References
An, H., Xu, M., Dai, J., Wang, Y., Cai, F., Qi, H. et al. (2010)Sphingomonas xinjiangensis sp. nov., isolated from the desert of
Xinjiang, China. Int J Syst Evol Microbiol 61:1865-1869.
An, S., Couteau, C., Luo, F., Neveu, J., DuBow, M.S. (2013) Bacterial
diversity of surface sand samples from the Gobi and Taklamaken Deserts.Microb Ecol 66: 850-860.
Arocha-Garza, H.F., Canales-Del,
C.R., Eguiarte, L.E., Souza, V., De, l.T.S. (2017) High diversity and
suggested endemicity of culturable actinobacteria in an extremely
oligotrophic desert oasis. Peer J 5: 3247.
Baubin, C., Farrell, A.M., Štǒvícěk, A., Ghazaryan, L., Giladi, I.,
Gillor, O. (2019) Seasonal and spatial variability in total and active
bacterial communities from desert soil. Pedobiologia 74:7-14.
Bhushan, A., Peters, E.E., Piel, J. (2017) Entotheonella Bacteria
as Source of Sponge-Derived Natural Products: Opportunities for
Biotechnological Production. In: Müller W., Schröder H., Wang X. (eds)
Blue Biotechnology. Progress in Molecular and Subcellular Biology, vol
55. Springer, Cham
Caporaso, J.G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman,
F.D., Costello, E.K., et al. (2010) QIIME allows analysis of
high-throughput community sequencing data. Nat Methods7: 335-336.
Chanal, A., Chapon, V., Benzerara, K., et al. (2006) The desert of
Tataouine: an extreme environment that hosts a wide diversity of
microorganisms and radiotolerant bacteria. Environ Microbiol8: 514-25.
Crits-Christoph, A., Robinson, C.K., Barnum, T., Fricke, W.F., Davila,
A.F., Jedynak, B., et al. (2013) Colonization patterns of soil microbial
communities in the Atacama Desert. Microbiome 1: 28.
Eisenlord, S.D., Zak, D.R. (2010) Simulated atmospheric nitrogen
deposition alters actinobacterial community composition in forest soils.Soil Sci Soc Am J 74: 1157-1166.
El-Tarabily, K.A., Sivasithamparam, K. (2006) Non-streptomycete
actinomycetes as biocontrol agents of soil-borne fungal plant pathogens
and as plant growth promoters. Soil Biol Biochem 38:1505-1520.
Feeser, K.L., Van Horn, D.J., Buelow, H.N., et al. (2018) Local and
regional scale heterogeneity drive bacterial community diversity and
composition in a Polar Desert. Front Microbiol 9: 1928.
Gommeaux, M., Barakat, M.,
Montagnac, G., et al. (2010) Mineral and bacterial diversities of desert
sand grains from south-east Morocco. Geomicrobiol J 27:76-92.
Goodfellow, M., Williams, S. T. (1983) Ecology of actinomycetes.Ann Rev Microbiol 37: 189-216.
Gunnigle, E., Frossard, A., Ramond, J.B., Guerrero, L., Seely, M.,
Cowan, D.A. (2017) Diel-scale temporal dynamics recorded for bacterial
groups in Namib Desert soil. Scientific reports 7:40189.
Hayden, C.J., Beman, J.M. (2016) Microbial diversity and community
structure along a lake elevation gradient in Yosemite National Park,
California, USA. Environ Microbiol 18: 1782-1791.
Hill, P., Krištůfek, V., Dijkhuizen, L., Boddy, C., Kroetsch, D., Elsas,
J.D.V. (2011) Land use intensity controls actinobacterial community
structure. Mol Ecol 61: 286-302.
Indest, K.J., Hancock, D.E., Crocker, F.H., Eberly, J.O., Jung, C.M.,
Blakeney, G.A., et al. (2017) Biodegradation of insensitive munition
formulations IMX101 and IMX104 in surface soils. J Ind Microbiol
Biotechnol 44: 987-995.
Jenkins, S.N., Waite, I.S., Blackburn, A., Husband, R., Rushton, S.P.,
Manning, D.C., O’Donnell, A.G. (2009) Actinobacterial community
dynamics in long term managed grasslands. Antonie van Leeuwenhoek95: 319-334.
Kemmitt, S. J., Wright, D., Goulding, K.W.T., and Jones, D.L. (2006) pH
regulation of carbon and nitrogen dynamics in two agricultural soils.Soil Biol Biochem 38: 898-911.
Konishi,
N.,
Okubo,
T.,
Yamaya,
T.,
Hayakawa,
T.,
Minamisawa,
K. (2017) Nitrate supply-dependent shifts in communities of
root-associated bacteria in Arabidopsis. Microbes Environ32: 314-323.
Körner, C. (2007) The use of ‘altitude’ in ecological research.Trends Ecol Evol 22:
Körner, M., Müller, H., Ramadan, E.M., Berg, G. (2011) Desert farming
benefits from microbial potential in arid soils and promotes diversity
and plant health. Plos one 6: e24452.
Laity, J.J. (2009) Deserts and desert environments. John Wiley &Sons,
UK.
Lauber, C.L., Hamady, M., Knight, R., Fierer, N. (2009) Soil pH as a
predictor of soil bacterial community structure at the continental
scale: a pyrosequencing-based assessment. Appl Environ Microb75: 5111-5120.
Lester, E.D., Satomi, M., Ponce, A. (2007) Microflora of extreme arid
Atacama Desert soils. Soil Biol Biochem 39: 704-8.
Lezcano, M.A., Velázquez, D., Quesada, A., El-Shehawy, R. (2017)
Diversity and temporal shifts of the bacterial community associated with
a toxic cyanobacterial bloom: An interplay between microcystin producers
and degraders. Water Research 125: 52-61.
Li, C., Yan, K., Tang, L., Jia, Z., Li, Y. (2014) Change in deep soil
microbial communities due to long-term fertilization. Soil Biol
Biochem 75: 264-272.
Liang, X.L., Niu, Q., Qu, J.J., Liu, B., Liu, B.L., Zhang, C.X., et al.,
(2019) Geochemical analysis of yardang strata in the Dunhuang Yardang
National Geopark, Northwest China, and implications on its
palaeoenvironment, provenance, and potential dynamics. Aeolian
Res 40: 91-104.
Liebner, S., Rublack, K., Stuehrmann, T., Wagner, D. (2009) Diversity of
aerobic methanotrophic bacteria in a permafrost active layer soil of the
Lena Delta, Siberia. Mol Ecol 57: 25-35.
Liu, B., Niu, Q., Qu, J., Zu, R. (2016) Quantifying the provenance of
aeolian sediments using multiple composite fingerprints. Aeolian
Res 22: 117-122.
Liu, F., Li, J.L., Feng, G.F., Li, Z.Y. (2016) New genomic insights
into“Entotheonella ” symbionts in Theonella swinhoei :
mixotrophy, anaerobic adaptation, resilience, and interaction.Front Microbiol 7: 1333.
Liu, M., Liu, Y., Wang, Y., Luo, X., Dai, J., Fang, C. (2010)Lysobacter xinjiangensis sp.
nov., a moderately thermotolerant and alkalitolerant bacterium isolated
from gamma-irradiated sand soil sample. Int J Syst Evol Microbiol61: 433-437.
Makhalanyane, T.P., Valverde, A., Gunnigle, E., Frossard, A., Ramond,
J.B., Cowan, D.A. (2015) Microbial ecology of hot desert edaphic
systems. FEMS Microbiol Rev 39: 203-221.
Manzoni, S., Schimel, J.P., Porporato, A. (2012) Responses of soil
microbial communities to water stress: results from a meta-analysis.Ecology 93: 930-938.
Meehan, C.J., Beiko, R.G. (2014) A phylogenomic view of ecological
specialization in the Lachnospiraceae , a family of digestive
tract-associated bacteria. Genome Biol Evol 6: 703-713.
Meng, H., Li, K., Nie, M., Wan, J.R., Quan, Z.X., Fang, C.M., et al.
(2013) Responses of bacterial and fungal communities to an elevation
gradient in a subtropical montane forest of China. Appl Microbiol
Biotechnol 97: 2219-2230.
Miao, V., Davies, J. (2010). Actinobacteria : the good, the bad,
and the ugly. Anton Leeuw Int J G 98: 143-150.
Mogul, R., Vaishampayan, P., Bashir, M. (2017) Microbial community and
biochemical dynamics of biological soil crusts across a gradient of
surface coverage in the central Mojave Desert. Front Microbiol8: 1974.
Nagy, M.L., Pérez, A., Garcia-Pichel, F. (2005) The prokaryotic
diversity of biological soil crusts in the Sonoran desert (Organ Pipe
Cactus National Monument, AZ). FEMS Microbiol Ecol 54:233-245.
Olsen, I., Dewhirst, F.E., Paster, B.J., Busse, H.J. (2005) FamilyPasteurellaceae Pohl 1981, 382VP. In: Brenner, D.J., Krieg, N.R.,
Staley, J.T., Garrity, G.M. (Eds.), Bergey’s Manual of Systematic
Bacteriology, 2nd ed., vol. 2. Springer, New York.
Pointing, S.B., Belnap, J. (2012) Microbial colonization and controls in
dryland systems. Nat Rev Microbiol 10: 551-562.
Rao, S., Chan, Y., Bugler-Lacap, D.C., Bhatnagar, A., Bhatnagar, M.,
Pointing, S.B. (2016) Microbial diversity in soil, sand dune and rock
substrates of the Thar Monsoon Desert, India. Indian J Microbiol56: 35-45.
Ren, C., Zhang, W., Zhong, Z., et al. (2018) Differential responses of
soil microbial biomass, diversity, and compositions to altitudinal
gradients depend on plant and soil characteristics. Sci Total
Environ 610-611: 750-758.
Scola, V., Ramond, J.B., Frossard, A., Zablocki, O., Cowan, D.A. (2018)
Namib Desert soil microbial community diversity, assembly, and function
along a natural xeric gradient. Mol Ecol 75: 1-11.
Segata, N., Izard, J., Waldron, L., Gevers, D., Miropolsky, L., Garrett,
W. S., et al. (2011) Metagenomic biomarker discovery and explanation.Genome Biol 12: R60.
Serna-Chavez, H.M., Fierer, N., van Bodegom, P.M. (2013) Global drivers
and patterns of microbial abundance in soil. Glob Ecol Biogeogr22: 1162-1172.
Siles, J.A., Margesin, R. (2017) Seasonal soil microbial responses are
limited to changes in functionality at two alpine forest sites differing
in altitude and vegetation. Sci Rep 7: 2204.
Sul, W.J., Asuming-Brempong, S., Wang, Q., Tourlousse, D.M., Penton,
C.R., Deng, Y., et al. (2013) Tropical agricultural land management
influences on soil microbial communities through its effect on soil
organic carbon. Soil Biol
Biochem 65: 33-38.
Sun, Y., Shi, Y.L., Wang, H., Zhang, T., Yu, L. Y., Sun H, et al. (2018)
Diversity of bacteria and the characteristics of actinobacteria
community structure in Badain Jaran Desert and Tengger Desert of
china. Front Microbiol 9: 1068.
Sundqvist, M.K., Sanders, N.J., and Wardle, D.A. (2013) Community and
ecosystem responses to elevational gradients: processes, mechanisms, and
insights for global change. Annu Rev Ecol Evol Syst 44:261-280.
Stomeo, F., Valverde, A., Pointing, S.B., Mckay, C.P., Warren-Rhodes,
K.A., Tuffin, M.I., et al. (2013) Hypolithic and soil microbial
community assembly along an aridity gradient in the Namib
Desert. Extremophiles 17: 329-337.
Tran, D.M., Sugimoto, H., Nguyen, D.A., Watanabe, T., Suzuki, K. (2018)
Identification and characterization of chitinolytic bacteria isolated
from a freshwater lake. Bioscience, Biotechnology, and
Biochemistry 82: 343-355,
Valverde, A., Makhalanyane, T. P., Seely, M., Cowan, D. A. (2015)Cyanobacteria drive community composition and functionality in
rock-soil interface communities. Mol Ecol 24: 812-821.
Warren-Rhodes, K.A., Mckay, C.P., Boyle, L.N., Wing, M.R., Kiekebusch,
E.M., Cowan, D.A., et al. (2013) Physical ecology of hypolithic
communities in the central Namib Desert: the role of fog, rain, rock
habitat, and light. J Geophys Res -Biogeo 118:1451-1460.
Xia, S., Shi, Y., Fu, Y., Ma, X. (2005) DGGE analysis of 16S rDNA of
ammonia-oxidizing bacteria in chemical-biological flocculation and
chemical coagulation systems. Appl Microbiol Biotechnol69: 99-105.
Xia, Z., Bai, E., Wang, Q., Gao, D., Zhou, J., Jiang, P., Wu, J. (2016)
Biogeographic Distribution Patterns of Bacteria in Typical Chinese
Forest Soils. Front Microbiol 7: 1106.
Yang, X., Eitel, B. (2016) Understanding the interactions between
climate change, landscape evolution, surface processes and tectonics in
the earth system: what can the studies of chinese deserts
contribute?Acta Geol Sin 90: 1444-1454.
Yu, Z.H., Luo, X.S., Liu, M., Huang, Q. (2015) Diversity of ionizing
radiation-resistant bacteria obtained from the Taklimakan
Desert. J Basic Microb 55: 135-140.
Yun, Y., Wang, H., Man, B., Xiang, X., Zhou, J., Qiu, X., et al. (2016)
The relationship between pH and
bacterial communities in a single karst ecosystem and its implication
for soil acidification. Front Microbiol 7: 1955.
Zeglin, L.H., Dahm, C.N., Barrett, J.E., Gooseff, M.N., Fitpatrick,
S.K., Takacs-Vesbach, C.D. (2011) Bacterial community structure along
moisture gradients in the parafluvial sediments of two ephemeral desert
streams. Microb Ecol 61: 543-556.
Zhang, B., Kong, W., Wu, N., Zhang, Y. (2016a) Bacterial diversity and
community along the succession of biological soil crusts in the
Gurbantunggut Desert, northern China. J Basic Microb 56:670-679.
Zhang, B.L., Wu X.K., Zhang W., Chen X.M., Zhang G.S., Ai X., et al.
(2016b) Diversity and succession of Actinobacteria in the
forelands of the Tianshan Glacier, China. Geomicrobiology Journal33: 716-723.
Zhang, K., Shi, Y., Cui, X., Yue, P., Li, K., Liu, X., et al. (2019)
Salinity is a key determinant for soil microbial communities in a desert
ecosystem. mSystems 4: e00225-18.
Zhang, L., Wu, G.L., Wang, Y., Dai, J., Fang, C.X. (2010) Bacillus
deserti sp. nov., a novel bacterium isolated from the desert of
Xinjiang, China. A Van Leeuw 99: 221-229.
Zhao, Y.G., Zhang, F.H., Yang, L., Wang, D., Wang, W.C. (2019) Response
of soil bacterial community structure to diferent reclamation years
of abandoned salinized farmland in arid China. Archives of
Microbiology 201: 1219-1232.
Zhu, Z., Chen, Z., Wu, Z., Li, J., Li, B., Wu, G. (1981) Study on the
geomorphology of wind-drift sands in the Taklamakan Desert. Beijing:
Science Press (in Chinese)
Zhu, Z. D. (1964)
Movement
patterns of sand dunes nearby oasis at southwestern margins of
Taklimakan Desert. Acta Geol Sin 3: 33-47.
Fig. 1 The map of sampling sites in the Taklimakan Desert.
Fig. 2 The bacterial communities at the phyla level (A) and
genus level (B) in the surface samples. Only the phyla or genera with
more than 1% relative abundance in at least one sample are presented.
Fig. 3 PCoA graph (A) and distance box plot (B) showing the
significant differences in bacterial communities in the surface sand.
Fig. 4 Redundancy analyses (RDA) result showing the correlation
between bacteria community (at the phylum level) and physicochemical
parameters. Top 10 phyla and only significantly correlated environmental
factors were shown.
Fig. 5 Spearman correlation analyses showing the bacterial
phyla that are significant positively/negatively correlated with the
sand physicochemical parameters in the surface samples. *0.01
< p ≤ 0.05, **0.001 < p ≤ 0.01, ***p ≤ 0.001.
Fig. 6 Cladogram showing the distribution of bacterial lineages
(A) and LDA analysis the influence of abundance on the different effect
size (B) in bacterial communities associated with the surface and
subsurface samples. Cladogram circles indicate phylogenetic taxa from
phylum to genus. LDA scores ≥ 2.
Table 1 Physicochemical
property of the sand samples.