REFERENCES

Becker, J., Rohles, C. M., & Wittmann, C. (2018). Metabolically engineered Corynebacterium glutamicum for bio-based production of chemicals, fuels, materials, and healthcare products. Metab Eng, 50 , 122-141. doi:10.1016/j.ymben.2018.07.008
Becker, J., & Wittmann, C. (2015). Advanced biotechnology: metabolically engineered cells for the bio-based production of chemicals and fuels, materials, and health-care products. Angew Chem Int Ed Engl, 54 (11), 3328-3350. doi:10.1002/anie.201409033
Brusseler, C., Radek, A., Tenhaef, N., Krumbach, K., Noack, S., & Marienhagen, J. (2018). The myo-inositol/proton symporter IolT1 contributes to d-xylose uptake in Corynebacterium glutamicum.Bioresour Technol, 249 , 953-961. doi:10.1016/j.biortech.2017.10.098
Buschke, N., Becker, J., Schafer, R., Kiefer, P., Biedendieck, R., & Wittmann, C. (2013). Systems metabolic engineering of xylose-utilizing Corynebacterium glutamicum for production of 1,5-diaminopentane.Biotechnol J, 8 (5), 557-570. doi:10.1002/biot.201200367
Buschke, N., Schafer, R., Becker, J., & Wittmann, C. (2013). Metabolic engineering of industrial platform microorganisms for biorefinery applications–optimization of substrate spectrum and process robustness by rational and evolutive strategies. Bioresour Technol, 135 , 544-554. doi:10.1016/j.biortech.2012.11.047
Butterworth, R. F. (2020). Beneficial effects of L-ornithine L-aspartate for prevention of overt hepatic encephalopathy in patients with cirrhosis: a systematic review with meta-analysis. Metab Brain Dis, 35 (1), 75-81. doi:10.1007/s11011-019-00463-8
Cao, Y., Duan, Z., & Shi, Z. (2014). Effect of biotin on transcription levels of key enzymes and glutamate efflux in glutamate fermentation by Corynebacterium glutamicum. World J Microbiol Biotechnol, 30 (2), 461-468. doi:10.1007/s11274-013-1468-0
Cao, Y., Mpofu, E., Jian, D., & Zuoying, D. (2012). Activity changes of key enzymes in glutamate fermentation in response to varying initial biotin contents. CIESC JOURNAL, 63 . doi:10.3969/j.issn.0438-1157.2012.07.028
Chen, T., Zhu, N., & Xia, H. (2014). Aerobic production of succinate from arabinose by metabolically engineered Corynebacterium glutamicum.Bioresour Technol, 151 , 411-414. doi:10.1016/j.biortech.2013.10.017
Das, A., Fröhlich, D., Achanta, L. B., Rowlands, B. D., Housley, G. D., Klugmann, M., & Rae, C. D. (2020). L-Aspartate, L-Ornithine and L-Ornithine-L-Aspartate (LOLA) and Their Impact on Brain Energy Metabolism. Neurochem Res, 45 (6), 1438-1450. doi:10.1007/s11064-020-03044-9
Davies, N. A., Wright, G., Ytrebø, L. M., Stadlbauer, V., Fuskevåg, O. M., Zwingmann, C., Jalan, R. (2009). L-ornithine and phenylacetate synergistically produce sustained reduction in ammonia and brain water in cirrhotic rats. Hepatology, 50 (1), 155-164. doi:10.1002/hep.22897
Gopinath, V., Meiswinkel, T. M., Wendisch, V. F., & Nampoothiri, K. M. (2011). Amino acid production from rice straw and wheat bran hydrolysates by recombinant pentose-utilizing Corynebacterium glutamicum. Appl Microbiol Biotechnol, 92 (5), 985-996. doi:10.1007/s00253-011-3478-x
Gutmann, M., Hoischen, C., & Krämer, R. (1992). Carrier-mediated glutamate secretion by Corynebacterium glutamicum under biotin limitation. Biochim Biophys Acta, 1112 (1), 115-123. doi:10.1016/0005-2736(92)90261-j
Hao, N., Mu, J., Hu, N., Xu, S., Shen, P., Yan, M., Xu, L. (2016). Implication of ornithine acetyltransferase activity on l-ornithine production in Corynebacterium glutamicum. Biotechnol Appl Biochem, 63 (1), 15-21. doi:10.1002/bab.1353
Hwang, G.-H., & Cho, J.-Y. (2014). Enhancement of l-ornithine production by disruption of three genes encoding putative oxidoreductases in Corynebacterium glutamicum. J Ind Microbiol Biotechnol, 41 (3), 573-578. doi:10.1007/s10295-013-1398-8
Ikeda, M., Mizuno, Y., Awane, S., Hayashi, M., Mitsuhashi, S., & Takeno, S. (2011). Identification and application of a different glucose uptake system that functions as an alternative to the phosphotransferase system in Corynebacterium glutamicum. Appl Microbiol Biotechnol, 90 (4), 1443-1451. doi:10.1007/s00253-011-3210-x
Jensen, J. V., Eberhardt, D., & Wendisch, V. F. (2015). Modular pathway engineering of Corynebacterium glutamicum for production of the glutamate-derived compounds ornithine, proline, putrescine, citrulline, and arginine. J Biotechnol, 214 , 85-94. doi:10.1016/j.jbiotec.2015.09.017
Jiang, L. Y., Chen, S. G., Zhang, Y. Y., & Liu, J. Z. (2013). Metabolic evolution of Corynebacterium glutamicum for increased production of L-ornithine. BMC Biotechnol, 13 , 47. doi:10.1186/1472-6750-13-47
Jiang, L. Y., Zhang, Y. Y., Li, Z., & Liu, J. Z. (2013). Metabolic engineering of Corynebacterium glutamicum for increasing the production of L-ornithine by increasing NADPH availability. J Ind Microbiol Biotechnol, 40 (10), 1143-1151. doi:10.1007/s10295-013-1306-2
Jo, S., Yoon, J., Lee, S.-M., Um, Y., Han, S. O., & Woo, H. M. (2017). Modular pathway engineering of Corynebacterium glutamicum to improve xylose utilization and succinate production. Journal of Biotechnology, 258 , 69-78. doi:10.1016/j.jbiotec.2017.01.015
Jojima, T., Fujii, M., Mori, E., Inui, M., & Yukawa, H. (2010). Engineering of sugar metabolism of Corynebacterium glutamicum for production of amino acid l-alanine under oxygen deprivation. Appl Microbiol Biotechnol, 87 (1), 159-165. doi:10.1007/s00253-010-2493-7
Kim, D. J., Hwang, G. H., Um, J. N., & Cho, J. Y. (2015). Increased L-ornithine production in Corynebacterium glutamicum by overexpression of a gene encoding a putative aminotransferase. J Mol Microbiol Biotechnol, 25 (1), 45-50. doi:10.1159/000375124
Kim, H., Lee, H. S., Park, H., Lee, D. H., Boles, E., Chung, D., & Park, Y. C. (2017). Enhanced production of xylitol from xylose by expression of Bacillus subtilis arabinose:H(+) symporter and Scheffersomyces stipitis xylose reductase in recombinant Saccharomyces cerevisiae. Enzyme Microb Technol, 107 , 7-14. doi:10.1016/j.enzmictec.2017.07.014
Kim, S. Y., Lee, J., & Lee, S. Y. (2015). Metabolic engineering of Corynebacterium glutamicum for the production of L-ornithine.Biotechnol Bioeng, 112 (2), 416-421. doi:10.1002/bit.25440
Lee, Y.-J., & Cho, J.-Y. (2006). Genetic manipulation of a primary metabolic pathway for l-ornithine production in Escherichia coli.Biotechnology Letters, 28 (22), 1849-1856. doi:10.1007/s10529-006-9163-y
Lindner, S. N., Petrov, D. P., Hagmann, C. T., Henrich, A., Kramer, R., Eikmanns, B. J., Seibold, G. M. (2013). Phosphotransferase system-mediated glucose uptake is repressed in phosphoglucoisomerase-deficient Corynebacterium glutamicum strains.Appl Environ Microbiol, 79 (8), 2588-2595. doi:10.1128/aem.03231-12
Lindner, S. N., Seibold, G. M., Henrich, A., Kramer, R., & Wendisch, V. F. (2011). Phosphotransferase system-independent glucose utilization in corynebacterium glutamicum by inositol permeases and glucokinases.Appl Environ Microbiol, 77 (11), 3571-3581. doi:10.1128/aem.02713-10
Mao, Y., Li, G., Chang, Z., Tao, R., Cui, Z., Wang, Z., Zhao, X. (2018). Metabolic engineering of Corynebacterium glutamicum for efficient production of succinate from lignocellulosic hydrolysate.Biotechnol Biofuels, 11 , 95. doi:10.1186/s13068-018-1094-z
Matsuo, H., Iwamoto, A., Otsuka, T., Hishida, Y., Akiduki, S., Aoki, M., Yasuo, S. (2015). Effects of time of L-ornithine administration on the diurnal rhythms of plasma growth hormone, melatonin, and corticosterone levels in mice. Chronobiol Int, 32 (2), 225-234. doi:10.3109/07420528.2014.965312
Meiswinkel, T. M., Gopinath, V., Lindner, S. N., Nampoothiri, K. M., & Wendisch, V. F. (2013). Accelerated pentose utilization by Corynebacterium glutamicum for accelerated production of lysine, glutamate, ornithine and putrescine. Microb Biotechnol, 6 (2), 131-140. doi:10.1111/1751-7915.12001
Nagano-Shoji, M., Hamamoto, Y., Mizuno, Y., Yamada, A., Kikuchi, M., Shirouzu, M., Kosono, S. (2017). Characterization of lysine acetylation of a phosphoenolpyruvate carboxylase involved in glutamate overproduction in Corynebacterium glutamicum. Mol Microbiol, 104 (4), 677-689. doi:10.1111/mmi.13658
Park, S. H., Kim, H. U., Kim, T. Y., Park, J. S., Kim, S. S., & Lee, S. Y. (2014). Metabolic engineering of Corynebacterium glutamicum for L-arginine production. Nat Commun, 5 , 4618. doi:10.1038/ncomms5618
Qin, J., Zhou, Y. J., Krivoruchko, A., Huang, M., Liu, L., Khoomrung, S., Nielsen, J. (2015). Modular pathway rewiring of Saccharomyces cerevisiae enables high-level production of L-ornithine. Nat Commun, 6 , 8224. doi:10.1038/ncomms9224
Sakamoto, K., Mori, A., Nakahara, T., Morita, M., & Ishii, K. (2015). Effect of long-term treatment of L-ornithine on visual function and retinal histology in the rats. Biol Pharm Bull, 38 (1), 139-143. doi:10.1248/bpb.b14-00491
Sasaki, M., Jojima, T., Inui, M., & Yukawa, H. (2008). Simultaneous utilization of D-cellobiose, D-glucose, and D-xylose by recombinant Corynebacterium glutamicum under oxygen-deprived conditions. Appl Microbiol Biotechnol, 81 (4), 691-699. doi:10.1007/s00253-008-1703-z
Schneider, J., Niermann, K., & Wendisch, V. F. (2011). Production of the amino acids l-glutamate, l-lysine, l-ornithine and l-arginine from arabinose by recombinant Corynebacterium glutamicum. J Biotechnol, 154 (2-3), 191-198. doi:10.1016/j.jbiotec.2010.07.009
Shu, Q., Xu, M., Li, J., Yang, T., Zhang, X., Xu, Z., & Rao, Z. (2018). Improved l-ornithine production in Corynebacterium crenatum by introducing an artificial linear transacetylation pathway. J Ind Microbiol Biotechnol, 45 (6), 393-404. doi:10.1007/s10295-018-2037-1
Sivashanmugam, M., J, J., V, U., & K, N. S. (2017). Ornithine and its role in metabolic diseases: An appraisal. Biomed Pharmacother, 86 , 185-194. doi:10.1016/j.biopha.2016.12.024
Vargas-Ramírez, A. L., Medina-Enríquez, M. M., Cordero-Rodríguez, N. I., Ruiz-Cuello, T., Aguilar-Faisal, L., Trujillo-Ferrara, J. G., Rodríguez-Páez, L. (2016). N-ω-chloroacetyl-L-ornithine has in-vitro activity against cancer cell lines and in-vivo activity against ascitic and solid tumors. Anticancer Drugs, 27 (6), 508-518. doi:10.1097/cad.0000000000000353
Wada, M., Sawada, K., Ogura, K., Shimono, Y., Hagiwara, T., Sugimoto, M., Yokota, A. (2015). Effects of phosphoenolpyruvate carboxylase desensitization on glutamic acid production in Corynebacterium glutamicum ATCC 13032. Journal of bioscience and bioengineering, 121 . doi:10.1016/j.jbiosc.2015.06.008
Wendisch, V. F., Brito, L. F., Gil Lopez, M., Hennig, G., Pfeifenschneider, J., Sgobba, E., & Veldmann, K. H. (2016). The flexible feedstock concept in Industrial Biotechnology: Metabolic engineering of Escherichia coli, Corynebacterium glutamicum, Pseudomonas, Bacillus and yeast strains for access to alternative carbon sources. J Biotechnol, 234 , 139-157. doi:10.1016/j.jbiotec.2016.07.022
Wu, X. Y., Guo, X. Y., Zhang, B., Jiang, Y., & Ye, B. C. (2019). Recent Advances of L-ornithine Biosynthesis in Metabolically Engineered Corynebacterium glutamicum. Front Bioeng Biotechnol, 7 , 440. doi:10.3389/fbioe.2019.00440
Xu, J., Zhang, J., Liu, D., & Zhang, W. (2016). Increased glucose utilization and cell growth of Corynebacterium glutamicum by modifying the glucose-specific phosphotransferase system (PTS(Glc)) genes.Can J Microbiol, 62 (12), 983-992. doi:10.1139/cjm-2016-0027
Yim, S. S., An, S. J., Kang, M., Lee, J., & Jeong, K. J. (2013). Isolation of fully synthetic promoters for high-level gene expression inCorynebacterium glutamicum. Biotechnology and Bioengineering, 110 (11), 2959-2969. doi:10.1002/bit.24954
Zhang, B., Gao, G., Chu, X. H., & Ye, B. C. (2019). Metabolic engineering of Corynebacterium glutamicum S9114 to enhance the production of l-ornithine driven by glucose and xylose. Bioresour Technol, 284 , 204-213. doi:10.1016/j.biortech.2019.03.122
Zhang, B., Ren, L. Q., Yu, M., Zhou, Y., & Ye, B. C. (2018). Enhanced l-ornithine production by systematic manipulation of l-ornithine metabolism in engineered Corynebacterium glutamicum S9114.Bioresour Technol, 250 , 60-68. doi:10.1016/j.biortech.2017.11.017
Zhang, B., Yu, M., Wei, W. P., & Ye, B. C. (2018). Optimization of L-ornithine production in recombinant Corynebacterium glutamicum S9114 by cg3035 overexpression and manipulating the central metabolic pathway.17 (1), 91. doi:10.1186/s12934-018-0940-9
Zhang, B., Yu, M., Zhou, Y., Li, Y., & Ye, B. C. (2017). Systematic pathway engineering of Corynebacterium glutamicum S9114 for L-ornithine production. Microb Cell Fact, 16 (1), 158. doi:10.1186/s12934-017-0776-8
Zhang, B., Yu, M., Zhou, Y., & Ye, B. C. (2018). Improvement of L-ornithine production by attenuation of argF in engineered Corynebacterium glutamicum S9114. AMB Express, 8 (1), 26. doi:10.1186/s13568-018-0557-8
Zhang, X., Zhang, X., Xu, G., Zhang, X., Shi, J., & Xu, Z. (2018). Integration of ARTP mutagenesis with biosensor-mediated high-throughput screening to improve l-serine yield in Corynebacterium glutamicum.Appl Microbiol Biotechnol, 102 (14), 5939-5951. doi:10.1007/s00253-018-9025-2
Zhou, Z., Wang, C., Xu, H., Chen, Z., & Cai, H. (2015). Increasing succinic acid production using the PTS-independent glucose transport system in a Corynebacterium glutamicum PTS-defective mutant. J Ind Microbiol Biotechnol, 42 (7), 1073-1082. doi:10.1007/s10295-015-1630-9