References
1. Baumgartner H, Falk V, Bax JJ, De Bonis M, Hamm C, Holm PJ, et al.
2017 ESC/EACTS Guidelines for the management of valvular heart disease.
Eur Heart J. 2017 Sep;38(36):2739–91.
2. Nitsche C, Kammerlander AA, Knechtelsdorfer K, Kraiger JA, Goliasch
G, Dona C, et al. Determinants of Bioprosthetic Aortic Valve
Degeneration. JACC Cardiovasc Imaging [Internet]. 2020
Feb;13(2):345–53. Available from:
https://linkinghub.elsevier.com/retrieve/pii/S1936878X19301652
3. Moore M, Chen J, Mallow PJ, Rizzo JA. The direct health-care burden
of valvular heart disease: Evidence from US national survey data. Clin
Outcomes Res. 2016;8:613–27.
4. Yacoub MH, Takkenberg JJM. Will heart valve tissue engineering change
the world? Nat Clin Pract Cardiovasc Med. 2005;2(2):60–1.
5. Stassano P, Di Tommaso L, Monaco M, Iorio F, Pepino P, Spampinato N,
et al. Aortic Valve Replacement. A Prospective Randomized Evaluation of
Mechanical Versus Biological Valves in Patients Ages 55 to 70 Years. J
Am Coll Cardiol. 2009;54(20):1862–8.
6. Hammermeister K, Sethi GK, Henderson WG, Grover FL, Oprian C,
Rahimtoola SH. Outcomes 15 years after valve replacement with a
mechanical versus a bioprosthetic valve: Final report of the Veterans
Affairs randomized trial. J Am Coll Cardiol. 2000;36(4):1152–8.
7. Oxenham H, Bloomfield P, Wheatley DJ, Lee RJ, Cunningham J, Prescott
RJ, et al. Twenty year comparison of a Bjork-Shiley mechanical heart
valve with porcine bioprostheses. Heart. 2003;89(7):715–21.
8. Degeneration TV. Aortic Bioprosthetic Valve Durability. 2017;70(8).
9. Bartus K, Sadowski J, Litwinowicz R, Filip G, Jasinski M, Deja M, et
al. Changing trends in aortic valve procedures over the past ten years
— From mechanical prosthesis via stented bioprosthesis to TAVI
procedures — Analysis of 50,846 aortic valve cases based on a polish
national cardiac surgery database. J Thorac Dis. 2019;11(6):2340–9.
10. Dunning J, Gao H, Chambers J, Moat N, Murphy G, Pagano D, et al.
Aortic valve surgery: Marked increases in volume and significant
decreases in mechanical valve use - An analysis of 41,227 patients over
5 years from the Society for Cardiothoracic Surgery in Great Britain and
Ireland National database. J Thorac Cardiovasc Surg.
2011;142(4):776-782.e3.
11. Salaun E, Clavel MA, Rodés-Cabau J, Pibarot P. Bioprosthetic aortic
valve durability in the era of transcatheter aortic valve implantation.
Heart. 2018;104(16):1323–32.
12. Capodanno D, Petronio AS, Prendergast B, Eltchaninoff H, Vahanian A,
Modine T, et al. Standardized definitions of structural deterioration
and valve failure in assessing long-term durability of transcatheter and
surgical aortic bioprosthetic valves: A consensus statement from the
European Association of Percutaneous Cardiovascular Interven. Eur J
Cardio-thoracic Surg. 2017;52(3):408–17.
13. Johnston DR, Soltesz EG, Vakil N, Rajeswaran J, Roselli EE, Sabik
JF, et al. Long-term durability of bioprosthetic aortic valves:
Implications from 12,569 implants. Ann Thorac Surg. 2015;99(4):1239–47.
14. Bourguignon T, Bouquiaux-Stablo AL, Candolfi P, Mirza A, Loardi C,
May MA, et al. Very long-term outcomes of the carpentier-edwards
perimount valve in aortic position. Ann Thorac Surg. 2015;99(3):831–7.
15. Sewell-Loftin MK, Young WC, Khademhosseini A, Merryman WD.
EMT-inducing biomaterials for heart valve engineering. J Cardiovasc
Transl Res. 2012;4(5):658–71.
16. Armstrong E, Bischoff J. Heart Valve Development: Endothelial Cell
Signaling and Differentiation Ehrin. Circ Res. 2004;95(5):458–70.
17. Blum KM, Drews JD, Breuer CK. Tissue-Engineered Heart Valves: A Call
for Mechanistic Studies. Tissue Eng - Part B Rev. 2018;24(3):240–53.
18. Arjunon S, Rathan S, Jo H, Yoganathan AP. Aortic Valve: Mechanical
Environment and Mechanobiology. Ann Biomed Eng. 2017;41(7):1331–46.
19. Chester AH, Taylor PM. Molecular and functional characteristics of
heart-valve interstitial cells. Philos Trans R Soc B Biol Sci.
2007;362(1484):1437–43.
20. Vesely I, Noseworthy R. Micromechanics of the fibrosa and the
ventricularis in aortic valve leaflets. J Biomech. 1992;25(1).
21. Vesely I. The role of elastin in aortic valve mechanics. J Biomech.
1997;31(2):115–23.
22. Christie GW. Anatomy of aortic heart valve leaflets: The influence
of glutaraldehyde fixation on function. Eur J Cardio-thoracic Surg.
1992;6:S25–33.
23. Schoen FJ. Evolving concepts of cardiac valve dynamics: The
continuum of development, functional structure, pathobiology, and tissue
engineering. Circulation. 2008;118(18):1864–80.
24. Nachlas ALY, Li S, Davis ME. Developing a Clinically Relevant Tissue
Engineered Heart Valve—A Review of Current Approaches. Adv Healthc
Mater. 2017;6(24):1–30.
25. Li RL, Russ J, Paschalides C, Ferrari G, Waisman H, Kysar JW, et al.
Mechanical Considerations for Polymeric Heart Valve Development :
Biomechanics , Materials , Design and Manufacturing. Biomaterials.
2019;119493.
26. Sacks MS, Schoen FJ, Mayer JE. Bioengineering Challenges for Heart
Valve Tissue Engineering. :289–314.
27. Liu AC, Joag VR, Gotlieb AI. The emerging role of valve interstitial
cell phenotypes in regulating heart valve pathobiology. Am J Pathol.
2007;171(5):1407–18.
28. El-Hamamsy I, Balachandran K, Yacoub MH, Stevens LM, Sarathchandra
P, Taylor PM, et al. Endothelium-Dependent Regulation of the Mechanical
Properties of Aortic Valve Cusps. J Am Coll Cardiol.
2009;53(16):1448–55.
29. Walker GA, Masters KS, Shah DN, Anseth KS, Leinwand LA. Valvular
myofibroblast activation by transforming growth factor-β: Implications
for pathological extracellular matrix remodeling in heart valve disease.
Circ Res. 2004;95(3):253–60.
30. Deck JD. Endothelial cell orientation on aortic valve leaflets.
Cardiovasc Res. 1986;20(10):760–7.
31. Leask RL, Jain N, Butany J. Endothelium and valvular diseases of the
heart. Microsc Res Tech. 2003;60(2):129–37.
32. Butcher JT, Nerem RM. Valvular endothelial cells and the
mechanoregulation of valvular pathology. Philos Trans R Soc B Biol Sci.
2007;362(1484):1445–57.
33. Bosse K, Hans CP, Zhao N, Koenig SN, Huang N, Guggilam A, et al.
Endothelial nitric oxide signaling regulates Notch1 in aortic valve
disease. J Mol Cell Cardiol. 2013;60(1):27–35.
34. Cheung DY, Duan B, Butcher JT. Current progress in tissue
engineering of heart valves: Multiscale problems, multiscale solutions.
Expert Opin Biol Ther. 2015;15(8):1155–72.
35. Davies PF. Multiple signaling pathways in flow-mediated endothelial
mechanotransduction: PYK-ing the right location. Arterioscler Thromb
Vasc Biol. 2002;22(11):1755–7.
36. Hilbert SL, Barrick MK, Ferrans VJ. Porcine aortic valve
bioprostheses: A morphologic comparison of the effects of fixation
pressure. J Biomed Mater Res. 1990;24(6):773–87.
37. Sacks MS, Smith DB, Hiester ED. The aortic valve microstructure:
Effects of transvalvular pressure. J Biomed Mater Res.
1998;41(1):131–41.
38. Lo D, Vesely I. Biaxial strain distributions in expanded porcine
bioprosthetic valves. J Heart Valve Dis. 2002;11(5):688–95.
39. Vesely I. Reconstruction of loads in the fibrosa and ventricularis
of porcine aortic valves. ASAIO J. 1996;42(5).
40. Scott M, Vesely I. Morphology of porcine aortic valve cusp elastin.
J Hear Valve Dis. 1996;5(5):464–71.
41. Schoen FJ, Levy RJ. Founder ’ s Award , 25th Annual Meeting of the
Society for Biomaterials , Providence , RI , April 28 – May 2 , 1999
Tissue Heart Valves : Current Challenges and Future Research
Perspectives. 1999;
42. Ferrans VJ, Spray TL, Billingham ME, Roberts WC. Structural changes
in glutaraldehyde-treated porcine heterografts used as substitute
cardiac valves. Transmission and scanning electron microscopic
observations in 12 patients. Am J Cardiol. 1978;41(7):1159–84.
43. Golomb G, Schoen F, Smith M, Linden J, Dixon M, Levy R. The role of
glutaraldehyde-induced cross-links in calcification of bovine
pericardium used in cardiac valve bioprostheses. Am J Pathol.
1987;127(1):122–30.
44. Southern L, Hughes H, Lawford P, Clench M, Manning N.
Glutaraldehyde-induced cross-links: a study of model compounds and
commercial bioprosthetic valves. J Hear Valve Dis. 2000;9(2):241–8.
45. Jayakrishnan A, Jameela SR. Glutaraldehyde as a fixative in
bioprostheses and drug delivery matrices. Biomaterials.
1996;17(5):471–84.
46. Grant M, Prockop D. The biosynthesis of collagen. N Engl J Med.
1972;286(4):194–9.
47. Chen W, Schoen FJ, Levy RJ. Mechanism of efficacy of 2-amino oleic
acid for inhibition of calcification of glutaraldehyde-pretreated
porcine bioprosthetic heart valves. Circulation. 1994;90(1):323–9.
48. Valente M, Bortolotti U, Thiene G. Ultrastructural Substrates of
Dystrophic Calc fi cation in Porcine Bioprosthetic Valve Failure. Am J
Pathol. 1985;119(1):12–21.
49. Schoen FJ, Tsao JW, Levy RJ. Calcification of bovine pericardium
used in cardiac valve bioprostheses: Implications for the mechanisms of
bioprosthetic tissue mineralization. Am J Pathol. 1986;123(1):134–45.
50. Vyavahare N, Ogle M, Schoen FJ, Levy RJ. Mechanisms of elastin
calcification and its prevention with aluminum chloride pretreatment.
Annu Int Conf IEEE Eng Med Biol - Proc. 1999;2(3):760.
51. Lopez-Moya M, Melgar-Lesmes P, Kolandaivelu K, Hernandez J, Edelman
E, Balcells M. Optimizing glutaraldehyde-fixed tissue heart valves with
chondroitin sulfate hydrogel for endothelialization and shield against
deterioration. Biomacromolecules. 2018;19(4):1234–44.
52. Vesely I. Heart valve tissue engineering. Circ Res.
2005;97(8):743–55.
53. Vesely I, Boughner D, Song T. Tissue Buckling as a Mechanism of
Bioprosthetic Valve Failure. Ann Thorac Surg. 1988 Sep;46(3):302–8.
54. Fisher J, Davies GA. Buckling in bioprosthetic valves. Ann Thorac
Surg. 1989 Jul;48(1):147–8.
55. Schoen F. Aortic valve structure-function correlations: role of
elastic fibers no longer a stretch of the imagination. J Hear Valve Dis.
1997;6(1):1–6.
56. Broom ND. An “in vitro” study of mechanical fatigue in
glutaraldehyde-treated porcine aortic valve tissue. Biomaterials.
1980;1(1):3–8.
57. Gabbay S, Kadam P, Factor S, Cheung T. Do heart valve bioprostheses
degenerate for metabolic or mechanical reasons? J Thorac Cardiovasc
Surg. 1988;95(2):208–15.
58. Broom ND, Thomson FJ. Influence of fixation conditions on the
performance of glutaraldehyde-treated porcine aortic valves: towards a
more scientific basis. Thorax. 1979;34(2):166–76.
59. Sellke F, Del Nido P, Swanson S. Sabiston and Spencer Surgery of the
Chest. 9th ed. Elsevier; 2015.
60. Revanna P, Fisher J, Watterson K. The influence of free hand
suturing technique and zero pressure fixation on the hydrodynamic
function of aortic root and aortic valve leaflets. Eur J Cardio-Thoracic
Surg. 1997 Feb;11(2):280–6.
61. Shah SR, Vyavahare NR. The Effect of Glycosaminoglycan Stabilization
on Tissue Buckling in Bioprosthetic Heart Valves. Biomaterials.
2008;29(11):1645–53.
62. Villa ML, De Biasi S, Pilotto F. Residual Heteroantigenicity of
Glutaraldehyde‐Treated Porcine Cardiac Valves. Tissue Antigens.
1980;16(1):62–9.
63. Human P, Zilla P. The possible role of immune responses in
bioprosthetic heart valve failure. J Hear Valve Dis. 2001;10(4):460–6.
64. Hooper D, Hawkins J, Fuller T, Profaizer T, Shaddy R. Panel-reactive
antibodies late after allograft implantation in children. Ann Thorac
Surg. 2005;79(2):641–4.
65. Ketchedjian A, Kreuger P, Lukoff H, Robinson E, Linthurst-Jones A,
Crouch K, et al. Ovine panel reactive antibody assay of HLA responsivity
to allograft bioengineered vascular scaffolds. J Thorac Cardiovasc Surg.
2005;129(1):159–66.
66. Dignan R, O’Brien M, Hogan P, Thornton A, Fowler K, Byrne D, et al.
Aortic valve allograft structural deterioration is associated with a
subset of antibodies to human leukocyte antigens. J Hear Valve Dis.
2003;12(3):382–90.
67. Pibarot P, Dumesnil JG. Prosthetic heart valves: Selection of the
optimal prosthesis and long-term management. Circulation.
2009;119(7):1034–48.
68. Simon P, Kasimir MT, Seebacher G, Weigel G, Ullrich R, Salzer-Muhar
U, et al. Early failure of the tissue engineered porcine heart valve
SYNERGRAFTTM in pediatric patients. Eur J
Cardio-thoracic Surg. 2003;23(6):1002–6.
69. Li H, Forstermann U. Nitric oxide in the pathogenesis of cardiac
disease. J Pathol. 2000;190:144–254.
70. Manji RA, Zhu LF, Nijjar NK, Rayner DC, Korbutt GS, Churchill TA, et
al. Glutaraldehyde-fixed bioprosthetic heart valve conduits calcify and
fail from xenograft rejection. Circulation. 2006;114(4):318–27.
71. Vattikuti R, Towler DA. Osteogenic regulation of vascular
calcification: An early perspective. Am J Physiol - Endocrinol Metab.
2004;286(5 49-5):686–96.
72. Briand M, Pibarot P, Després JP, Voisine P, Dumesnil JG, Dagenais F,
et al. Metabolic syndrome is associated with faster degeneration of
bioprosthetic valves. Circulation. 2006;114(SUPPL. 1).
73. O’Brien KD. Do bioprosthetic aortic valves deteriorate more rapidly
in patients with the metabolic syndrome?: Commentary. Nat Clin Pract
Cardiovasc Med. 2007;4(4):192–3.
74. Shetty R, Côté N. Elevated Proportion of Small , Dense Low-Density
Lipoprotein Particles and Lower Adiponectin Blood Levels Predict Early
Structural Valve Degeneration of Bioprostheses. 2012;20–6.
75. Mahmut A, Mahjoub H, Boulanger MC, Fournier D, Després JP, Pibarot
P, et al. Lp-PLA2 is associated with structural valve degeneration of
bioprostheses. Eur J Clin Invest. 2014;44(2):136–45.
76. McGregor C, Kogelberg H, Vlasin M, Byrne G. Gal-knockout
bioprostheses exhibit less immune stimulation compared to standard
biological heart valves. J Hear Valve Dis. 2013;22(3):383–90.
77. McGregor CGA, Carpentier A, Lila N, Logan JS, Byrne GW. Cardiac
xenotransplantation technology provides materials for improved
bioprosthetic heart valves. J Thorac Cardiovasc Surg.
2011;141(1):269–75.
78. Lila N, McGregor CGA, Carpentier S, Rancic J, Byrne GW, Carpentier
A. Gal knockout pig pericardium: New source of material for heart valve
bioprostheses. J Hear Lung Transplant. 2010;29(5):538–43.
79. Oveissi F, Naficy S, Lee A, Winlaw DS, Dehghani F. Materials and
manufacturing perspectives in engineering heart valves: a review. Mater
Today Bio. 2020;5(September 2019).
80. Meuris B, De Praetere H, Strasly M, Trabucco P, Lai JC, Verbrugghe
P, et al. A novel tissue treatment to reduce mineralization of bovine
pericardial heart valves. J Thorac Cardiovasc Surg.
2018;156(1):197–206.
81. Flameng W, Hermans H, Verbeken E, Meuris B. A randomized assessment
of an advanced tissue preservation technology in the juvenile sheep
model. J Thorac Cardiovasc Surg. 2015;149(1):340–5.
82. Vyavahare NR, Hirsch D, Lerner E, Baskin JZ, Zand R, Schoen FJ, et
al. Prevention of calcification of glutaraldehyde-crosslinked porcine
aortic cusps by ethanol preincubation: Mechanistic studies of protein
structure and water-biomaterial relationships. J Biomed Mater Res.
1998;40(4):577–85.
83. Vyavahare N, Hirsch D, Lerner E, Baskin JZ, Schoen FJ, Bianco R, et
al. Prevention of Bioprosthetic Heart Valve Calcification by Ethanol
Preincubation. Circulation. 1997 Jan 21;95(2):479–88.
84. Perez de Arenaza D, Lees B, Flather M, Nugara F, Husebye T, Jasinski
M, et al. Randomized Comparison of Stentless Versus Stented Valves for
Aortic Stenosis. Circulation. 2005 Oct 25;112(17):2696–702.
85. Repossini A, Rambaldini M, Lucchetti V, Da Col U, Cesari F, Mignosa
C, et al. Early clinical and haemodynamic results after aortic valve
replacement with the Freedom SOLO bioprosthesis (experience of Italian
multicenter study). Eur J Cardio-Thoracic Surg. 2012 May
1;41(5):1104–10.
86. Stacchino C, Bona G, Bonetti F, Rinaldi S, Della Ciana L, Grignani
A. Detoxification Process for Glutaraldehyde-Treated Bovine Pericardium:
Biological, Chemical and Mechanical Characterization. J Hear Valve Dis.
1998;7(2):190–4.
87. David TE, Armstrong S, Maganti M. Hancock II Bioprosthesis for
Aortic Valve Replacement: The Gold Standard of Bioprosthetic Valves
Durability? Ann Thorac Surg. 2010 Sep;90(3):775–81.
88. Bortolotti U, Milano A, Mazzucco A, Guerra F, Magni A, Santini F, et
al. The Hancock II porcine bioprosthesis. A preliminary report. J Thorac
Cardiovasc Surg. 1989 Mar;97(3):415–20.
89. Arbustini E, Jones M, Moses RD, Eidbo EE, Carroll RJ, Ferrans VJ.
Modification by the hancock T6 process of calcification of bioprosthetic
cardiac valves implanted in sheep. Am J Cardiol. 1984
May;53(9):1388–96.
90. Rieß F-C, Fradet G, Lavoie A, Legget M. Long-Term Outcomes of the
Mosaic Bioprosthesis. Ann Thorac Surg. 2018 Mar;105(3):763–9.
91. Schoen FJ, Levy RJ. Calcification of Tissue Heart Valve
Substitutes : Progress Toward Understanding and Prevention. 2005;
92. Dove J, Howanec M, Thubrikar M. Carpentier-Edwards ThermaFix
Process: a method for extracting calcium binding sites from pericardial
tissue. Edwards Lifesciences LLC. 2006;
93. Flameng W, Hermans H, Verbeken E, Meuris B. A randomized assessment
of an advanced tissue preservation technology in the juvenile sheep
model. J Thorac Cardiovasc Surg . 2015;149(1):340–5.
94. Lifesciences E. INSPIRIS RESILIA Aortic Valve, Model 11500A, DRAFT.
2018;
95. Gabbay S, Wheatley DJ. Advances in Anticalcific and Antidegenerative
Treatment of Heart Valve Bioprostheses. Silent Partners, Inc.; 1997.
105–113 p.
96. McGonagle-Wolff K, Schoen FJ. Morphologic findings in explanted
mitroflow pericardial bioprosthetic valves. Am J Cardiol. 1992
Jul;70(2):263–4.
97. Ruzicka DJ, Hettich I, Hutter A, Bleiziffer S, Badiu CC,
Bauernschmitt R, et al. The Complete Supraannular Concept: In Vivo
Hemodynamics of Bovine and Porcine Aortic Bioprostheses. Circulation.
2009 Sep 15;120(11_suppl_1):S139–45.
98. Meuris B, De Praetere H, Strasly M, Trabucco P, Lai JC, Verbrugghe
P, et al. A novel tissue treatment to reduce mineralization of bovine
pericardial heart valves. J Thorac Cardiovasc Surg.
2018;156(1):197–206.