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Abstract

In this work, the study of the Peyrard-Bishop DNA dynamic model equation analytically and
numerically will present. The Kudryashov method and modified Kudryashov method are used to
find the solution of the Peyrard-Bishop DNA dynamic model equation analytically. A cubic B-spline
collocation method is used to obtain a numerical solution of the Peyrard-Bishop DNA dynamic model
equation. A comparison between the results obtained by the analytical methods and the numerical
method is investigated. We give some figures to show how accurate the solutions will be obtained
from analytical and numerical methods.
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1 Introduction

Everyone can know that finding analytical and numerical solutions for mathematical models contributes
greatly to the interpretation of the physical properties of these models from all previous studies in
this field. There are also many mathematical models that have applications in various fields such as
engineering, physics, chemistry and fluid mechanics to the last of these sciences. Many researchers have
recently addressed many of these phenomena through an analytical or numerical aspect [1-7].

In this paper, I am going to ponder how to obtain solitary wave solutions in the scientific model in
DNA flow [8]. The importance of this paper lies in finding different analytical solutions for a model in
addition to confirming these solutions numerically and showing the extent of convergence between the
numerical solution and the analytical solution by finding the absolute error between them. This show
is first described by Peyrard-Bishop, which takes into consideration the incorporation of a non-linear
interaction between adjoining relocation with hydrogen bonds [9].

For exploring the appearance of solitonic structures of the oscillator-chain of Peyrard-Bishop demonstrate
has been analyzed by [9,10]. The adjust between powerless nonlinearity and scattering within the DNA
energetic demonstrate with straight scattering and nonlinear scattering emerges within the works of
Dusuel et al. [11] and Alvarez et al. [12]. The treatment of scientific and physical modeling of conditions of
DNA elements appears that those can be decreased to a critical nonlinear arrangement. The nonlinearity
of the DNA energetic model arises in localized waves in which have many impressive highlights, as for an
illustration in transporting vitality without scattering.

This article is organized as follows: In the second section, we present an analysis of the model under
study. In the third section, we introduce the analytical solutions for this model. In the fourth section, we



present the numerical solution of the proposed model. In the fifth section, we show some figures for some
analytical and numerical solutions. Finally, in the last section, we present the conclusion and a summary
of what we will do in this work.

2 Peyrard-Bishop DNA dynamic model equation

It is common for a DNA molecule to be a double helix. This means that it consists of two complementary
polymeric chains wrapped around each other [13]. B-shaped DNA in the Watson Crick model is a double
helix, containing two strings. The masses of nucleotides are not significantly different which means that
one can assume a homogeneous crystal structure. Strings are joined together by hydrogen bonds so that
these bonds are weak while the harmonic longitudinal length is strong, and the PB model ignores all
displacements alongside the transverse [14]. The Hamiltonian model of Berrard and Bishop [14], and the
equations in literature, are designed by Morse’s potential as

Fm(fn - gn) = D[eia(fnig") - ”23 (1)

in which f,, and g, are the displacements of the nucleotides. Also, the Hamiltonian for the DNA chain
was described by Zdravkovic [14]. Moreover, the improved version of the PB model, introduced by
Dauxois [15]. The Hamiltonian for describing the strand aperture the hydrogen bonds can be stated
as [16]
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G(f) = 5tn+ 5 A fut A o+ 3(e ) Afy = fuss — fa (2)

in which k; and ks denote the strength for the linear and nonlinear couplings respectively and ¢, = mf;,
is the momentum for the displacement f,,. Searching starting with the hamiltonian (2) the equation of
motion in the continuum limit can be stated by the following form

fir — (1 + 3l foz) — QﬁaDe_af(e_“f -1)=0, (3)

with [; = %d2, lo = %d‘l, D = 2 o = v/2a and being d the inter-site nucleotide distance in the DNA

m’

ladder [17-19]. In this paper, consider the Peyrard-Bishop DNA dynamic model equation as follows
foo — (I + 3lof?) fow — 2awe*af(e*‘”‘f -1 =0, (4)

where [1,ls,« and w = D are constants.

3 Analytical solutions

In this section, we give a detailed view of the Kudryashov and the modified Kudryashov methods are
used to find the solution of the Peyrard-Bishop DNA dynamic model equation analytically.



3.1 The Kudryashov method

The partial differential equation (4) with the following transformation:
f(xat) :h(§)7 gzzfﬂtv (5)
can be reduced to the ordinary differential equation as:
B2 — (11 + 3loh*)h" — 20Qe " (e7*" — 1) = 0, (6)

By multiplying (6) by h’ and integrating once with respect to &, we get

2
B —h) 5 W (e 212(11’)4 + Qe (e —2)+ R=0, (7)
By starting hypothesis is taken to be
$(&) = e, (8)
By appending (8) into (7), the nonlinear equation is achieved as follows:
(ﬁQ_ll)z \2 3 A 5 4 _
R0 — rlal0) 4 906 - 2) + Re' =0, Q

Now, we can express for the Kudryashov method in a finite series as follows:

N
$(8) = Ao+ Y A2 (), (10)
i=1
where, Ay, A1, As, ..., Ax are constants and N is a positive integer that can be determined by usind

homogeneous balancing method. The function ©(§) can be expressed in this form:

Q&) = Tldeg, (11)

where (11) achieve the ordinary differential equation

'(§) =) (UE) — D). (12)

We can compensate by (10) with some derivatives that we need into (9) then, we get from that of a
polynomial as a function in ()

P(Q(¢)) = 0. (13)

Thus equating the coefficient of each power of Q(€) in the above equation to zero gives a set of nonlinear
algebraic equations with the aid of symbolic computation using Mathematica which will be used to yield
the exact solutions for (9).

Now, if we make balancing between ¢ and ¢?(¢’)? or (¢')* in (9) we get 6N = 4N + 4, thus N = 2.
This offers a truncated series form (10) of the form

B(€) = Ag + A1Q(E) + AQ°%(€). (14)

Then, substituting (14) into (9), we get the following system of algebraic equations:
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Thus, solving the above system gives
Case 1:
23Vl 23Vl \/2\/5042\/5\/5 + a2l + 3y
Ay=0, Ay =——%5—F—, Ao=—5—F—, B=7F )
a?y/w a?y/w a
R —4V/302V/I3\/w — 3y
N 4ot '
By using (5), (8), (11) and (14) yields the following bright soliton solution for (4)
1 2v/3V/1 2v/31
fl"g(m,t) =——In| - 2 \/E 5t + BY \/E_ e |- (15)
a a?y/w(1 + del=8Y) * a2,/w(1 + del==51))
Case 2:
2v3v1> 2v3v1; V=2V302V/BVQ + %l + 3l
A0:O7 Alz D) 7A2:_ 2 aB::F y
a?\/w a?\/w a
R 4v3a%\/Ia\/w — 3ly
N 4ot '
By using (5), (8), (11) and (14) yields the following bright soliton solution for (4)
1 2v/3V/1 2v/31
faa(z,t) =—=In 5 vh — 3 \/727 -3 |- (16)
a  \a2yw(l+de==F)  a2\/w(1 + delz=F1))

3.2 The modified Kudryashov method

We illustrate the modified Kudryashov method in this section by suppose a solution of (9) given in a
series take shape

N
$(&) = 4,Q"(), (17)
n=0



where, Ag, A1, Ao, ..., AN are constants to be calculate; N is a whole number to be obtained, while (&)

is introduce by:
1

Q) = ma (18)
which accept the below differential equation:
Q'(&) = (Q*(&) — Q()In(m). (19)
Putting (17) and its possible derivatives like:
N
¢'(§) = AnQ™(Q — 1)ln(m),
" (20)
¢"(€) = AmQ™(Q — 1)((1 4+ n)(Q — n)ln(m))?,
n=0
in (9) yields a polynomial in Q(&);
P(Q(E)) = 0. (21)

Thus equating the coefficient of each power of Q(§) in the above equation to zero gives a set of nonlinear
algebraic equations which will be used to yield the exact solutions for (9). This offers a truncated series
form (17) of the form

P(&) = Ao + A1Q(8) + A2Q°(€). (22)
Then, substituting (22) into (9), we get the following system of algebraic equations:
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_ ARABLlog?(m) | A3A36%10g(m)

202 202

+6A2Ajw + 1547 Agw — 1045 Agw — 2043 A3w = 0,
A2 A2 log?(m) 241 A5A%0 log?(m)  A3Aglilog®(m) 241 Ay AZB% log? (m)
o2 o 2 B a2 + o2
_ARARR log®(m) | A} A¢B? log® (m)
a? 2

+ 442 AR + 6AT AR

+ 1241 A3 AZR + 4AJAgR

+30A; Ay Ajw + 20A3 AJw — 404, Ay Adw — 2043 A2w = 0,
44, A3 A3l log?(m) 2434311 log”(m) A3 AZl log®(m) N 243 Ayly log? (m)

a? a? 202 a?
 5ATA Aoy log®(m) Al log?(m) 341l log*(m) N A2 A23? log?(m)
a? 202 4ot 202
+QAgA%BQ log®(m) B 4A; Ay AZB? log? (m) n 5A3 Ay A¢B% log? (m) 7 2A3 Ao 32 log*(m)
a? a? a? a?
A}p?log?
+1ﬁ+§(m) F6AZAZR + 124245 AgR + ALR + 15A2A%0 — 20A2 43w + 6042 A, Adw



+15A7A2w — 6042 Ay AZw — 10A7 Agw = 0,
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— 104; Ajw + 3040 A; Ajw + 20A3 A3w = 0,

— 2A5w + 649 A5w + 1542 Ajw = 0,

+ 6A1Agw = 0,

(0% (0%

124315 log*(m)
ASw— /22 = 7 o =0.

Thus, solving the above system gives
Case 1:

2v/3v/1T5 log?(m) A, — 2v/3y/T5 log?(m) 8= \/2\/50‘2\/5\@ + a2ly + 3l log?(m)
0[2\/5 ) 2 — 012\/5 ) =+ N )
_ —4V3a?/Th\/wlog® (m) — 315 log™ (m)
B 4ot '
By using (5), (8), (18) and (22) yields the following bright soliton solution for (4)

A =0, A =

R

1 2v3v/T log?(m) 23T log®(m)
fralet) = —2in(—— i - ). (23)
a a?/w(1+bm@=A) * a2\/w(1 4 bm(¥=A)
Case 2:
23/l 1og’(m) 2BVTlogm) /2B VEE T 0%l + 81 log?(m)
Ap=0, Ay =TT E T Ay = TR B |
a?y/w o?y/w “
1 _ 4302Vl /wlog® (m) — 3y log’ (m)

4ot

By using (5), (8), (18) and (22) yields the following bright soliton solution for (4)

- ll 2v/3/13 log? (m) 2v/3/13 log?(m)
fsa(z,t) = T n(oﬁ\/@(l + bin(==61)) - o2/w(1 +bm(w—ﬂt))2)'




4 Numerical solutions using a cubic B-spline collocation method

In this section, we take approximations for spaces = and ¢ derivatives as [22]. Now, we assume that f(z,t)
the exact solution at the grid point (x;,¢;) and f; ; is the numerical solution at the same point. The
required values of f; and its first and the second derivatives, f/ and f!’, at nodal points z; are identified
in terms of ¢; as

Jig = Cign T4+ ¢ij,
3
fo=fig = ey —cimg), (25)

6
fow = Ji = 3 (Cig1 + i = 2¢i),

and if the time derivative is discretized using finite differences, we have where

Ci i— + Ci g — 2CZ' 1
fu =22 I:QH =3 (26)
Substituting (26) into (4) a we get
Cij—1+Cijr1 — 2¢; 5 3 9y, 6
2 = (43 (5 (eiv1 = €i-15)) ) (5 (Cigm1 + Cijar = 2¢1,5)) (27)

_ 20&,6*0&(01,]‘1+4Cz‘,j+ci,j—1)(e*a(cz‘,jl +deijteij-1) 1) =0,

Now we can be solved the (27) by many methods.

4.1 The numerical results

Now, we will intreduce some numerical resultes for the Peyrard-Bishop DNA dynamic model equation. In
Table 1 we introduce comparison between the absolute value of numerical results with the absolute value
of analytical solution (15) at « =1,Q2=0.1,l, =0.01,l; =0.1,t =1,k =0.01,h=0.1,d = 1. In Figure
5 we introduce the absolute value of analytical and the absolute value of numerical solutions for (4) at
a=1,9=0.1,l,=0.01,l; =0.1,d = 1.

Table 1: Comparison between numerical results and analytical solution

T Numerical solution | Exact solution Absolute error
-5 5.44008 5.44008 8.94098 E-7
-4 4.68701 4.68702 1.92824 E-6
-3 4.06242 4.06242 3.65362 E-6
-2 3.62989 3.62989 3.12923 E-6
-1 3.42318 3.42318 4.82165 E-6
0 3.42113 3.42112 9.77842 E-6
1 3.62319 3.62319 1.48434 E-6
2 4.05108 4.05108 3.93886 E-6
3 4.67227 4.67227 3.08816 E-6
4 5.42322 5.42322 1.46944 E-6
5 6.25290 6.25290 6.63292 E-7




In Table 2 we introduce comparison between the numerical results with the analytical solution (16) at
a=1,2=0.1,l=0.01,l; =0.1,t =1,k =0.01,h =0.1,d = 1. In Figure 6 we introduce analytical and
numerical solutions for (4) at « = 1,2 =0.1,lo = 0.01,/; =0.1,d = 1.

Table 2: Comparison between the numerical results with the analytical solution

T Numerical solution | Exact solution Absolute error
-5 5.06351 5.06351 7.31236 E-7
-4 4.08336 4.08336 1.60977 E-6
-3 3.13635 3.13636 3.29208 E-6
-2 2.27369 2.27369 3.79312 E-6
-1 1.60539 1.60539 2.62002 E-6
0 1.30025 1.30024 1.01515 E-5
1 1.47338 1.47338 3.62099 E-6
2 2.05599 2.05590 3.56673 E-6
3 2.87752 2.87752 3.46209 E-6
4 3.80764 3.80764 1.74354 E-6
5 4.78129 4.78129 7.97996 E-7

In Table 3 we introduce comparison between the absolute value of numerical results with the absolute value
of analytical solution (23) at « = 1,2 =10.1,lo =0.01,l; =0.1,t =1,k =0.01,h=0.1,b=1,m=0.1. In
Figure 7 we introduce the absolute value of analytical and the absolute value of numerical solutions for
(4)at a=1,92=0.1,lo =0.01,[; =0.1,b=1,m =0.1.

Table 3: Comparison between numerical results and analytical solution

T Numerical solution | Exact solution Absolute error
-5 8.92689 8.92689 1.48864 E-7
-4 6.82056 6.82056 1.11557 E-6
-3 4.89867 4.89868 1.09047 E-5
-2 3.49315 3.49318 8.73023 E-5
-1 3.14647 3.14646 1.04599 E-4
0 3.14263 3.14262 1.93872 E-4
1 3.71882 3.71889 1.67069 E-4
2 5.28412 5.28415 4.02388 E-5
3 7.26172 7.26172 4.45683 E-6
4 9.39024 9.39024 4.50439 E-7
5 11.5857 11.5857 6.41029 E-8

In Table 4 we introduce comparison between the numerical results with the analytical solution (24) at
a=1,2=0.1,l=0.01,l; =01,t =1,k =0.01,h=0.1,b=1,m = 0.1. In Figure 2 we introduce ana-
lytical and numerical solutions for (4) at « = 1,2 =0.1,1, =0.01,/; =0.1,b=1,m = 0.1.
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Table 4: Comparison between the numerical results with the analytical solution

x Numerical solution | Exact solution Absolute error
-5 8.86341 8.86341 1.23149 E-7
-4 6.56126 6.56126 9.12388 E-7
-3 4.26305 4.26306 8.96286 E-6
-2 2.00367 2.00374 7.52585 E-5
-1 0.08889 0.08903 1.44369 E-4
0 0.18073 0.18097 2.37149 E-4
1 1.51398 1.51416 1.75912 E-4
2 3.74443 3.74447 4.55415 E-5
3 6.03968 6.03969 5.07657 E-6
4 8.34153 8.34153 5.13391 E-7
5 10.6439 10.6439 7.18443 E-8

5 Graphical results and discussion

Now that we have completed the analytical and numerical calculations of the model under study using
the analytical and numerical methods described above, we present in this section some forms in the
two-dimensional and three-dimensional to show the accuracy of the solutions obtained by the analytical
methods and this shows us clearly in the forms 1-4. Also in the following figures we show how accurate
the numerical method used is and its great agreement with the analytical solutions as shown in Figure
5-8.

lu(x,t)|

Figure 1: Analytical solution (15) at a =1,2=0.1,l =0.01,/; =0.1,d = 1.
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Figure 2: Analytical solution (16) at & = 1,92 = 0.1,
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Figure 3: Analytical solution (23) at « = 1,2 =0.1,15
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Figure 4: Analytical solution (24) at a = 1,2 =0.1,15
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Figure 6: Analytical and numerical solutions for (4) at a = 1,92 =0.1,l3 = 0.01,1; =0.1,d=1
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13



u(x,1.0)

LI L e S e B B S B D B

Figure 8: Analytical and numerical solutions for (4) at a =1,Q2=0.1,I3 =0.01,l; =0.1,m =0.1,b = 1.
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Conclusion

In this paper, we have studied the Peyrard-Bishop DNA dynamic model equation analytically and numer-
ically. The Kudryashov method and modified Kudryashov method have been used to find the solution of
the Peyrard-Bishop DNA dynamic model equation analytically. Also, a cubic B-spline collocation method
has been used to obtain a numerical solution of the Peyrard-Bishop DNA dynamic model equation. Var-
ious solutions to the equation have been realized in this study. Finally, we depict some of the obtained
solutions graphically and conclude that The results we obtained, whether numerical or analytical, are
accurate, efficient, and versatile in mathematical physics to solve other NLEESs.

References

[1]

2]

R. I. Nuruddeen, K. suliman and Khalid K. Ali, Analytical Investigation of Soliton Solutions to
Three Quantum Zakharov-Kuznetsov Equations, Commun. Theor. Phy., 70(4), 405-412 (2018).

Khalid K. Ali, R. I. Nuruddeen and K. R. Raslan, New structures for the space-time fractional
simplified MCH and SRLW equations, Chaos, Solitons & Fractals 106, 304-309 (2018).

K. R. Raslan, Khalid K. Ali and M. A. Shallal, The modified extended tanh method with the Riccati
equation for solving the space-time fractional EW and MEW equations, Chaos, Solitons & Fractals,
103, 404-409 (2017).

K. R. Raslan, T. S. El-Danaf, Khalid K. Ali, Exact solution of the space-time fractional coupled EW
and coupled MEW equations, The European Physical Journal Plus, 132,1-11 (2017).

Khalid K. Ali, R. I. Nuruddeen, K. R. Raslan, New hyperbolic structures for the conformable time-
fractional variant bussinesq equations , Optical and Quantum Electronics, 50, 61 (2018).

K. R. Raslan and Khalid K. Ali, Numerical study of MHD-duct flow using the two-dimensional finite
difference method, Appl. Math. Inf. Sci. 14, No. 4, 1-5 (2020).

14



[7]

[18]

[19]

[20]

Khalid K. Ali, Abdul-Majid Wazwaz, M. S. Osman, Optical soliton solutions to the generalized
nonautonomous nonlinear Schrodinger equations in optical fibers via the sine-Gordon expansion
method, Optik - International Journal for Light and Electron Optics, 2019(2020), 164132.

H. I. Abdel-Gawad, M. Tantawy, M. S. Osman, Dynamic of DNA’s possible impact on its damage,
Math. Method Appl. Sci., 39(2)(2016), 168-176.

M. Peyrard, A. R. Bishop, Statistical mechanics of a nonlinear model for DNA denaturation, Phys.
Rev. Lett., 62 (1989), 2755-2758.

R. Abagzari, S. Jamshidzadeh, G. Wang, Mathematical modeling of DNA vibrational dynamics and
its solitary wave solutions, Revista Mexicana de Fisica, 64 (2018), 590-597.

S. Dusuel, P. Michaux, M. Remoissenet, From Kinks to compactonlike Kinks, Phys. Rev. E, 57
(1998), 2320-2326.

A. Alvarez, S. R. Romero, J. F. R. Archilla, et al. Breather trapping and breather transmission in a
DNA model with an interface , Eur. Phys. J. B, 51 (2006), 119-130.

S. Zdravkovic, Helicoidal PeyrardBishop Model of DNA Dynamics, J. Nonlinear Math. Phys., 18
(2011), 463-484.

M. Peyrard, A. R. Bishop, Statistical mechanics of a nonlinear model for DNA denaturation, Phys.
Rev. Lett., 62 (1989), 2755-2758.

T. Dauxois, Dynamics of breather modes in a nonlinear helicoidal model of DNA, Phys. Lett. A, 159
(1991), 390-395.

M. A. Aguero, M. D. L. Najera, M. Carrillo, Nonclassic solitonic structures in DNA’s vibrational
dynamics, Int. J. Modern Physics B, 22 (2008), 2571-2582.

L. Najera, M. Carrillo, M. A. Aguero, Non-classical solitons and the broken hydrogen bonds in DNA
vibrational dynamics, Adv. Studies Theor. Phys., 4 (2010), 495-510.

S. Zdravkovic, J. A. Tuszynski, M. V. Sataric, Peyrard-Bishop-Dauxois model of DNA dynamics
and impact of viscosity, J. Comput. Theor. Nanosci., 2 (2005), 1-9.

S. Zdravkovic, M. V. Sataric, Parameter selection in a PeyrardBishopDauxois model for DNA dy-
namics, Phys. Let. A, 373 (2009), 2739-2745.

R.I. Nuruddeen, Multiple soliton solutions for the (3+1) conformable space-time fractional modified
Korteweg-de-Vries equations, Ocean J. Eng. Sci. 3(2018), 11-18.

A.R. Seadawy, R.I. Nuruddeen, K.S. Aboodh, Y.F. Zakariya, On the exponential solutions to three
extracts from extended fifth-order KdV equation. J. King Saud University-Sci. 32 (2020), 765-769.

Talaat El Danaf, K. R. Raslan and Khalid K. Ali, Collocation method with cubic B-splines for
solving the generalized regularized long wave equation , Int. J. of Num. Meth., 15 (2016), 39-59.

15



