REFERENCES
Becker, J., Rohles, C. M., & Wittmann, C. (2018). Metabolically
engineered Corynebacterium glutamicum for bio-based production of
chemicals, fuels, materials, and healthcare products. Metab Eng,
50 , 122-141. doi:10.1016/j.ymben.2018.07.008
Becker, J., & Wittmann, C. (2015). Advanced biotechnology:
metabolically engineered cells for the bio-based production of chemicals
and fuels, materials, and health-care products. Angew Chem Int Ed
Engl, 54 (11), 3328-3350. doi:10.1002/anie.201409033
Brusseler, C., Radek, A., Tenhaef, N., Krumbach, K., Noack, S., &
Marienhagen, J. (2018). The myo-inositol/proton symporter IolT1
contributes to d-xylose uptake in Corynebacterium glutamicum.Bioresour Technol, 249 , 953-961.
doi:10.1016/j.biortech.2017.10.098
Buschke, N., Becker, J., Schafer, R., Kiefer, P., Biedendieck, R., &
Wittmann, C. (2013). Systems metabolic engineering of xylose-utilizing
Corynebacterium glutamicum for production of 1,5-diaminopentane.Biotechnol J, 8 (5), 557-570. doi:10.1002/biot.201200367
Buschke, N., Schafer, R., Becker, J., & Wittmann, C. (2013). Metabolic
engineering of industrial platform microorganisms for biorefinery
applications–optimization of substrate spectrum and process
robustness by rational and evolutive strategies. Bioresour
Technol, 135 , 544-554. doi:10.1016/j.biortech.2012.11.047
Butterworth, R. F. (2020). Beneficial effects of L-ornithine L-aspartate
for prevention of overt hepatic encephalopathy in patients with
cirrhosis: a systematic review with meta-analysis. Metab Brain
Dis, 35 (1), 75-81. doi:10.1007/s11011-019-00463-8
Cao, Y., Duan, Z., & Shi, Z. (2014). Effect of biotin on transcription
levels of key enzymes and glutamate efflux in glutamate fermentation by
Corynebacterium glutamicum. World J Microbiol Biotechnol, 30 (2),
461-468. doi:10.1007/s11274-013-1468-0
Cao, Y., Mpofu, E., Jian, D., & Zuoying, D. (2012). Activity changes of
key enzymes in glutamate fermentation in response to varying initial
biotin contents. CIESC JOURNAL, 63 .
doi:10.3969/j.issn.0438-1157.2012.07.028
Chen, T., Zhu, N., & Xia, H. (2014). Aerobic production of succinate
from arabinose by metabolically engineered Corynebacterium glutamicum.Bioresour Technol, 151 , 411-414.
doi:10.1016/j.biortech.2013.10.017
Das, A., Fröhlich, D., Achanta, L. B., Rowlands, B. D., Housley, G. D.,
Klugmann, M., & Rae, C. D. (2020). L-Aspartate, L-Ornithine and
L-Ornithine-L-Aspartate (LOLA) and Their Impact on Brain Energy
Metabolism. Neurochem Res, 45 (6), 1438-1450.
doi:10.1007/s11064-020-03044-9
Davies, N. A., Wright, G., Ytrebø, L. M., Stadlbauer, V., Fuskevåg, O.
M., Zwingmann, C., Jalan, R. (2009). L-ornithine and phenylacetate
synergistically produce sustained reduction in ammonia and brain water
in cirrhotic rats. Hepatology, 50 (1), 155-164.
doi:10.1002/hep.22897
Gopinath, V., Meiswinkel, T. M., Wendisch, V. F., & Nampoothiri, K. M.
(2011). Amino acid production from rice straw and wheat bran
hydrolysates by recombinant pentose-utilizing Corynebacterium
glutamicum. Appl Microbiol Biotechnol, 92 (5), 985-996.
doi:10.1007/s00253-011-3478-x
Gutmann, M., Hoischen, C., & Krämer, R. (1992). Carrier-mediated
glutamate secretion by Corynebacterium glutamicum under biotin
limitation. Biochim Biophys Acta, 1112 (1), 115-123.
doi:10.1016/0005-2736(92)90261-j
Hao, N., Mu, J., Hu, N., Xu, S., Shen, P., Yan, M., Xu, L. (2016).
Implication of ornithine acetyltransferase activity on l-ornithine
production in Corynebacterium glutamicum. Biotechnol Appl Biochem,
63 (1), 15-21. doi:10.1002/bab.1353
Hwang, G.-H., & Cho, J.-Y. (2014). Enhancement of l-ornithine
production by disruption of three genes encoding putative
oxidoreductases in Corynebacterium glutamicum. J Ind Microbiol
Biotechnol, 41 (3), 573-578. doi:10.1007/s10295-013-1398-8
Ikeda, M., Mizuno, Y., Awane, S., Hayashi, M., Mitsuhashi, S., &
Takeno, S. (2011). Identification and application of a different glucose
uptake system that functions as an alternative to the phosphotransferase
system in Corynebacterium glutamicum. Appl Microbiol Biotechnol,
90 (4), 1443-1451. doi:10.1007/s00253-011-3210-x
Jensen, J. V., Eberhardt, D., & Wendisch, V. F. (2015). Modular pathway
engineering of Corynebacterium glutamicum for production of the
glutamate-derived compounds ornithine, proline, putrescine, citrulline,
and arginine. J Biotechnol, 214 , 85-94.
doi:10.1016/j.jbiotec.2015.09.017
Jiang, L. Y., Chen, S. G., Zhang, Y. Y., & Liu, J. Z. (2013). Metabolic
evolution of Corynebacterium glutamicum for increased production of
L-ornithine. BMC Biotechnol, 13 , 47. doi:10.1186/1472-6750-13-47
Jiang, L. Y., Zhang, Y. Y., Li, Z., & Liu, J. Z. (2013). Metabolic
engineering of Corynebacterium glutamicum for increasing the production
of L-ornithine by increasing NADPH availability. J Ind Microbiol
Biotechnol, 40 (10), 1143-1151. doi:10.1007/s10295-013-1306-2
Jo, S., Yoon, J., Lee, S.-M., Um, Y., Han, S. O., & Woo, H. M. (2017).
Modular pathway engineering of Corynebacterium glutamicum to improve
xylose utilization and succinate production. Journal of
Biotechnology, 258 , 69-78. doi:10.1016/j.jbiotec.2017.01.015
Jojima, T., Fujii, M., Mori, E., Inui, M., & Yukawa, H. (2010).
Engineering of sugar metabolism of Corynebacterium glutamicum for
production of amino acid l-alanine under oxygen deprivation. Appl
Microbiol Biotechnol, 87 (1), 159-165. doi:10.1007/s00253-010-2493-7
Kim, D. J., Hwang, G. H., Um, J. N., & Cho, J. Y. (2015). Increased
L-ornithine production in Corynebacterium glutamicum by overexpression
of a gene encoding a putative aminotransferase. J Mol Microbiol
Biotechnol, 25 (1), 45-50. doi:10.1159/000375124
Kim, H., Lee, H. S., Park, H., Lee, D. H., Boles, E., Chung, D., &
Park, Y. C. (2017). Enhanced production of xylitol from xylose by
expression of Bacillus subtilis arabinose:H(+) symporter and
Scheffersomyces stipitis xylose reductase in recombinant Saccharomyces
cerevisiae. Enzyme Microb Technol, 107 , 7-14.
doi:10.1016/j.enzmictec.2017.07.014
Kim, S. Y., Lee, J., & Lee, S. Y. (2015). Metabolic engineering of
Corynebacterium glutamicum for the production of L-ornithine.Biotechnol Bioeng, 112 (2), 416-421. doi:10.1002/bit.25440
Lee, Y.-J., & Cho, J.-Y. (2006). Genetic manipulation of a primary
metabolic pathway for l-ornithine production in Escherichia coli.Biotechnology Letters, 28 (22), 1849-1856.
doi:10.1007/s10529-006-9163-y
Lindner, S. N., Petrov, D. P., Hagmann, C. T., Henrich, A., Kramer, R.,
Eikmanns, B. J., Seibold, G. M. (2013). Phosphotransferase
system-mediated glucose uptake is repressed in
phosphoglucoisomerase-deficient Corynebacterium glutamicum strains.Appl Environ Microbiol, 79 (8), 2588-2595.
doi:10.1128/aem.03231-12
Lindner, S. N., Seibold, G. M., Henrich, A., Kramer, R., & Wendisch, V.
F. (2011). Phosphotransferase system-independent glucose utilization in
corynebacterium glutamicum by inositol permeases and glucokinases.Appl Environ Microbiol, 77 (11), 3571-3581.
doi:10.1128/aem.02713-10
Mao, Y., Li, G., Chang, Z., Tao, R., Cui, Z., Wang, Z., Zhao, X. (2018).
Metabolic engineering of Corynebacterium glutamicum for efficient
production of succinate from lignocellulosic hydrolysate.Biotechnol Biofuels, 11 , 95. doi:10.1186/s13068-018-1094-z
Matsuo, H., Iwamoto, A., Otsuka, T., Hishida, Y., Akiduki, S., Aoki, M.,
Yasuo, S. (2015). Effects of time of L-ornithine administration on the
diurnal rhythms of plasma growth hormone, melatonin, and corticosterone
levels in mice. Chronobiol Int, 32 (2), 225-234.
doi:10.3109/07420528.2014.965312
Meiswinkel, T. M., Gopinath, V., Lindner, S. N., Nampoothiri, K. M., &
Wendisch, V. F. (2013). Accelerated pentose utilization by
Corynebacterium glutamicum for accelerated production of lysine,
glutamate, ornithine and putrescine. Microb Biotechnol, 6 (2),
131-140. doi:10.1111/1751-7915.12001
Nagano-Shoji, M., Hamamoto, Y., Mizuno, Y., Yamada, A., Kikuchi, M.,
Shirouzu, M., Kosono, S. (2017). Characterization of lysine acetylation
of a phosphoenolpyruvate carboxylase involved in glutamate
overproduction in Corynebacterium glutamicum. Mol Microbiol,
104 (4), 677-689. doi:10.1111/mmi.13658
Park, S. H., Kim, H. U., Kim, T. Y., Park, J. S., Kim, S. S., & Lee, S.
Y. (2014). Metabolic engineering of Corynebacterium glutamicum for
L-arginine production. Nat Commun, 5 , 4618.
doi:10.1038/ncomms5618
Qin, J., Zhou, Y. J., Krivoruchko, A., Huang, M., Liu, L., Khoomrung,
S., Nielsen, J. (2015). Modular pathway rewiring of Saccharomyces
cerevisiae enables high-level production of L-ornithine. Nat
Commun, 6 , 8224. doi:10.1038/ncomms9224
Sakamoto, K., Mori, A., Nakahara, T., Morita, M., & Ishii, K. (2015).
Effect of long-term treatment of L-ornithine on visual function and
retinal histology in the rats. Biol Pharm Bull, 38 (1), 139-143.
doi:10.1248/bpb.b14-00491
Sasaki, M., Jojima, T., Inui, M., & Yukawa, H. (2008). Simultaneous
utilization of D-cellobiose, D-glucose, and D-xylose by recombinant
Corynebacterium glutamicum under oxygen-deprived conditions. Appl
Microbiol Biotechnol, 81 (4), 691-699. doi:10.1007/s00253-008-1703-z
Schneider, J., Niermann, K., & Wendisch, V. F. (2011). Production of
the amino acids l-glutamate, l-lysine, l-ornithine and l-arginine from
arabinose by recombinant Corynebacterium glutamicum. J Biotechnol,
154 (2-3), 191-198. doi:10.1016/j.jbiotec.2010.07.009
Shu, Q., Xu, M., Li, J., Yang, T., Zhang, X., Xu, Z., & Rao, Z. (2018).
Improved l-ornithine production in Corynebacterium crenatum by
introducing an artificial linear transacetylation pathway. J Ind
Microbiol Biotechnol, 45 (6), 393-404. doi:10.1007/s10295-018-2037-1
Sivashanmugam, M., J, J., V, U., & K, N. S. (2017). Ornithine and its
role in metabolic diseases: An appraisal. Biomed Pharmacother,
86 , 185-194. doi:10.1016/j.biopha.2016.12.024
Vargas-Ramírez, A. L., Medina-Enríquez, M. M., Cordero-Rodríguez, N. I.,
Ruiz-Cuello, T., Aguilar-Faisal, L., Trujillo-Ferrara, J. G.,
Rodríguez-Páez, L. (2016). N-ω-chloroacetyl-L-ornithine has in-vitro
activity against cancer cell lines and in-vivo activity against ascitic
and solid tumors. Anticancer Drugs, 27 (6), 508-518.
doi:10.1097/cad.0000000000000353
Wada, M., Sawada, K., Ogura, K., Shimono, Y., Hagiwara, T., Sugimoto,
M., Yokota, A. (2015). Effects of phosphoenolpyruvate carboxylase
desensitization on glutamic acid production in Corynebacterium
glutamicum ATCC 13032. Journal of bioscience and bioengineering,
121 . doi:10.1016/j.jbiosc.2015.06.008
Wendisch, V. F., Brito, L. F., Gil Lopez, M., Hennig, G.,
Pfeifenschneider, J., Sgobba, E., & Veldmann, K. H. (2016). The
flexible feedstock concept in Industrial Biotechnology: Metabolic
engineering of Escherichia coli, Corynebacterium glutamicum,
Pseudomonas, Bacillus and yeast strains for access to alternative carbon
sources. J Biotechnol, 234 , 139-157.
doi:10.1016/j.jbiotec.2016.07.022
Wu, X. Y., Guo, X. Y., Zhang, B., Jiang, Y., & Ye, B. C. (2019). Recent
Advances of L-ornithine Biosynthesis in Metabolically Engineered
Corynebacterium glutamicum. Front Bioeng Biotechnol, 7 , 440.
doi:10.3389/fbioe.2019.00440
Xu, J., Zhang, J., Liu, D., & Zhang, W. (2016). Increased glucose
utilization and cell growth of Corynebacterium glutamicum by modifying
the glucose-specific phosphotransferase system (PTS(Glc)) genes.Can J Microbiol, 62 (12), 983-992. doi:10.1139/cjm-2016-0027
Yim, S. S., An, S. J., Kang, M., Lee, J., & Jeong, K. J. (2013).
Isolation of fully synthetic promoters for high-level gene expression
inCorynebacterium glutamicum. Biotechnology and Bioengineering,
110 (11), 2959-2969. doi:10.1002/bit.24954
Zhang, B., Gao, G., Chu, X. H., & Ye, B. C. (2019). Metabolic
engineering of Corynebacterium glutamicum S9114 to enhance the
production of l-ornithine driven by glucose and xylose. Bioresour
Technol, 284 , 204-213. doi:10.1016/j.biortech.2019.03.122
Zhang, B., Ren, L. Q., Yu, M., Zhou, Y., & Ye, B. C. (2018). Enhanced
l-ornithine production by systematic manipulation of l-ornithine
metabolism in engineered Corynebacterium glutamicum S9114.Bioresour Technol, 250 , 60-68. doi:10.1016/j.biortech.2017.11.017
Zhang, B., Yu, M., Wei, W. P., & Ye, B. C. (2018). Optimization of
L-ornithine production in recombinant Corynebacterium glutamicum S9114
by cg3035 overexpression and manipulating the central metabolic pathway.17 (1), 91. doi:10.1186/s12934-018-0940-9
Zhang, B., Yu, M., Zhou, Y., Li, Y., & Ye, B. C. (2017). Systematic
pathway engineering of Corynebacterium glutamicum S9114 for L-ornithine
production. Microb Cell Fact, 16 (1), 158.
doi:10.1186/s12934-017-0776-8
Zhang, B., Yu, M., Zhou, Y., & Ye, B. C. (2018). Improvement of
L-ornithine production by attenuation of argF in engineered
Corynebacterium glutamicum S9114. AMB Express, 8 (1), 26.
doi:10.1186/s13568-018-0557-8
Zhang, X., Zhang, X., Xu, G., Zhang, X., Shi, J., & Xu, Z. (2018).
Integration of ARTP mutagenesis with biosensor-mediated high-throughput
screening to improve l-serine yield in Corynebacterium glutamicum.Appl Microbiol Biotechnol, 102 (14), 5939-5951.
doi:10.1007/s00253-018-9025-2
Zhou, Z., Wang, C., Xu, H., Chen, Z., & Cai, H. (2015). Increasing
succinic acid production using the PTS-independent glucose transport
system in a Corynebacterium glutamicum PTS-defective mutant. J Ind
Microbiol Biotechnol, 42 (7), 1073-1082. doi:10.1007/s10295-015-1630-9