12), (3.14), (3.15), (3.18), (3.19), there exists Mp > 0, it is a
constant independent of m such that

¢
S () <280 + MT/ w (S (8)) ds, (3.20)
0
where
W 27 g +R—1 R-1
Hy 2e Hos
By the convergence of the integrals / Ty and / ~ dy applying Lemma 2.7, we
0o w(¥) o 1+y+27(yy)’ o
deduce from ( ) that
Casel. / 2 = oo then
1+y+ <I> (V)
Sm (1) < U1 (T (250) + Mpt) < U (¥ (250) + MrT) < Cr, Ym €N, t€[0,T7]. (3.22)
Case2. If / 2 < 0o then
L+y+ <I> (V)
S () < U (W (280) + Mpt) < U1 (W (250) + MrT,) < Cr, YmeN, t€[0,T.],  (3.23)

where T € (0,T7] is chosen such that T, My < / ﬂ
0o w(y)
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This allows one to take the constant T,,, = T or T, = Ty for all m € N. In what follows, we will
write T for both T and T.

Step 8. Passage to the limit.

From (3.13) and (3.22) (or (3.23)), we have

Or

et Cr
milL>°(0,T;V) = L

[|u 90, YmeEN. (3.24)

ImHL2(0,T;V) <

From (3.24), we deduce the existence of a subsequence of {u,,} denoted by the same symbol such
that

Uy, — u weakly* in L™ (0,T;V), (3.25)
ul, — u' weakly in L?(0,T;V).

By the compactness lemma of Lions ([21], p. 57) we can deduce from (3.25) the existence of a
subsequence still denoted by {u,,}, such that

U — u strongly in L2 (Qr) and uy, (x,t) — u (z,t) ae. (z,t) € Qp. (3.26)
By the continuity of f, we have
flum] (z,8) = f (2,8, um (2,1)) — f(2,t,u(z,1) ae (z,t) € Qr. (3.27)

Besides, we also have

|f [um] (z,t)] < _sup \f (z,t,u)] = Cr, Vm € N. (3.28)
(:E,t,u)GQX[O,T]X[—CT,CT]

Consequently, it follows from the dominated convergence theorem that

f [um] — f (u) strongly in L? (Qr). (3.29)

Combining (3.7), (3.25) and (3.29), it is enough to pass to the limit in (3.6) and (3.7) to show
that u satisfies (3.2) and (3.3). In addition, from (3.25), we have u € W (T') . Hence, the proof of the
existence of a weak solution is complete.

Step 4. Uniqueness of the solution.

Suppose uj, uz are two solutions of Prob. (1.1)-(1.3) on the interval [0, 7] such that u;, ug € Wr.
Then v = uy — ug € Wy satisfies

t

(W @), v)y+a)a(w (), v)+pit)a(u(t),v) —/Og(t—s)a(u(s),v)ds (3.30)
= (flua] @) = f[u2] () ,0), Vv €V,

and
u(0) =0. (3.31)

Taking v = u (¢) in (3.30) and integrating with respect to ¢, we obtain
t
o) = ~ [ (nls) - o/ () Jul)2ds (332)

0
+2 Ods/og<5_7>a<u<7>,u<s>>d7+2/0 (f [ur] (s) = f us)] (s) ,u (s)) ds,

where
o(t) = llu @[5 + o (t) lu @) (3.33)
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As in Step 2, we can easily estimate all terms on the right hand side of (3.32) to obtain

o(t) < Dp /Ot o(s)ds, VYt €10,T7], (3.34)

where Dp > 0. By Gronwall’s lemma, (3.34) leads to ¢ (t) = 0; i.e., uy = us.

Step 5. The alternative statement.

The last statement of Theorem 3.2 is proven by a standard continuation argument. Indeed, let
[0,T) be a maximal existence interval on which the solution of Prob. (1.1)-(1.3) exists. Suppose
that Too < 0o. We prove that lim [|u(t)||, = oo (Proof by Contradiction).

t—Ts
Indeed, assume there exists My > 0 and {t,,} C (0,7%) such that li_r>n tm = T and [Ju (tm)]|, <
My for all m € N. As we have proved above, for each m € N, there e;gstgoa unique weak solution of
Prob. (1.1)-(1.3) with initial data w (t,,) on [tm, tm + 0] with 6 > 0 independent of m € N. Thus, we
can get Too < ty, + 6 for m € N sufficiently large and so, we obtain a contradiction to the maximality
of T. The proof of Theorem 3.2 is finished. [J

4 Blow-up and lifespan of solutions

Our main objective of this section is to show that the weak solution of Prob. (1.1)-(1.3) blows
up at finite time at a (t) = «, f (z,t,u) = K (x,t) f (u). We will consider the blow-up property when
the initial energy is negative or nonnegative. We note more that this property still depends on the
variety conditions of the relaxation function g.

Let we first state the blow-up result when the initial energy is negative. In this case, we make the
following assumptions.

(AL)  pe CH(Ry) such that p(t) > p, >0, ¢/ (t) <0 for all ¢t > 0;

(A5) a>0;

(K1) K, K; € C(Q x Ry) such that

(i) K (z,t) >0 for all (z,t) € Q x Ry,
(i) Ky (z,t) >0 for all (z,t) € Q x Ry;
(F1) f € CY(R) and there exists the constant p > 2 such that

uf(u)zpF(u)—p/ouf(z)dzzo, Vu € R;

(G1) g€ C*(Ry)N L' (Ry) satisfies
(i) g(t)>0forallt>0,
(i) ¢ (¢t) <0forallt >0,

~ p (p - 2) oy ~ _ ! ~ — >
(iil) Joo < o where g (t) = /0 g (s)ds and oo = /0 g(s)ds.

Let we define the following functionals

1 1 3 N R
B(1) = 3 (gxu) () + 3 (n(6) 5 (0) [ ()]~ /1 2K (2,1) F (u(2,1)) dr, (4.1)
where .
(g% u) (1) = /0 gt — ) l[u(t) — u(s)]2 ds, (4.2)
and 1 N
p(t) =5 w3+ 5 lu ()2, (4.3)
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Lemma 4.1. Assume that (A1), (4%), (4%), (K1), (F1) and (G1) hold. Then we have

2le@+ [ olk+alv @) s <o (4

Moreover, the following energy inequality holds

E(t) +/O (Hu’ (5)||2 + || (S)HZ) ds < E(0). (4.5)

Proof of Lemma 4.1. By multiplying the equation in (1.1) by zu, (z,t), integrating over 2, we
obtain

a4 [E () + /O (I @B+l 9I) ds} = 2 (0) Ju (1))

1 , 1 R (4.6)
59O llu@llg + 5 (¢ *u) (¢) ~ /1 oKy (z,t) F (u(z,1)) dz,
for any regular solution u. We can extend (4.6) to weak solutions by using density arguments. Com-
bining (45%), (4%), (K1), (F1) and (G1), the result of Lemma 4.1 is obtained. O

Theorem 4.2. Assume that the assumptions (AS), (A%), (K1), (F1) and (G1) hold. Then, for
any initial conditions g € V' such that E (0) < 0, the weak solution of the Prob. (1.1)-(1.3) blows up
at finite time and the lifespan Ty, of the solution u satisfies

To< - 20020 _ pmax (47)
(p—2)"pE(0)

Furthermore, if in addition the following assumptions
(K1) K (-Te™) € C(Q), K (- T™) # 0;
(F{) (i) There exists the constant da > p such that uf (u) < doF (u) for all u € R,

(ii) / e,
0 22+F(2)
sup F(u), ifr >0,

F(r)zmr):{ =N

where

Then, the blow-up time Ty, satisfies

o0 zdz :
T > / =T 4.8
V2(E—Da1p0) Y1(2) (48)

with

1 2
Uq(z) = % [u (0)22+2(R—1)(1+dy) H\/K (Tmax) OIE‘(z)} . (4.9)
Proof of Theorem 4.2. By last statement in Theorem 3.2, it is enough to prove that the solution
obtained here is not a global solution in R;. Indeed, by contradiction, we will assume that weak
solutions exist in the whole interval R, .
For Ty > 0, 8 > 0 and 7 > 0 specified later, we define the auxiliary functional

M :[0,T)) — R

t— M (1) :2/()tp(8)d8+2(T0—t)p(0)+/3(t+7.)2' (4.10)
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By direct computation, we achieve that

M'(t)=2p(t) = 2p(0) + 2B (t+7) (4.11)
—2/<u d5+2a/0 a(u' (s),u(s))ds+28(t+T1),
and
M" (t) =2(u (t),u(t)) + 20a (v (), u(t) +28. (4.12)

Since (4.10) and (4.11), we see that M (¢) > 0 for all ¢ € [0, Tp] and M’ (0) = 267 > 0.
By multiplying the equation in (1.1) by zu (x,t), and then integrating over €2, we obtain

M" (t) =26 = 20 (t) [[u (D)7 + 2/0 g(t—s)a(uls),u(t))ds+2(K ) f(u(t)),u(t). (413)
From (4.13), we have

M (t) M (t) = 2M (t) {ﬁ —p @ llu@®)];+ /0 g(t—s)a(u(s),u(t))ds+ (K@) f(u(t)) 7U(t)>] :
(4.14)
Now, we put

6 (t) = <2/0t (s)ds+ B(t+T) ) </ (H 8)||o+ o ||’ (S)HZ) ds+ﬁ>. (4.15)

By the fact that
t 2 t t

/ / 2 2

(/0 (u (3),u(s)>ds) /OHU (s)Hods/O lu ()] ds, (4.16)

t 2 t t
/ 2 / 2 2

(a/o a(u' (s),u(s)) ds) a /0 I (s)Hads/O lu(s)|| ds,
26(+7) [ (@ u@)ds < A+ [ @lpds+5 [ s
2604(154—7)/ a(d (s),u(s))ds < aﬂ(t+¢)2/0 Hu’(s)Hst—i—aﬁ/O lu ()2 ds,

0

IN

IN

IN

and
t t
2a/< "(s) >ds/ (v (s),u(s))ds (4.17)
< a/ Ju (s Hods/ I (5)|? ds+a/ I (5)] ds/ lu (s)]2 ds,
so we imply from (4.15)-(4.17) that
0(t) > Z{M’ (t)\ , for all t € [0,Tp) . (4.18)
Therefore. by direct computation, we get
t
2pM (%) (/ (Il @I + e [l (9)]2) ds+6> > 290 (1) > D|M (1)), (4.19)
0
From (4.18) and (4.19), we get

M" () M (t) — §|M’ ) >2M (1) D (1), (4.20)
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with
D(t) = B-p®u@®+ / g(t—s)a(u(s),u(t) ds (4.21)
(K (@) f (u(t),u(t) —p (/0 (e )+ [ ()]2) ds+ﬁ) .

We can easily estimate the third and fourth terms on the right hand side of (4.21) as follows

t P 1 ~
[ot-saeu@aszLero+ (1-5)i0uoE. @2
and "
(K (t) f(u(t)),u(t) > p/1 zK (x,t) F (u(x,t)) dz. (4.23)
It implies from (4.5), (4.21)-(4.23) that
D2 - nO @ -5 0+ (1- 5 )30 ] (1.24)

—a-no-p[B@+ [ (W @l+alu o)) ]
HE-uw+ (15 - ) sw] o

> (1—p) B —pE(0) + [(2—1) [, + <1—21p—§> fzoo] lu (1)1
> (1-p) B~ pE(0).

Choosing 8, 0 < 8 < 2X% from (4.20), (4.21) and (4.24), we have

2

M (1) > [(1 — g) M7 (0) M’ (0)t + M5 (0)] W e [0 Ty (4.25)

If we choose 7 > (if (20))5 and Tp > %, we will have

Ml,f 0 __2M(0) _2Mpp(0)+ 8 (0,73]. (4.26)

(1=§) M= ()M (0) (=2 M'(0) (p—2)B7

From (4.25), we get lim M (t) = co. This is a contradiction. Consequently, the solution blows up
t—T,

at finite time.
Now, we will seek the upper bound for T,. It is clear to see that

2Top (0) + B72
(p—2) Bt

Tho < = Ty < Y (8,7) € Qlio), (4.27)

where

Qi) = {(6,7) eERI:0<B< (4.28)
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For all (8,7) € Q(iig), we have

. d=)
T 2 <(4p<?>6) (429
(p - )B(p_g)g —2p (O)
_ 80 8p (0) _ _8(=1p(0)
Blp=2 " PEO) op pe-2E(0)
I—-p
From (4.27) and (4.29), we get Too < _8e=1pO) = Trhax,

~ plp—2)°E(0)
Next, we seek a lower bound for the blow-up time T, for the solution u. We have

p(E) = —p (&) lu(@)IIF + (K (1)  (u(t)u(t) +/0 g(t—s)a(uls),u(t))ds. (4.30)

We can easily estimate third term on the right hand side of (4.30) as follows

t
[ att=sjatuts) u@)ds < 5 awn) 0+ 30 [u ). (431)

In order to continue process, by using Lemma 2.6 with O =R, N =1, f = F > 0, we note that

the function F : Ry — Ry is nondecreasing satisfying F' (u) < F (Ju|), for all u € R.
Combining (4.5), (4.30) and (4.31), it leads to

() <~ (0) s 2+ (K () F (u (8)) (00} + 5 () (1) + 2 6) (1) (4.32)
R
= B0+ 50 O~ 2020 =50 [ O+ [ oK @0 F (u(@0) da
UK (1) f (), u @)
R
pO) O]+ (1 +d2) [ oK @0 F (u(e.0)da
R

(O)p(t)+(1+d2)/l 2K (2, T F (|ju(z, 1)) dz
<00+ 1+ ay | VE T F (VE- T 0)1,)
<O 0+ (1 + o) |vETES|[ 7 (V2R-1a10)
_ %qfl (¢2 (R—1) a—lp(t)) .

From (4.32), we get

2(R—1)a~1p(t)
t> / zdz (4.33)
V2(E—Da1p0) Y1(2)

Hence, we derive the lower bound for T, by (4.33), as follows

o0 zdz -
Ty > / — min, 4.34
V2(E=Da1p0) Y1(2) (4.34)

The proof is complete. [J
Next, we state the blow-up result when the initial energy is nonnegative. In this case, we make
the following assumptions
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(K2) K, K; € C (€ x Ry) such that

(i) 0 _K(m,t) < K; for all (z,t) € Q x Ry with K7 >0,
(ii) K( x,t) >0 for all (z,t) € QA x Ry;
(Fp) f € C'(R) and there exist constants dy > 0, dy > p > 2, ¢; > p for all i = 1, N, satisfying

(i) uf(u) > pF (u) >0 for all u € R,
_ N
(i) uf (u) < doF (u) < dads <|u]p + 3 \u|q"> for all u € R.
i=1
First, by (4.1), (K2) and (F»), we have

1 1 - 2 "
Et)=5(gxu) )+ 5[k =g @] u®)l, —/1 K (z,t) F (u(z,t)) de (4.35)
1 ) _ (R al |
> 5 n (0 - 5O u O] - REd, [ (ru<x,t>|p £ |u<x,t>|%> dr
1 i=1
= % [ (8) = g O] lu (B)]|2 — RE1dy <Hu +ZHU Lqi>
> % [ () = G ()] lu (B2 — REqdy (55 Ju (I + ZD% [lu () q’)
> %yQ( t) — RK1dy (ﬁ;’L‘?y )+ ZD‘“ ¢ )
=H(y (),
where
Lep=io == [ (a0, By = s LS 0 = V@ =700l @30)
and
H:Ry — R
Mo HO) = 2~ REd (DPL_z)\p LS DeL )\‘h> . (4.37)
i=1

Before stating our main results, we give a useful lemma as follows. The proof of this lemma is not
difficult, so we omit it.

Lemma 4.3.

(i) The equation H' (X\) = 0 has a unique positive solution Ao satisfies

N
1 — RKyd, (pﬁgL—’z’Ag2 +> qiﬁg;L—‘é’Ag”) = 0; (4.38)
i=1

(ii) H (0) =0, /\lim H(N) = —o0;

(iii) H' (A\) > 0 if A € (0,A0) and H' (N\) <0 if X € (Mg, 00).

The following lemma will play an essential role in this paper, and it is similar to the lemma used
firstly by E. Vitillaro in [43].

Lemma 4.4. Assume that E (0) < H (\o). Then

A N
(i) If ||aoll, < \/% then exists A1 € [0, \o) such that
W

y(t) < A1, VE€[0,To); (4.39)
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A ~
(i) If ||toll, > O _ and E(0) > 0 then ezists Ay € (Ag,0) such that

vV 1(0)
y(t) > o, VE€[0,Ts). (4.40)

Proof of Lemma, 4.4. Sine 0 < E (0) < H (X\o), there are constants 0 < A; < Ag < Ag such that

H(A) = H(A\2) = E(0). (4.41)
First, we assume that ||%o||, < \/%. We have
H(A) = £(0) 2 H(y(0) = H (VaO)laoll, ) (4.42)

~

A
By Lemma 4.3, from (4.42), we get ||tg||, < ﬁ We claim that y (t) < A\; for all ¢t € [0, T).
1
Suppose, by contradiction, there exists ¢y € [0, Ts) such that y (o) > M.
By the continuity of y, without loss of generality, we may assume that y (ty) € (5\1,)\0). By

Lemma 4.1 and 4.3, we get

E(to) > H (y (to)) > H(h1) = E(0), (4.43)
this is an contradiction, because of E (tg) < E (0).
A
Now, we assume that ||tgl|, > 0 _ We have
V1 (0)
H(2) = E(0) > H (y(0) = H (v/u(0) uo]l, ). (4.44)
By Lemma 4.3, from (4.44), we get ||tq||, > \/7 We claim that y (£) > Ag for all ¢ € [0, Thy).

By the same arguments as above, we suppose by contradiction that there exists tg € [0, Too) such that
y (to) < Aa. By the continuity of y, without loss of generality, we may assume that y (to) € ()\0, 5\2)
By Lemmas 4.1 and 4.3, we get

E (to) > H(y (to)) > H(A2) = E(0), (4.45)

in contradiction with E (t9) < E'(0). Lemma 4.4 is proved. [J
Theorem 4.5. Assume that the assumptions (A5), (A5), (K2), (F2) and (G1) hold. Then, for
0

any initial conditions g € V' such that |tol|, > D) and
W
2 L2
< B0 i [(p—l)L—u*}/\z
< s ’
S B O <ming KO0 )

the weak solution of the Prob. (1.1)-(1.3) blows up at finite time and the lifespan Ty, of the solution u
is defined by
16p (p — 1) 11 (0) p (0)

To < = Tmax (4.46)
~2 0
(=2 [((0 =1L = p.) 35— 2021 0) E (0)]
and © g
z .
Too > / = Tmin, 4.47
p(0) ¥2(2) (447
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where

Uy(z2) = E(0) + “g})z + (14 do) RK1ds lﬁg (i) e ZN:l D (2) 22";] , (4.48)

Proof of Theorem 4.5. By the same method in the proof of Theorem 4.2, with Ty > 0, 5 > 0 and
7 > 0 are chosen later, we define the functional

M :[0,Tp] — R

t— M (1) =2 /Otp (s)ds+2 (T £) p (0) + Bt +7)°. (4.49)
From (4.24) and Lemma 4.4, we get
<2
D (t) > (1—p) f —pE (0) + [(’2’ —1) . + (1 3" 12’) Goo} = (4.50)
(0= 1)L ] A

(1-p)B—pE(0) +

2pp (0)

CN\27_, 182 9,2
Choosing 3, 0 < 8 < [o-D) szﬁz;]j\f)jg)#(o)E(o), it follows from (4.20), (4.21) and (4.50) that

2

M(t) > [(1 - 5) M7 (0) M’ (0)t + M5 (o)r”j, Vit € [0,Tp] . (4.51)

If we choose 7 > (25 (20))6 and Ty > %, we will have

M2 (0 2M (0 2Ty (0 2
== _ 0 = O _ Zop O+ 57 o gy (4.52)
(1-B) M= ()M (0) (p—2)M'(0) (p—2)p7
From (4.52), we get lim M (¢) = oo. This is also a contradiction, hence the solution blows up at
t—T,
finite time.
As in proof of Theorem 4.2, we have
1 -1

(=2 [((0 =1L = p.) A3 = 27 (0) E (0)]

Finally, we seek a lower bound for the blow-up time T for the solution u. We have

s <EO) + "Y1+ 1+ dy) /RxK (2.4) F (u(2,1)) da (4.54)
«Q 1

<E(O)—i—Mg))p(t)—i-(l-i-dg)RKldg/R( xt|p—|—2|umt|ql)
= B(0) + o (1) + (1 + do) RE1dy (HU +Z||U L‘h‘)
< E(0)+ a)p( t) + (1 + do) RK1ds <D lw (8)]|2 + ZD l|u (t ]’h)

Z Dg; <> %ﬁ (t)]

[MiS]

< E0)+—2p(t)+ (1 +dy) RK1ds [D <Z p

20



From (4.54), we get

(o]
d .
Ty > / G (4.55)
P

Theorem 4.5 is proved. [J

5 Global existence and decay of solutions

To give the theorem on global existence and decay, we make following assumption
(G3) g€ CY(Ry)N L' (Ry) satisfies
(i) g(t) >0 forallt >0,
o0
(ii) L= p, —/ g(s)ds >0,
(i

0
iii) There exists a function £ : Ry — R such that
J(0<-€0g0, €O <0 w20, [ €)=
0

We have the following lemmas.
Lemma 5.1. Suppose that ug € V' and the assumptions (AS), (A%), (K2), (F2), (G3) hold. Then
the energy functional E (t) satisfies

1 R
E'(t) < —55 (t) (g *u)(t) — / K (x,t) F (u(z,t))de <O0. (5.1)
1
Proof of Lemma 5.1. Tt is similar to proof of Lemma 4.1, we can use the similar computation to
obtain this result. [
Lemma 5.2. Assume that the assumptions (AS), (A%), (K2), (F2) and (Gs) hold. Then, for any

initial conditions tg € V' such that ||Uo|, < _Jo_ E (0) < H (o), the weak solution of the Prob.

Vi (0)’
(1.1)-(1.3) is global on Ry.

Proof of Lemma 5.2. 1t is sufficients to combine the last statement in Theorem 3.1 and the estimate
given in Lemma 4.4. Then, Lemma 5.2 is proved. [J
We define the following functionals:

R
I(t) = (u() =g ®)) lu@®l; —P/l oK (z,t) F (u(z,1)) dz, (5.2)
and
L(t)=E@t)+p(t). (5.3)
Lemma 5.3. Assume that the assumptions (A}), (A%), (K2), (F2) and (Gs) hold. Then, for any
o G _ Ao . »
initial conditions g € V' such that ||tg||, < ——==, £ (0) < H (o), there exist positive constants (31,
V1 (0)
B such that
B1E1 (t) < L(t) < ByEx (1), YL >0, (5.4)
where
Ey(8) = (g% u) (0) + [[u(®)]3 - (5.5)

Proof of Lemma 5.3. From (5.2), (A45), (4%), (K2), (F2) and (4.36), we have

e lu @)l < 1) < pO)llu@®). vt =0, (5.6)
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where

1, = L |1 — pRK ds <15;;L5X’1’2 + i EggL%’&f”)] > 0.
Note that -
LW =E®+o)
3@+ (50 ) O -3 RO+ T 40
> 300+ L2l 2 5,50,
where 8, = %min{l, %}
On the other hand, we have
LW =EW® )
=5 @@+ (5 2) 0O =GO ROE+ 2+ S O+ 5 @)
Siwﬂo@+§/mm+a+Rm;D1meﬁ§@Euw

_1 R(R—1)2 .
where 35 = 5max {1, 4 (0) +a+ ==~ ¢. Thus, Lemma 5.3 is proved. [J

Finally, we have the following theorem.

Theorem 5.4. Assume that the assumptions (AS), (4%), (K2), (F2) and (G3) hold. Then, for any

A
initial conditions Uy € V' such that ||tg||, < 0(0), E(0) <H(\o) and
L
p
Ny + dilj’* _M(O) > 07
2

there exists Cyx > 0, v, > 0 such that

t
E;(t) < Ciexp (—'y*/ & (s) ds) , Vt > 0.
0
Proof of Theorem 5.4. First, we have

@) lu @7 < —p w2,

! p d 2
[ ottt umis < ol e 0+ Lo u ).

and

SN

R
(K01 () u) <dz [ oK @) Fu(e.0)da
(@) =g () w2 =11

((0) = 5.0 [u O = 2= u (1]

SEEGESERS

<
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(5.8)

(5.9)

(5.10)

(5.11)

(5.12)



From (4.30), (5.10)-(5.12), we have

e Ak LRIl - (m b —u(0)> Ju ()]
p
=2 d—p) (gxu) (8) = BsEn (1),

where 33 = min{m, %2 <77* + ot — ,u(()))} > 0.
Combine (5.3), Lemma 5.1 and (5.13), it gives that

L)< t)< ﬁ (g u) () — B3 E (1)

From (5.14), we obtain

/ p p
E)L () < mﬁ(t)(g*u)(t)—63£(t)E1(t) S_d2—p

We define the functional

Li(t) =€) L) +-—L—E(t).

By direct computation, it implies that

L) =g MLO+EWL 1)+ B (1)

2— P
< Byt (B () < —Ber) £t

B D ﬂ2_1
g—;[am } E(0) L (1) = —7.€ (1) L (1),
2

da —p
Also by directly integrating (5.17), we deduce

dy —p o [ — ! >
Eq(t) < 7, L (t) < Cye p( ’y*/of(s)ds , Vi >0,

where C = d;ﬁ_le (0). Theorem 5.4 is proved. [
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