
A class of new modulus-based matrix splitting methods
for linear complementarity problem∗

Shi-Liang Wu†, Cui-Xia Li‡

School of Mathematics, Yunnan Normal University,

Kunming, Yunnan, 650500, P.R. China

Abstract

In this paper, to economically and fast solve the linear complementarity problem,
based on a new equivalent fixed-point form of the linear complementarity problem,
we establish a class of new modulus-based matrix splitting methods, which is differ-
ent from the previously published works. Some sufficient conditions to guarantee the
convergence of this new iteration method are presented. Numerical examples are of-
fered to show the efficacy of this new iteration method. Moreover, the comparisons
on numerical results show the computational efficiency of this new iteration method
advantages over the corresponding modulus method, the modified modulus method
and the modulus-based Gauss-Seidel method.

Keywords: Linear complementarity problem; matrix splitting; iteration method;
convergence

AMS classification: 90C33, 65F10,65F50,65G40

1 Introduction

As a very useful tool, the linear complementarity problem (LCP) often plays a key role in
diverse fields of scientific computing and engineering applications, such as convex quadratic
programming, bimatrix games, the free boundary problem, the contact problem, upon price
problem, nonnegative constrained least squares problems, market equilibrium problems, see
[1–6]. Essentially, the LCP is to find a vector that meets a kind of the inequality systems,
i.e., finding a vector z ∈ Rn meets

v = Az + q ≥ 0, z ≥ 0 and zT v = 0, (1.1)

∗This research was supported by National Natural Science Foundation of China (No.11961082).
†Corresponding author: wushiliang1999@126.com
‡lixiatk@126.com

1

where A ∈ Rn×n is a given matrix and q ∈ Rn is a given vector.
For solving the LCP (1.1), some direct methods (such as the pivot method in [4], the

Bard-type method [7]) can be considered, it is noted that these direct methods are often
restricted because of the roundoff error and the problem size. In particular, for the sparse
and large system matrix A, these direct methods are short of ability to keep the sparsity
of the system matrix A intact and require too many pivots so that they may be seriously
challenged.

To avoid these disadvantages of direct methods, the alternative is to employ iteration
methods for solving the LCP (1.1). As is known, the advantage of iteration methods over
direct methods is the memory and the computational requirement. Not only that, the former
can be easily executed on high-performance computer than the later. Naturally, in actual
implementations, we often use iteration methods instead of direct methods for solving the
LCP (1.1).

To construct the fast and economical iteration methods, one of popular and highly sought-
after approaches is necessary to reformulate the LCP (1.1) as a certain equation, that is to
say, the solution of this equation must be the same as the LCP (1.1). For this reason, some
efficient equivalent forms of the LCP (1.1) have been developed. For example, in [8], let
z+ ∈ Rn with (z+)i = max{0, xi}, i = 1, 2, . . . , n, then Mangasarian presented the following
equivalent form

z = (z − ωΩ(Az + q))+, with ω > 0, (1.2)

where Ω ∈ Rn×n is a positive diagonal matrix, and proposed the projected Jacobi overrelax-
ation, the projected SOR method and the projected symmetric SOR method. Making use
of the equivalent form (1.2) to design iteration methods, one can also see [9–15] for more
details. In fact, the equivalent form (1.2) belongs to a kind of fixed point schemes.

The second equivalent form of the LCP (1.1) is obtained by z = |x|+x
2

and v = (ωΩ)−1(|x|−
x) for the LCP (1.1), and is of the form

x =
|x|+ x

2
− ωΩ

2
(A
|x|+ x

2
+ q), with ω > 0, (1.3)

where Ω ∈ Rn×n is a positive diagonal matrix. One can see [16] for the corresponding
iteration methods. Therewith, AL-said and Noor [17–19] extended further the work in [16].
Of course, the equivalent form (1.3) is a class of fixed point schemes as well.

Recently, making use of z = |x|+x
γ

and v = Ω
γ
(|x| −x) and A = M −N for the LCP (1.1),

Bai in [20] given the following general equivalent form

(Ω + M)x = Nx + (Ω− A)|x| − γq, with γ > 0, (1.4)

where Ω ∈ Rn×n is a positive diagonal matrix and first designed a class of modulus-based
matrix splitting iteration methods. This general equivalent form (1.4) covers the published
works in [2, 21–24]. This kind of modulus-based matrix splitting iteration methods was re-
garded as a powerful method of solving the LCP (1.1). Other deformations of the equivalent

2

form (1.4), one can see [25–33] for more details. In addition, this ideology has been success-
fully expanded to other complementarity problems, inculding the nonlinear complementar-
ity problem [34–37], the implicit complementarity problem [38], the quasi-complementarity
problem [39] and the horizontal linear complementarity problem [40].

In this paper, without making use of change of variable, by directly using the inequality
systems of the LCP (1.1), a new equivalent form, fixed-point form, of the LCP (1.1) is
obtained, which is different from the previously published works in [2,8,16,20–24]. This new
equivalent form allows us to design a new class of iteration methods for solving the LCP (1.1).
Here, we call a class of new modulus-based matrix splitting iteration methods. This class of
new modulus-based matrix splitting iteration methods not only inherits the virtues of the
presented modulus-based methods, but also generates many relaxed versions. We discuss the
convergence property of this kind of new iteration methods and give its some convergence
conditions under suitable assumptions. In addition, numerical examples are also provided to
verify that this kind of new iteration methods are feasible and overmatch the corresponding
modulus method, the modified modulus method and the classical modulus-based matrix
splitting iteration methods in aspects of the computational efficiency.

The layout of this paper is organized below. In Section 2, for the sake of discussion
in the rest of this paper, some necessary definitions, notations and well-known lemmas are
provided. In Section 3, a class of new modulus-based matrix splitting iteration methods is
established by the new equivalent fixed-point form of the LCP (1.1). And its convergence
conditions are given in depth in Section 4. Numerical comparison the proposed methods
with the modulus method, the modified modulus method and the classical modulus-based
matrix splitting iteration methods are reported in Section 5. Finally, in Section 6, we draw
some remarks to end this paper.

2 Preliminaries

In this section, we briefly introduce some necessary definitions, notations, and the well-known
lemmas, which are used in the sequel discussions.

Let A = (aij) ∈ Rn×n. Then it is named as an M -matrix if A−1 ≥ 0 and

aij =

{
> 0 for i = j,

≤ 0 for i 6= j,
i, j = 1, 2, . . . , n;

an H-matrix if matrix 〈A〉 = (〈a〉ij) is an M -matrix, where

〈a〉ij =

{
|aij| for i = j,

−|aij| for i 6= j,
i, j = 1, 2, . . . , n;

(matrix 〈A〉 is called the comparison matrix of matrix A); an H+-matrix if A is an H-
matrix with diag(A) > 0; a P -matrix if all of its principle minors are positive [3, 41] or

3

the LCP (1.1) has a unique solution [1, 20]. In addition, A = M − N is an M -splitting
if M is a nonsingular M -matrix and N ≥ 0; an H-splitting if 〈M〉 − |N | is an M -matrix
with |N | = (|nij|) ∈ Rn×n. As is known, if A = M − N is an M -splitting and A is a
nonsingular M -matrix, then ρ(M−1N) < 1, where ρ(·) indicates the spectral radius of the
matrix, see [3, 41].

Lemma 2.1 [26] Let A = (aij) ∈ Rn×n with aij ≥ 0. If there exists u ∈ Rn with u > 0 such
that Au < u, then ρ(A) < 1.

Lemma 2.2 [42] Let A ∈ Rn×n be an H-matrix, D be the diagonal part of the matrix A, and
A = D−B. Then matrices A and |D| are nonsingular, |A−1| ≤ 〈A〉−1 and ρ(|D|−1|B|) < 1.

Lemma 2.3 [3, 42] Let A ∈ Rn×n be an M-matrix and B ∈ Rn×n be a Z-matrix with
A ≤ B. Then B is an M-matrix.

3 New modulus-based matrix splitting method

In this section, we introduce a class of new modulus-based matrix splitting methods for
solving the LCP (1.1). To this end, we give a new lemma, see Lemma 3.1.

Lemma 3.1 Let a, b ∈ R. Then

a ≥ 0, b ≥ 0, ab = 0 (3.1)

if and only if
a + b = |a− b|. (3.2)

This result carries immediately over to vectors in Rn.

Proof. We first prove that (3.2)⇒ (3.1). By calculation, clearly,

a + b = |a− b| ⇒ (a + b)2 = |a− b|2 ⇒ a2 + 2ab + b2 = a2 − 2ab + b2 ⇒ ab = 0.

In addition, if a = 0, then from (3.2) we have b = |b| ≥ 0. It follows that ab = 0. Similarly,
if b = 0, then ab = 0 as well.

Next, we prove that (3.1) ⇒ (3.2). By (3.1), we have

(a + b)2 = (a− b)2.

Taking the square root calculation for the above equation, we have

|a + b| = |a− b|.
Noting that a ≥ 0, b ≥ 0, it follows that (3.2) is valid.

This result is also true for vectors in Rn. 2

Based on Lemma 3.1, a new equivalent expression of the LCP (1.1) can be obtained,
which is described below.

4

Theorem 3.1 Let Ω be a positive diagonal matrix. Then the LCP (1.1) is equal to

(Ω + A)z = |(A− Ω)z + q| − q. (3.3)

Proof. Obviously, the LCP (1.1) is equal to

w = Az + q ≥ 0, Ωz ≥ 0 and (Ωz)T w = 0,

where Ω is a positive diagonal matrix. Here, we take a = Az + q and b = Ωz for Lemma 3.1
and get

(Ω + A)z + q = |(A− Ω)z + q|.
Therefore, the proof of Theorem 3.1 is completed. 2

When Ω = I in Theorem 3.1, the result in Theorem 3.1 reduces to a restate of the
equivalence of LCP (1.1) with the min-equation, which was considered in [43,44].

Theorem 3.1 implies that once we obtain the value of z by solving the implicit fixed-point
equation (3.3), this z is the solution of LCP (1.1) as well. To rapidly and economically obtain
the solution of the implicit fixed-point equation (3.3), one of the more popular strategies is
to construct the iteration method by the efficient matrix splitting of the related matrix A.
Based on this, we take A = M −N as a matrix splitting of matrix A ∈ Rn×n in (3.3). Then
from (3.3) we have

(Ω + M)z = Nz + |(A− Ω)z + q| − q. (3.4)

This new equivalent expression (3.4) of the LCP (1.1) is different from the perviously works
in [2, 8, 16, 20–24]. Based on Eq. (3.4), we can naturally establish the following iteration
method, which is named as a class of new modulus-based matrix splitting iteration methods
for the LCP (1.1), see Method 3.1.

Method 3.1 Let A = M − N be a splitting of the matrix A ∈ Rn×n, and matrix Ω + M
be nonsingular, where Ω is a positive diagonal matrix. Given a non-negative initial vector
z(0) ∈ Rn, for k = 0, 1, 2, . . . until the iteration sequence {z(k)}+∞

k=0 ⊂ Rn converge, compute
z(k+1) ∈ Rn by solving the linear system

(Ω + M)z(k+1) = Nz(k) + |(A− Ω)z(k) + q| − q. (3.5)

In [20], Bai ingeniously designed the modulus-based matrix splitting iteration methods,
see Method 3.2.

Method 3.2 [20] Let A = M−N be a splitting of the matrix A ∈ Rn×n, and matrix Ω+M
be nonsingular, where Ω is a positive diagonal matrix. Given an initial vector x(0) ∈ Rn, for
k = 0, 1, 2, . . . until the iteration sequence {z(k)}+∞

k=0 ⊂ Rn converge, compute z(k+1) ∈ Rn

z(k+1) =
1

γ
(|x(k+1)|+ x(k+1)), γ > 0.

where x(k+1) is obtained by solving the linear system

(Ω + M)x(k+1) = Nx(k) + (Ω− A)|x(k)| − γq. (3.6)

5

Investigating Method 3.1 and Method 3.2, these two methods have resemblances, but
Method 3.1 does not belong to Method 3.2, vice versa.

In addition, the new modulus-based matrix splitting iteration methods provides a new
general framework for solving the LCP (1.1). Based on the matrix splitting technique, some
new modulus-based relaxation methods are obtained as well. Specially, we express the system
matrix A as

A = D − L− U,

where D = diag(A), L and U , respectively, are the strictly lower upper triangular matrices
of A. Then

(a) when M = A, Ω = I, N = 0, from Method 3.1 we have

(I + A)z(k+1) = |(A− I)z(k) + q| − q,

which is called as the new modulus (NMOD) method.

(b) when M = A, N = 0, Ω = αI, from Method 3.1 we have

(αI + A)z(k+1) = |(A− αI)z(k) + q| − q,

which is called as the new modified modulus (NMMOD) iteration method.

(c) when M = D, N = L + U , from Method 3.1 we have

(Ω + D)z(k+1) = (L + U)z(k) + |(A− Ω)z(k) + q| − q,

which is called as the new modulus-based Jacobi (NMJ) iteration method

(d) when M = D − L, N = U , from Method 3.1 we have

(Ω + D − L)z(k+1) = Uz(k) + |(A− Ω)z(k) + q| − q,

which is called as the new modulus-based Gauss-Seidel (NMGS) iteration method.

(e) when M = 1
α
D − L, N = (1

α
− 1)D + U , from Method 3.1 we have

(αΩ + D − αL)z(k+1) = [(1− α)D + αUz(k)] + α(|(A− Ω)z(k) + q| − q),

which is called as the new modulus-based SOR (NMSOR) iteration method.

(f) when M = 1
α
(D − βL), N = 1

α
((1− α)D + (α− β)L + αU), from Method 3.1 we have

(αΩ + D − βL)z(k+1) = [(1− α)D + (α− β)L + αUz(k)] + α(|(A− Ω)z(k) + q| − q),

which is called as the new modulus-based AOR (NMAOR) iteration method.

6

4 Convergence analysis

In this section, some sufficient conditions are given to guarantee the convergence of Method
3.1 under suitable conditions.

First, we give a general convergence condition of Method 3.1, see Theorem 4.1.

Theorem 4.1 Let A = M − N be a splitting of the matrix A ∈ Rn×n with A being a P -
matrix, and matrix Ω+M be nonsingular, where Ω is a positive diagonal matrix. If ρ(T) < 1,
where

T = |(Ω + M)−1|(|N |+ |A− Ω|),
then the iteration sequence {z(k)}+∞

k=0 ⊂ Rn produced by Method 3.1 converges to the unique
solution z∗ ∈ Rn

+ of the LCP (1.1) for a non-negative initial vector.

Proof. Let z∗ is a solution of the LCP (1.1). Then from (3.4) we obtain

(Ω + M)z∗ = Nz∗ + |(A− Ω)z∗ + q| − q. (4.1)

Based on (3.5) and (4.1), note that matrix Ω + M is nonsingular, we can obtain

x(k+1) − x∗ = (Ω + M)−1(N(x(k) − x∗) + |(A− Ω)z(k) + q| − |(A− Ω)z∗ + q|). (4.2)

This indicates that

|x(k+1) − x∗| =|(Ω + M)−1(N(x(k) − x∗) + |(A− Ω)z(k) + q| − |(A− Ω)z∗ + q|)|
≤|(Ω + M)−1N(x(k) − x∗)|

+ |(Ω + M)−1(|(A− Ω)z(k) + q| − |(A− Ω)z∗ + q|))|
≤|(Ω + M)−1N | · |x(k) − x∗|

+ |(Ω + M)−1| · ||(A− Ω)z(k) + q| − |(A− Ω)z∗ + q||
≤|(Ω + M)−1N | · |x(k) − x∗|

+ |(Ω + M)−1| · |(A− Ω)z(k) + q − (A− Ω)z∗ − q|
=|(Ω + M)−1N | · |x(k) − x∗|+ |(Ω + M)−1| · |(A− Ω)(z(k) − z∗)|
≤|(Ω + M)−1| · |N | · |x(k) − x∗|+ |(Ω + M)−1| · |A− Ω| · |z(k) − z∗|
=|(Ω + M)−1|(|N |+ |A− Ω|)|z(k) − z∗|
=T |x(k) − x∗|.

Obviously, when ρ(T) < 1, for a non-negative initial vector, the iteration sequence {z(k)}+∞
k=0 ⊂

Rn produced by Method 3.1 converges to the unique solution z∗ ∈ Rn
+ of the LCP (1.1). 2

Since
|A− Ω| = |M −N − Ω| ≤ |M − Ω|+ |N |,

Corollary 4.1 can be obtained.

7

Corollary 4.1 Let A = M − N be a splitting of the matrix A ∈ Rn×n with A being a P -
matrix, and matrix Ω+M be nonsingular, where Ω is a positive diagonal matrix. If ρ(T̄) < 1,
where

T̄ = |(Ω + M)−1|(2|N |+ |M − Ω|),
then the iteration sequence {z(k)}+∞

k=0 ⊂ Rn produced by Method 3.1 converges to the unique
solution z∗ ∈ Rn

+ of the LCP (1.1) for a non-negative initial vector.

Using ‖ · ‖2 for (4.2), it is easy to obtain Corollary 4.2.

Corollary 4.2 Let A = M − N be a splitting of the matrix A ∈ Rn×n with A being a
P -matrix, and matrix Ω + M be nonsingular, where Ω is a positive diagonal matrix. Let

η(R) = ‖(Ω + M)−1‖2(‖N‖2 + ‖A− Ω‖2)

and
η̄(R) = ‖(Ω + M)−1‖2(2‖N‖2 + ‖M − Ω‖2).

If η(R) < 1 or η̄(R) < 1, then the iteration sequence {z(k)}+∞
k=0 ⊂ Rn produced by Method 3.1

converges to the unique solution z∗ ∈ Rn
+ of the LCP (1.1) for a non-negative initial vector.

Next, we consider the convergence condition of Method 3.1 when the system matrix A is
an H+-matrix. To this end, Lemma 4.1 is required.

Lemma 4.1 Let A = M −N be an H-splitting of the matrix A = (aij) ∈ Rn×n, where A is
an H+-matrix. Then matrix D − |B| is an M-matrix, where D = diag(A).

Proof. Since A = M −N be an H-splitting, then 〈M〉 − |N | is an M -matrix. By calculate,
we obtain

dii = aii = mii − nii = |mii − nii| ≥ |mii| − |nii|
and

−|bij| = −|aij| = −|mij − nij| ≥ −|mij| − |nij|.
Thus,

〈M〉 − |N | ≤ D − |B|.
Based on Lemma 2.3, matrix D − |B| is an M-matrix. 2

Based on Lemma 4.1, Theorem 4.2 can be obtained.

Theorem 4.2 Let A = M −N be an H-splitting of the matrix A = (aij) ∈ Rn×n, where A
is an H+-matrix. Let the diagonal matrix Ω ≥ D, where D = diag(A). Then the iteration
sequence {z(k)}+∞

k=0 ⊂ Rn produced by Method 3.1 converges to the unique solution z∗ ∈ Rn
+

of the LCP (1.1) for a non-negative initial vector.

8

Proof. Since 〈M〉 − |N | is an M -matrix and

〈M〉 − |N | ≤ 〈M〉,

matrix 〈M〉 is an M -matrix from Lemma 2.3. By Lemma 2.2 and Ω ≥ D, we can obtain
that Ω + M is an H+-matrix and

|(Ω + M)−1| ≤ (〈M〉+ Ω)−1.

Further, based on Lemma 4.1, we get

T ≤ (〈M〉+ Ω)−1(|N |+ |A− Ω|)
= (〈M〉+ Ω)−1(〈M〉+ Ω− 〈M〉 − Ω + |N |+ |A− Ω|)
= (〈M〉+ Ω)−1(〈M〉+ Ω− 〈M〉 − Ω + |N |+ |D − Ω|+ |B|)
= I − (〈M〉+ Ω)−1(〈M〉 − |N |+ Ω− |D − Ω| − |B|)
= I − (〈M〉+ Ω)−1(〈M〉 − |N |+ D − |B|)
≤ I − 2(〈M〉+ Ω)−1(〈M〉 − |N |).

Since 〈M〉 − |N | is an M -matrix, there exists a positive vector u such that

(〈M〉 − |N |)u > 0.

Therefore,
Tu ≤ (I − 2(〈M〉+ Ω)−1(〈M〉 − |N |))u < u.

Based on Lemma 2.1, we can obtain that ρ(T) < 1. Based on Theorem 4.1, the iteration
sequence {z(k)}+∞

k=0 ⊂ Rn produced by Method 3.1 converges to the unique solution z∗ ∈ Rn
+

of the LCP (1.1) for a non-negative initial vector. 2

Theorem 4.3 Let A = D − L − U = D − B and ρ := ρ(D−1|B|), where A ∈ Rn×n is an
H+-matrix. Assume that the diagonal matrix Ω satisfies Ω ≥ D. Then if the parameters α
and β satisfy

0 ≤ max{α, β}ρ < min{1, α}. (4.3)

then the iteration sequence {z(k)}+∞
k=0 ⊂ Rn produced by NMAOR converges to the unique

solution z∗ ∈ Rn
+ of the LCP (1.1) for a non-negative initial vector.

Proof. First, Under the condition (4.3), noting that ρ(D−1|B|) < 1, it is easy to obtain
that min{1, α}I −max{α, β}D−1|B| is M -matrix.

Second, by calculate, we have

(1 + α− |1− α|) = 2 min{1, α}

9

and

|αB − βL|+ α|B|+ β|L| = |αL + αU − βL|+ α|U |+ α|L|+ β|L|
= (|α− β|+ α + β)|L|+ 2α|U |
≤ 2 max{α, β}|B|.

Based on the above results, we take

M =
1

α
(D − βL) and N =

1

α
[(1− α)D + (α− β)L + αU].

Then

T =|αΩ + D − βL|−1(|(1− α)D + (α− β)L + αU |+ α|Ω− A|)
≤〈αΩ + D − βL〉−1(|(1− α)D + (α− β)L + αU |+ α|Ω− A|)
=(αΩ + D − β|L|)−1(αΩ + D − β|L| − (αΩ + D − β|L|)

+ |(1− α)D + (α− β)L + αU |+ α|Ω− A|)
=I − (αΩ + D − β|L|)−1(αΩ + D − β|L|
− |(1− α)D + (α− β)L + αU | − α|Ω−D + B|)

=I − (αΩ + D − β|L|)−1(αΩ + D − β|L| − |1− α|D
− |αB − βL| − α(Ω−D)− α|B|)

=I − (αΩ + D − β|L|)−1((1 + α)− |1− α|)D
− |αB − βL| − β|L| − α|B|)

=I − (αΩ + D − β|L|)−1D(min{1, α}I −max{α, β}D−1|B|).

The rest proof is similar to the proof of Theorem 4.2, which is omitted. 2

5 Numerical experiments

In this section, we employ four numerical examples to show the convergence behaviors of
Method 3.1.

To show the advantages of Method 3.1, we contrast Method 3.1 with Method 3.2. The
published works in [33,45] pointed out that, among the modulus-based relaxation versions of
Method 3.2, the modulus-based Gauss-Seidel (MGS) is best when Ω = D under the certain
conditions. Based on this, with regard to the comparison of the modulus-based relaxation
versions of Method 3.1 and Method 3.2, we consider the NMGS method and the MGS
method. Other testing methods are considered as well, see Table 1.

All the testing methods are performed in MATLAB 2016b. In addition, we choose x(0) =
(1, 0, 1, 0, . . . , 1, 0, . . .)T ∈ Rn as the initial vectors for these testing methods. All the testing
methods are stopped once the number of iteration are larger than 500 or the norm of residual

10

Abbreviation Method
MOD The modulus method in [2]
MMOD The modified modulus method in [24]
NMOD The new modulus method
NMMOD The new modified modulus method

Table 1: Abbreviations of other testing methods.

vectors (RES) is less than 10−5. Here, we still use RES(z(k)) = ‖min(Az(k) + q, z(k))‖2 as
the residual vectors, see [20]. The iteration parameter α used in the NMMOD and MMOD
methods is chosen to be 2; γ = 2 for the MGS method in [20]. In the following tables, ‘IT’
denotes the iteration steps and ‘CPU’ denotes the elapsed CPU time in seconds.

Example 5.1 ([20]). Let the LCP (1.1) be given by q = −Az∗ and A = Â + µI, where

Â = tridiag(−I, T,−I) =




T −I 0 · · · 0 0
−I T −I · · · 0 0
0 −I T · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · T −I
0 0 0 · · · −I T



∈ Rn×n

with

T = tridiag(−1, 4,−1) =




4 −1 0 · · · 0 0
−1 4 −1 · · · 0 0
0 −1 4 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 4 −1
0 0 0 · · · −1 4



∈ Rm×m,

and
z∗ = (1, 2, 1, 2, . . . , 1, 2, . . .)T ∈ Rn

is the unique solution of the LCP (1.1).
Tables 2-4 list the numerical results (including IT, CPU and RES) of three groups of

methods for Example 5.1 with µ = 6. In total, these numerical results in Tables 2-4 tell
us that all the testing methods can rapidly calculate a satisfactory approximation to the
solution of LCP (1.1). In addition, with the increasing of the problem size n, all the number
of iterations and the CPU times of these six testing methods increase. For each group, we
have the following facts:

• Table 2 show that the new modulus method requires less iteration steps and CPU
times than the modulus method. That is to say, the computational efficiency of the
new modulus method is superior to the modulus method in [2].

11

n 162 322 642 1282

MOD IT 96 99 101 104
CPU 0.0060 0.0153 0.1061 0.8052
RES 9.8434e-6 9.2656e-6 9.9375e-6 9.0756e-6

NMOD IT 83 86 88 91
CPU 0.0072 0.0171 0.1171 0.9609
RES 9.5787e-6 8.9764e-6 9.5820e-6 8.7156e-6

Table 2: Numerical comparison of NMOD and MOD for Example 5.1.

n 162 322 642 1282

MMOD IT 48 49 51 52
CPU 0.0043 0.0092 0.0574 0.4085
RES 9.0226e-6 9.8760e-6 7.7848e-6 8.2570e-6

NMMOD IT 42 43 45 46
CPU 0.0053 0.0110 0.0686 0.4739
RES 8.8414e-6 9.6971e-6 7.6996e-6 8.2292e-6

Table 3: Numerical comparison of NMMOD and MMOD for Example 5.1.

n 162 322 642 1282

MGS IT 15 16 16 17
CPU 0.0031 0.0040 0.0067 0.0199
RES 4.3687e-6 3.6549e-6 8.1157e-6 5.6681e-6

NMGS IT 15 16 16 17
CPU 0.0039 0.0049 0.0075 0.0264
RES 4.3687e-6 3.6549e-6 8.1157e-6 5.6681e-6

Table 4: Numerical comparison of NMGS and MGS for for Example 5.1.

• Table 3 show that the new modified modulus method requires less iteration steps and
CPU times than the modified modulus method. That is to say, the new modified
modulus method precedes the modified modulus method in [24]. Moreover, both over-
matches the new modulus method as well as the modulus method.

• Table 4 show that the iteration steps and the norm of relative errors of the new
modulus-based Gauss-Seidel method are the same as the modulus-based Gauss-Seidel
method. Whereas, the former costs the less CPU times than the latter. In terms of
computational efficiency, the former outperforms the latter.

• Among these testing methods, from these numerical results in Tables 2, 3 and 4,
compared with five methods, the new modulus-based Gauss-Seidel method is more
competitive.

12

Example 5.2 ([20]). Let the LCP (1.1) be given by q = −Az∗ and A = Â + µI, where

Â = tridiag(−1.5I, T,−0.5I) =




T −0.5I 0 · · · 0 0
−1.5I T −0.5I · · · 0 0

0 −1.5I T · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · T −0.5I
0 0 0 · · · −1.5I T



∈ Rn×n

with

T = tridiag(−1.5, 4,−0.5) =




4 −0.5 0 · · · 0 0
−1.5 4 −0.5 · · · 0 0

0 −1.5 4 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 4 −0.5
0 0 0 · · · −1.5 4



∈ Rm×m,

and
z∗ = (1, 2, 1, 2, . . . , 1, 2, . . .)T ∈ Rn

is the unique solution of the LCP (1.1).

n 162 322 642 1282

MOD IT 98 101 104 106
CPU 0.0057 0.0148 0.0989 0.7611
RES 9.7768e-6 9.3137e-6 8.6578e-6 9.2393e-6

NMOD IT 78 81 83 86
CPU 0.0073 0.0180 0.1235 0.9466
RES 9.9373e-6 9.0754e-6 9.5640e-6 8.5977e-6

Table 5: Numerical comparison of NMOD and MOD for Example 5.2.

Tables 5-7 list the numerical results (including IT, CPU and RES) for three groups of
methods for Example 5.2 with the different problem sizes of n and µ = 6. These numerical
results in Tables 5-7 further verify the observed results obtained from Tables 2-4. That
is to say, the computational efficiency of the new modulus-based Gauss-Seidel method is
superior to the modified-based Gauss-Seidel method, and these two modulus-based Gauss-
Seidel methods have the highest computational efficiency than other four testing methods.
Among these methods, the new modulus-based Gauss-Seidel method is more competitive.

Example 5.3 (Black-Scholes American option pricing). We consider the Black-Scholes
American option pricing, which was presented in [46]. The price u(x, t) of American put

13

n 162 322 642 1282

MMOD IT 49 50 52 53
CPU 0.0046 0.0096 0.0583 0.4201
RES 9.0068e-6 9.4490e-6 7.9444e-6 8.4616e-6

NMMOD IT 43 45 46 47
CPU 0.0054 0.0105 0.0650 0.4786
RES 9.6228e-6 7.8648e-6 8.4706e-6 9.0390e-6

Table 6: Numerical comparison of NMMOD and MMOD for Example 5.2.

n 162 322 642 1282

MGS IT 13 14 15 15
CPU 0.0030 0.0039 0.0064 0.0176
RES 7.5880e-6 5.6490e-6 3.6901e-6 7.7841e-6

NMGS IT 13 14 15 15
CPU 0.0037 0.0045 0.0072 0.0231
RES 7.5880e-6 5.6490e-6 3.6901e-6 7.7841e-6

Table 7: Numerical comparison of NMGS and MGS for for Example 5.2.

options meets

(
∂u

∂t
− ∂2u

∂x2
)(u(x, t)− g(x, t)) = 0,

∂u

∂t
− ∂2u

∂x2
≥ 0, u(x, t)− g(x, t) ≥ 0, (5.1)

with u(x, 0) = g(x, 0), limx→±∞ u(x, t) = limx→±∞ g(x, t), (x, t) ∈ (−∞, +∞)× [0, T]. Here,
we limit x ∈ [a, b] and choose the values of a and b based on the approach in [46]. Using
the forward difference scheme for time t and implicit difference scheme for the price x to
discretize (5.1), we can obtain

w := Az − q ≥ 0, z − g ≥ 0 and wT (z − g) = 0,

with A = tridiag(−τ, 1 + 2τ,−τ) and τ = ∆t
(∆x)2

, ∆t denotes the time step and ∆x denotes

the price step. In our computations, we take g = 0.5z∗, and z∗ = (1, 0, 1, 0, . . . , 1, 0, . . .)T .
The vector q is to be adjusted such that q = Az∗ −w∗, where w∗ = (0, 1, 0, 1, . . . , 0, 1, . . .)T .

Tables 8, 9 and 10 list the numerical results (including IT, CPU and RES) for three
groups of methods for Example 5.3 with the different problem sizes of n and τ = 1. These
numerical results further shows that the new modulus-based Gauss-Seidel method and the
modulus-based Gauss-Seidel method require the less iteration steps and CPU times than
any four methods. The iteration steps of the new modulus-based Gauss-Seidel method are
the same as the modulus-based Gauss-Seidel method, but the CPU times of the former is
less than the later. Among these methods, the new modulus-based Gauss-Seidel method can
be top-priority when these six testing methods are used to solve the LCP (1.1).

14

n 6000 8000 10000 12000
MOD IT 16 16 16 16

CPU 0.0090 0.0106 0.0121 0.0139
RES 8.1835e-6 8.1835e-6 8.1835e-6 8.1835e-6

NMOD IT 16 16 16 16
CPU 0.0093 0.0110 0.0132 0.0161
RES 5.4764e-6 5.4764e-6 5.4764e-6 5.4764e-6

Table 8: Numerical comparison of NMOD and MOD for for Example 5.3.

n 6000 8000 10000 12000
MMOD IT 18 18 18 18

CPU 0.0097 0.0115 0.0134 0.0156
RES 6.9146e-6 7.9861e-6 8.9300e-6 9.7832e-6

NMMOD IT 18 18 18 18
CPU 0.0099 0.0119 0.0149 0.0161
RES 4.0682e-6 4.6986e-6 5.2539e-6 5.7559e-6

Table 9: Numerical comparison of NMMOD and MMOD for for Example 5.3.

n 6000 8000 10000 12000
MGS IT 14 14 14 14

CPU 0.0071 0.0081 0.0093 0.0107
RES 6.5415e-6 7.5547e-6 8.4472e-6 9.2540e-6

NMGS IT 14 14 15 15
CPU 0.0085 0.0095 0.0131 0.0159
RES 8.6290e-6 9.9653e-6 1.7964e-6 1.9679e-6

Table 10: Numerical comparison of NMGS and MGS for for Example 5.3.

n 162 322 642 1282

MOD IT 56 58 59 61
CPU 0.0055 0.0112 0.0767 0.5443
RES 8.8120e-6 8.3490e-6 9.7299e-6 9.6267e-6

NMOD IT 70 72 73 74
CPU 0.0061 0.0136 0.0855 0.6600
RES 9.3320e-6 7.9144e-6 9.2424e-6 9.4256e-6

Table 11: Numerical comparison of NMOD and MOD for for Example 5.4.

Example 5.4 (continuous optimal control problem). We consider the quasi-variational
inequality problem (QIP) from the continuous optimal control problem, which was intro-

15

n 162 322 642 1282

MMOD IT 31 32 33 34
CPU 0.0040 0.0081 0.0432 0.3073
RES 9.9028e-6 9.6831e-6 9.7952e-6 9.4645e-6

NMMOD IT 37 38 39 40
CPU 0.0049 0.0090 0.0507 0.3625
RES 8.4407e-6 8.5787e-6 7.9215e-6 8.1788e-6

Table 12: Numerical comparison of NMMOD and MMOD for for Example 5.4.

n 162 322 642 1282

MGS IT 8 9 9 9
CPU 0.0028 0.0034 0.0120 0.0055
RES 4.9946e-6 1.2809e-6 5.2554e-6 2.6158e-6

NMGS IT 9 9 9 9
CPU 0.0037 0.0044 0.0174 0.0080
RES 1.8299e-6 3.0380e-6 7.6522e-6 4.7956e-6

Table 13: Numerical comparison of NMGS and MGS for for Example 5.4.

duced in [47]: find z ∈ K(z), such that

(v − z)T (Az + F (z)) ≥ 0, for any v ∈ K(z), (5.2)

where K(z) = φ(z) + K ⊂ Rn, K is a positive cone in Rn, φ(z) and F (z), respectively,
are the implicit obstacle function and mapping from Rn to itself. Then, the QIP (5.2)
can be formulated as the LCP (1.1), where the matrix A is the same as the matrix A of
Example 5.1, and F (z) = q = (−1, 1,−1, 1, . . . ,−1, 1, . . .)T . In our computations, we take
v = 2z. Similarly, we present some numerical results, see Tables 11, 12 and 13. From these
numerical results in Tables 11, 12 and 13, we can still draw a conclusion shows that the new
modulus-based Gauss-Seidel method can be top-priority as well.

In total, from these numerical results in Tables 2-13, we can see that the new modulus-
based matrix splitting iteration methods for the LCP (1.1) is with good performance, that
is to say, it is feasible and competitive, compared with the modulus-based matrix splitting
iteration methods.

6 Conclusion

In this paper, making use of the inequality systems of the LCP (1.1), a new implicit fixed-
point equation is obtained. Based on this, we have established a class of new modulus-based
matrix splitting iteration methods, which is different from the pervious published works. The
convergence property of this new iteration method has been investigated. Some sufficient

16

conditions are given to guarantee the convergence of new modulus-based matrix splitting
methods. Numerical experiments are given to illustrate the performance of this new iteration
method. Moreover, the numerical comparisons show that this new modulus-based matrix
splitting iteration method can compare most favorably with the classical modulus-based
matrix splitting iteration method, and the new modulus and modified modulus methods
excels the original modulus and modified modulus methods, respectively.

In addition, from the structure of new modulus-based matrix splitting iteration methods,
this new iteration method can be extended to solve other complementarity problem, such as
the nonlinear complementarity problem, the implicit complementarity problem, the quasi-
complementarity problem, the horizontal linear complementarity problem and the vertical
linear complementarity problem. These continuity works can be made in the future.

Acknowledgments

The author would like to thank Editor-in-Chief Prof. P. Vassilevski for providing helpful
suggestions, which greatly improved the paper.

References

[1] R.W. Cottle, J.-S. Pang, R.E. Stone, The Linear Complementarity Problem, Academic, San Diego,
1992.

[2] K.G. Murty, Linear Complementarity, Linear and Nonlinear Programming. Heldermann, Berlin, 1988.

[3] A. Berman, R.J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, Academic, New York,
1979.

[4] R.W. Cottle, G.B. Dantzig, Complementary pivot theory of mathematical programming, Linear Algebra
Appl., 1 (1968) 103-125.

[5] U. Schäfer, A linear complementarity problem with a P-matrix, SIAM Rev., 46 (2004) 189-201.

[6] N. Zheng, K. hayami, J.-F. Yin, Modulus-type inner outer iteration methods for nonnegative constrained
least squares problems, SIAM J. Matrix Anal. Appl., 37 (2016) 1250-1278.

[7] Y. Bard, Nonlinear Parameter Estimarion, Academic Press. New York, 1974.

[8] O.L. Mangasarian, Solutions of symmetric linear complementarity problems by iterative methods, J.
Optim. Theory Appl., 22 (1977) 465-485.

[9] B.H. Ahn, Solutions of nonsymmetric linear complementarity problems by iterative methods, J. Optim.
Theory Appl., 33 (1981) 175-185.

[10] C.W. Cryer, The solution of a quadratic programming using systematic overrelaxation, SIAM J. Con-
trol., 9 (1971) 385-392.

[11] Z.Z. Bai, D.J. Evans, Matrix multisplitting relaxation methods for linear complementarity problems,
Inter. J. Comput. Math., 63 (1997) 309-326.

[12] Z.-Z. Bai, D.J. Evans, Chaotic iterative methods for the linear complementarity problems, J. Comput.
Appl. Math., 96 (1998) 127-138.

17

[13] S.-G. Li, H. Jiang, L.-Z. Cheng, X.-K. Liao, IGAOR and multisplitting IGAOR methods for linear
complementarity problems, J. Comput. Appl. Math., 235 (2011) 2904-2912.

[14] D.-J. Yuan, Y.-Z. Song, Modified AOR methods for linear complementarity problem, Appl. Math.
Comput., 140 (2003) 53-67.

[15] A. Hadjidimos, L.-L. Zhang, Comparison of three classes of algorithms for the solution of the linear
complementarity problem with an H+-matrix, J. Comput. Appl. Math., 336 (2018) 175-191.

[16] M.A. Noor, Fixed point approach for complementarity problems, J. Math. Anal. Appl., 133 (1988)
437-448.

[17] M.A. Noor, S. Zarae, An iterative scheme for complementarity problems, Eng. Anal., 3 (1986) 221-224

[18] E.A. AL-said, M.A. Noor, An iterative scheme for generalized mildly nonlinear complementarity prob-
lems, Appl. Math. Lett., 12 (1999) 7-11

[19] E.A. AL-said, M.A. Noor,An iterative technique for generalized strongly nonlinear complementarity
problems, Appl. Math. Lett., 12 (1999) 75-79.

[20] Z.-Z. Bai, Modulus-based matrix splitting iteration methods for linear complementarity problems, Nu-
mer. Linear Algebra Appl., 17 (2010) 917-933.

[21] W.M.G. van Bokhoven, A Class of Linear Complementarity Problems is Solvable in Polynomial Time.
Unpublished Paper, Dept. of Electrical Engineering, University of Technology, The Netherlands, 1980.

[22] N.W. Kappel, L.T. Watson, Iterative algorithms for the linear complementarity problems, Inter. J.
Comput. Math., 19 (1986) 273-297.

[23] A. Hadjidimos, M. Tzoumas, Nonstationary extrapolated modulus algorithms for the solution of the
linear complementarity problem, Linear Algebra Appl., 431 (2009) 197-210.

[24] J.-L. Dong, M.-Q. Jiang, A modified modulus method for symmetric positive-definite linear comple-
mentarity problems, Numer. Linear Algebra Appl., 16 (2009) 129-143.

[25] Z.-Z. Bai, L.-L. Zhang, Modulus-based synchronous multisplitting iteration methods for linear comple-
mentarity problems, Numer. Linear Algebra Appl., 20 (2013) 425-439.

[26] Z.-Z. Bai, L.-L. Zhang, Modulus-based synchronous two-stage multisplitting iteration methods for linear
complementarity problems, Numer. Algor., 62 (2013) 59-77.

[27] N. Zheng, J.-F. Yin, Accelerated modulus-based matrix splitting iteration methods for linear comple-
mentarity problems, Numer. Algor., 64 (2013) 245-262.

[28] L.-L. Zhang, Two-step modulus-based matrix splitting iteration method for linear complementarity
problems, Numer. Algor., 57 (2011) 83-99.

[29] S.-L. Wu, C.-X. Li, Two-sweep modulus-based matrix splitting iteration methods for linear complemen-
tarity problems, J. Comput. Math., 302 (2016) 327-339.

[30] W. Li, A general modulus-based matrix splitting method for linear complementarity problems of H-
matrices, Appl. Math. Lett., 26 (2013) 1159-1164.

[31] W.-W. Xu, Modified modulus-based matrix splitting iteration methods for linear complementarity
problems, Numer. Linear Algebra Appl., 22 (2015) 748-760.

[32] L.-L. Zhang, Z.-R. Ren, Improved convergence theorems of modulus-based matrix splitting iteration
methods for linear complementarity problems, Appl. Math. Lett., 26 (2013) 638-642.

18

[33] A. Hadjidimos, M. Lapidakis, M. Tzoumas, On iterative solution for linear complementarity problem
with an H+-matrix, SIAM J. Matrix Anal. Appl., 33 (2011) 97-110.

[34] C.-F. Ma, N. Huang, Modified modulus-based matrix splitting algorithms for a class of weakly nondif-
ferentiable nonlinear complementarity problems, Appl. Numer. Math., 108 (2016) 116-124.

[35] Z.-C. Xia, C.-L. Li, Modulus-based matrix splitting iteration methods for a class of nonlinear comple-
mentarity problem, Appl. Math. Comput., 271 (2015) 34-42.

[36] S.-L. Xie, H.-R. Xu, J.-P. Zeng, Two-step modulus-based matrix splitting iteration method for a class
of nonlinear complementarity problems, Linear Algebra Appl., 494 (2016) 1-10.

[37] N. Huang, C.-F. Ma, The modulus-based matrix splitting algorithms for a class of weakly nondifferen-
tiable nonlinear complementarity problems, Numer. Linear Algebra Appl., 23 (2016) 558-569.

[38] J.-T. Hong, C.-L. Li, Modulus-based matrix splitting iteration methods for a class of implicit comple-
mentarity problems, Numer. Linear Algebra Appl., 23 (2016) 629-641.

[39] S.-L. Wu, P. Guo, Modulus-based matrix splitting algorithms for the quasi-complementarity problems,
Appl. Numer. Math. 132 (2018) 127-137

[40] F. Mezzadri, E. Galligani, Modulus-based matrix splitting methods for horizontal linear complemen-
tarity problems, Numer. Algor., 83 (2020) 201-219.

[41] R.S. Varga, Matrix Iterative Analysis, Prentice-Hall, Englewood Cliffs, 1962.

[42] A. Frommer, G. Mayer, Convergence of relaxed parallel multisplitting methods, Linear Algebra Appl.,
119 (1989) 141-152.

[43] Z.-Z. Bai, P.-L. Tong, Iterative methods for linear complementarity problem, J. Univ. Electr. Sci. Tech.
China, 22(1993), 420-424. (In Chinese)

[44] Z.-Z. Bai, T.-Z. Huang, Accelerated overrelaxation methods for solving linear complementarity problem,
J. Univ. Electr. Sci. Tech. China, 23(1994), 428-432. (In Chinese)

[45] L. Cvetković, A. Hadjidimos, V. Kostić, On the choice of parameters in MAOR type splitting methods
for the linear complementarity problem, Numer. Algor., 67 (2014) 793-806.

[46] X.-J. Shi, L. Yang, Z.-H. Huang, A fixed point method for the linear complementarity problem arising
from American option pricing, Acta Math. Appl. Sin., 32 (2016) 921-932.

[47] G. Isac, Leray-schauder type alternatives, complementarity problems and variational inequalities.
Springer, Boston, 2006.

19

