References
Bhatia, H., Mehdizadeh, H., Drapeau, D., & Yoon, S. (2018). In-line
monitoring of amino acids in mammalian cell cultures using raman
spectroscopy and multivariate chemometrics models. Engineering in
Life Sciences , 18 (1), 55–61.
https://doi.org/10.1002/elsc.201700084
Calmels, C., McCann, A., Malphettes, L., & Andersen, M. R. (2019).
Application of a curated genome-scale metabolic model of CHO DG44 to an
industrial fed-batch process. Metabolic Engineering , 51 ,
9–19. https://doi.org/10.1016/j.ymben.2018.09.009
Chen, Y., McConnell, B. O., Gayatri Dhara, V., Mukesh Naik, H., Li,
C.-T., Antoniewicz, M. R., & Betenbaugh, M. J. (2019). An
unconventional uptake rate objective function approach enhances
applicability of genome-scale models for mammalian cells. NPJ
Systems Biology and Applications , 5 .
https://doi.org/10.1038/s41540-019-0103-6
Duarte, T. M., Carinhas, N., Barreiro, L. C., Carrondo, M. J. T., Alves,
P. M., & Teixeira, A. P. (2014). Metabolic responses of CHO cells to
limitation of key amino acids. Biotechnology and Bioengineering ,111 (10), 2095–2106. https://doi.org/10.1002/bit.25266
Ebrahim, A., Lerman, J. A., Palsson, B. O., & Hyduke, D. R. (2013).
COBRApy: COnstraints-Based Reconstruction and Analysis for Python.BMC Systems Biology , 7 (1), 74.
https://doi.org/10.1186/1752-0509-7-74
Fan, Y., Val, I. J. D., Müller, C., Sen, J. W., Rasmussen, S. K.,
Kontoravdi, C., Weilguny, D., & Andersen, M. R. (2015). Amino acid and
glucose metabolism in fed-batch CHO cell culture affects antibody
production and glycosylation. Biotechnology and Bioengineering ,112 (3), 521–535. https://doi.org/10.1002/bit.25450
Feist, A. M., & Palsson, B. O. (2010). The biomass objective function.Current Opinion in Microbiology , 13 (3), 344–349.
https://doi.org/10.1016/j.mib.2010.03.003
Fomina‐Yadlin, D., Gosink, J. J., McCoy, R., Follstad, B., Morris, A.,
Russell, C. B., & McGrew, J. T. (2014). Cellular responses to
individual amino-acid depletion in antibody-expressing and parental CHO
cell lines. Biotechnology and Bioengineering , 111 (5),
965–979. https://doi.org/10.1002/bit.25155
Fouladiha, H., Marashi, S.-A., Torkashvand, F., Mahboudi, F., Lewis, N.
E., & Vaziri, B. (2020). A metabolic network-based approach for
developing feeding strategies for CHO cells to increase monoclonal
antibody production. BioRxiv , 751347.
https://doi.org/10.1101/751347
Gagnon, M., Hiller, G., Luan, Y.-T., Kittredge, A., DeFelice, J., &
Drapeau, D. (2011). High-End pH-controlled delivery of glucose
effectively suppresses lactate accumulation in CHO Fed-batch cultures.Biotechnology and Bioengineering , 108 (6), 1328–1337.
https://doi.org/10.1002/bit.23072
Hefzi, H., Ang, K. S., Hanscho, M., Bordbar, A., Ruckerbauer, D.,
Lakshmanan, M., Orellana, C. A., Baycin-Hizal, D., Huang, Y., Ley, D.,
Martinez, V. S., Kyriakopoulos, S., Jiménez, N. E., Zielinski, D. C.,
Quek, L.-E., Wulff, T., Arnsdorf, J., Li, S., Lee, J. S., …
Lewis, N. E. (2016). A Consensus Genome-scale Reconstruction of Chinese
Hamster Ovary Cell Metabolism. Cell Systems , 3 (5),
434-443.e8. https://doi.org/10.1016/j.cels.2016.10.020
Huang, Z., & Yoon, S. (2020). Integration of Time-Series Transcriptomic
Data with Genome-Scale CHO Metabolic Models for mAb Engineering.Processes , 8 (3), 331. https://doi.org/10.3390/pr8030331
Megchelenbrink, W., Huynen, M., & Marchiori, E. (2014). optGpSampler:
An Improved Tool for Uniformly Sampling the Solution-Space of
Genome-Scale Metabolic Networks. PLOS ONE , 9 (2), e86587.
https://doi.org/10.1371/journal.pone.0086587
Mulukutla, B. C., Kale, J., Kalomeris, T., Jacobs, M., & Hiller, G. W.
(2017). Identification and control of novel growth inhibitors in
fed-batch cultures of Chinese hamster ovary cells. Biotechnology
and Bioengineering , 114 (8), 1779–1790.
https://doi.org/10.1002/bit.26313
Nam, H., Lewis, N. E., Lerman, J. A., Lee, D.-H., Chang, R. L., Kim, D.,
& Palsson, B. O. (2012). Network Context and Selection in the Evolution
to Enzyme Specificity. Science , 337 (6098), 1101–1104.
https://doi.org/10.1126/science.1216861
Popp, O., Müller, D., Didzus, K., Paul, W., Lipsmeier, F., Kirchner, F.,
Niklas, J., Mauch, K., & Beaucamp, N. (2016). A hybrid approach
identifies metabolic signatures of high-producers for chinese hamster
ovary clone selection and process optimization. Biotechnology and
Bioengineering , 113 (9), 2005–2019.
https://doi.org/10.1002/bit.25958
Ritacco, F. V., Wu, Y., & Khetan, A. (2018). Cell culture media for
recombinant protein expression in Chinese hamster ovary (CHO) cells:
History, key components, and optimization strategies.Biotechnology Progress , 34 (6), 1407–1426.
https://doi.org/10.1002/btpr.2706
Savinell, J. M., & Palsson, B. O. (1992). Network analysis of
intermediary metabolism using linear optimization. I. Development of
mathematical formalism. Journal of Theoretical Biology ,154 (4), 421–454. https://doi.org/10.1016/s0022-5193(05)80161-4
Schellenberger, J., Que, R., Fleming, R. M. T., Thiele, I., Orth, J. D.,
Feist, A. M., Zielinski, D. C., Bordbar, A., Lewis, N. E., Rahmanian,
S., Kang, J., Hyduke, D. R., & Palsson, B. Ø. (2011). Quantitative
prediction of cellular metabolism with constraint-based models: The
COBRA Toolbox v2.0. Nature Protocols , 6 (9), 1290–1307.
https://doi.org/10.1038/nprot.2011.308
Schinn, S.-M., Morrison, C., Wei, W., Zhang, L., & Lewis, N. (2020).Systematic evaluation of parameterization for genome-scale
metabolic models of cultured mammalian cells .
Sommeregger, W., Sissolak, B., Kandra, K., von Stosch, M., Mayer, M., &
Striedner, G. (2017). Quality by control: Towards model predictive
control of mammalian cell culture bioprocesses. Biotechnology
Journal , 12 (7). https://doi.org/10.1002/biot.201600546
Szeliova, D., Ruckerbauer, D., Galleguillos, S., Petersen, Hanscho, M.,
Troyer, Causon, Schoeny, Christensen, Lee, D. Y., Lewis, N. E.,
Koellensperger, Hann, Nielsen, L. K., Borth, N., & Zanghellini, J.
(2020). What CHO is made of: Variations in the biomass composition of
Chinese hamster ovary cell lines. Metabolic Engineering .
Traustason, B., Cheeks, M., & Dikicioglu, D. (2019). Computer-Aided
Strategies for Determining the Amino Acid Composition of Medium for
Chinese Hamster Ovary Cell-Based Biomanufacturing Platforms.International Journal of Molecular Sciences , 20 (21), 5464.
https://doi.org/10.3390/ijms20215464
Zampieri, G., Vijayakumar, S., Yaneske, E., & Angione, C. (2019).
Machine and deep learning meet genome-scale metabolic modeling.PLoS Computational Biology , 15 (7).
https://doi.org/10.1371/journal.pcbi.1007084
Zhang, C., & Hua, Q. (2016). Applications of Genome-Scale Metabolic
Models in Biotechnology and Systems Medicine. Frontiers in
Physiology , 6 . https://doi.org/10.3389/fphys.2015.00413
Zhuangrong, H., & Seongkyu, Y. (2020). Identifying metabolic features
and engineering targets for productivity improvement in CHO cells by
integrated transcriptomics and genome-scale metabolic model.Biochemical Engineering Journal , 107624.
https://doi.org/10.1016/j.bej.2020.107624