References
An, H., Xu, M., Dai, J., Wang, Y., C­ai, F., Qi, H. et al. (2010)Sphingomonas xinjiangensis sp. nov., isolated from the desert of Xinjiang, China. Int J Syst Evol Microbiol 61:1865-1869.
An, S., Couteau, C., Luo, F., Neveu, J., DuBow, M.S. (2013) Bacterial diversity of surface sand samples from the Gobi and Taklamaken Deserts.Microb Ecol 66: 850-860.
Arocha-Garza, H.F., Canales-Del, C.R., Eguiarte, L.E., Souza, V., De, l.T.S. (2017) High diversity and suggested endemicity of culturable actinobacteria in an extremely oligotrophic desert oasis. Peer J  5: 3247.
Baubin, C., Farrell, A.M., Štǒvícěk, A., Ghazaryan, L., Giladi, I., Gillor, O. (2019) Seasonal and spatial variability in total and active bacterial communities from desert soil. Pedobiologia 74:7-14.
Bhushan, A., Peters, E.E., Piel, J. (2017) Entotheonella Bacteria as Source of Sponge-Derived Natural Products: Opportunities for Biotechnological Production. In: Müller W., Schröder H., Wang X. (eds) Blue Biotechnology. Progress in Molecular and Subcellular Biology, vol 55. Springer, Cham
Caporaso, J.G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F.D., Costello, E.K., et al. (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods7: 335-336.
Chanal, A., Chapon, V., Benzerara, K., et al. (2006) The desert of Tataouine: an extreme environment that hosts a wide diversity of microorganisms and radiotolerant bacteria. Environ Microbiol8: 514-25.
Crits-Christoph, A., Robinson, C.K., Barnum, T., Fricke, W.F., Davila, A.F., Jedynak, B., et al. (2013) Colonization patterns of soil microbial communities in the Atacama Desert. Microbiome 1: 28.
Eisenlord, S.D., Zak, D.R. (2010) Simulated atmospheric nitrogen deposition alters actinobacterial community composition in forest soils.Soil Sci Soc Am J 74: 1157-1166.
El-Tarabily, K.A., Sivasithamparam, K. (2006) Non-streptomycete actinomycetes as biocontrol agents of soil-borne fungal plant pathogens and as plant growth promoters. Soil Biol Biochem 38:1505-1520.
Feeser, K.L., Van Horn, D.J., Buelow, H.N., et al. (2018) Local and regional scale heterogeneity drive bacterial community diversity and composition in a Polar Desert. Front Microbiol 9: 1928.
Gommeaux, M., Barakat, M., Montagnac, G., et al. (2010) Mineral and bacterial diversities of desert sand grains from south-east Morocco. Geomicrobiol J 27:76-92.
Goodfellow, M., Williams, S. T. (1983) Ecology of actinomycetes.Ann Rev Microbiol 37: 189-216.
Gunnigle, E., Frossard, A., Ramond, J.B., Guerrero, L., Seely, M., Cowan, D.A. (2017) Diel-scale temporal dynamics recorded for bacterial groups in Namib Desert soil. Scientific reports 7:40189.
Hayden, C.J., Beman, J.M. (2016) Microbial diversity and community structure along a lake elevation gradient in Yosemite National Park, California, USA. Environ Microbiol 18: 1782-1791.
Hill, P., Krištůfek, V., Dijkhuizen, L., Boddy, C., Kroetsch, D., Elsas, J.D.V. (2011) Land use intensity controls actinobacterial community structure. Mol Ecol 61: 286-302.
Indest, K.J., Hancock, D.E., Crocker, F.H., Eberly, J.O., Jung, C.M., Blakeney, G.A., et al. (2017) Biodegradation of insensitive munition formulations IMX101 and IMX104 in surface soils. J Ind Microbiol Biotechnol 44: 987-995.
Jenkins, S.N., Waite, I.S., Blackburn, A., Husband, R., Rushton, S.P., Manning, D.C., O’Donnell, A.G. (2009) Actinobacterial community dynamics in long term managed grasslands. Antonie van Leeuwenhoek95: 319-334.
Kemmitt, S. J., Wright, D., Goulding, K.W.T., and Jones, D.L. (2006) pH regulation of carbon and nitrogen dynamics in two agricultural soils.Soil Biol Biochem 38: 898-911.
Konishi, N.,  Okubo, T.,  Yamaya, T.,  Hayakawa, T.,  Minamisawa, K. (2017) Nitrate supply-dependent shifts in communities of root-associated bacteria in Arabidopsis. Microbes Environ32: 314-323.
Körner, C. (2007) The use of ‘altitude’ in ecological research.Trends Ecol Evol 22:
569-574.
Körner, M., Müller, H., Ramadan, E.M., Berg, G. (2011) Desert farming benefits from microbial potential in arid soils and promotes diversity and plant health. Plos one 6: e24452.
Laity, J.J. (2009) Deserts and desert environments. John Wiley &Sons, UK.
Lauber, C.L., Hamady, M., Knight, R., Fierer, N. (2009) Soil pH as a predictor of soil bacterial community structure at the continental scale: a pyrosequencing-based assessment. Appl Environ Microb75: 5111-5120.
Lester, E.D., Satomi, M., Ponce, A. (2007) Microflora of extreme arid Atacama Desert soils. Soil Biol Biochem 39: 704-8.
Lezcano, M.A., Velázquez, D., Quesada, A., El-Shehawy, R. (2017) Diversity and temporal shifts of the bacterial community associated with a toxic cyanobacterial bloom: An interplay between microcystin producers and degraders. Water Research 125: 52-61.
Li, C., Yan, K., Tang, L., Jia, Z., Li, Y. (2014) Change in deep soil microbial communities due to long-term fertilization. Soil Biol Biochem 75: 264-272.
Liang, X.L., Niu, Q., Qu, J.J., Liu, B., Liu, B.L., Zhang, C.X., et al., (2019) Geochemical analysis of yardang strata in the Dunhuang Yardang National Geopark, Northwest China, and implications on its palaeoenvironment, provenance, and potential dynamics. Aeolian Res 40: 91-104.
Liebner, S., Rublack, K., Stuehrmann, T., Wagner, D. (2009) Diversity of aerobic methanotrophic bacteria in a permafrost active layer soil of the Lena Delta, Siberia. Mol Ecol  57: 25-35.
Liu, B., Niu, Q., Qu, J., Zu, R. (2016) Quantifying the provenance of aeolian sediments using multiple composite fingerprints. Aeolian Res 22: 117-122.
Liu, F., Li, J.L., Feng, G.F., Li, Z.Y. (2016) New genomic insights into“Entotheonella ” symbionts in Theonella swinhoei : mixotrophy, anaerobic adaptation, resilience, and interaction.Front Microbiol 7: 1333.
Liu, M., Liu, Y., Wang, Y., Luo, X., Dai, J., Fang, C. (2010)Lysobacter xinjiangensis sp. nov., a moderately thermotolerant and alkalitolerant bacterium isolated from gamma-irradiated sand soil sample. Int J Syst Evol Microbiol61: 433-437.
Makhalanyane, T.P., Valverde, A., Gunnigle, E., Frossard, A., Ramond, J.B., Cowan, D.A. (2015) Microbial ecology of hot desert edaphic systems. FEMS Microbiol Rev 39: 203-221.
Manzoni, S., Schimel, J.P., Porporato, A. (2012) Responses of soil microbial communities to water stress: results from a meta-analysis.Ecology 93: 930-938.
Meehan, C.J., Beiko, R.G. (2014) A phylogenomic view of ecological specialization in the Lachnospiraceae , a family of digestive tract-associated bacteria. Genome Biol Evol 6: 703-713.
Meng, H., Li, K., Nie, M., Wan, J.R., Quan, Z.X., Fang, C.M., et al. (2013) Responses of bacterial and fungal communities to an elevation gradient in a subtropical montane forest of China. Appl Microbiol Biotechnol 97: 2219-2230.
Miao, V., Davies, J. (2010). Actinobacteria : the good, the bad, and the ugly. Anton Leeuw Int J G 98: 143-150.
Mogul, R., Vaishampayan, P., Bashir, M. (2017) Microbial community and biochemical dynamics of biological soil crusts across a gradient of surface coverage in the central Mojave Desert. Front Microbiol8: 1974.
Nagy, M.L., Pérez, A., Garcia-Pichel, F. (2005) The prokaryotic diversity of biological soil crusts in the Sonoran desert (Organ Pipe Cactus National Monument, AZ). FEMS Microbiol Ecol 54:233-245.
Olsen, I., Dewhirst, F.E., Paster, B.J., Busse, H.J. (2005) FamilyPasteurellaceae Pohl 1981, 382VP. In: Brenner, D.J., Krieg, N.R., Staley, J.T., Garrity, G.M. (Eds.), Bergey’s Manual of Systematic Bacteriology, 2nd ed., vol. 2. Springer, New York.
Pointing, S.B., Belnap, J. (2012) Microbial colonization and controls in dryland systems. Nat Rev Microbiol 10: 551-562.
Rao, S., Chan, Y., Bugler-Lacap, D.C., Bhatnagar, A., Bhatnagar, M., Pointing, S.B. (2016) Microbial diversity in soil, sand dune and rock substrates of the Thar Monsoon Desert, India. Indian J Microbiol56: 35-45.
Ren, C., Zhang, W., Zhong, Z., et al. (2018) Differential responses of soil microbial biomass, diversity, and compositions to altitudinal gradients depend on plant and soil characteristics. Sci Total Environ 610-611: 750-758.
Scola, V., Ramond, J.B., Frossard, A., Zablocki, O., Cowan, D.A. (2018) Namib Desert soil microbial community diversity, assembly, and function along a natural xeric gradient. Mol Ecol  75: 1-11.
Segata, N., Izard, J., Waldron, L., Gevers, D., Miropolsky, L., Garrett, W. S., et al. (2011) Metagenomic biomarker discovery and explanation.Genome Biol 12: R60.
Serna-Chavez, H.M., Fierer, N., van Bodegom, P.M. (2013) Global drivers and patterns of microbial abundance in soil. Glob Ecol Biogeogr22: 1162-1172.
Siles, J.A., Margesin, R. (2017) Seasonal soil microbial responses are limited to changes in functionality at two alpine forest sites differing in altitude and vegetation. Sci Rep 7: 2204.
Sul, W.J., Asuming-Brempong, S., Wang, Q., Tourlousse, D.M., Penton, C.R., Deng, Y., et al. (2013) Tropical agricultural land management influences on soil microbial communities through its effect on soil organic carbon. Soil Biol Biochem  65: 33-38.
Sun, Y., Shi, Y.L., Wang, H., Zhang, T., Yu, L. Y., Sun H, et al. (2018) Diversity of bacteria and the characteristics of actinobacteria community structure in Badain Jaran Desert and Tengger Desert of china. Front Microbiol 9: 1068.
Sundqvist, M.K., Sanders, N.J., and Wardle, D.A. (2013) Community and ecosystem responses to elevational gradients: processes, mechanisms, and insights for global change. Annu Rev Ecol Evol Syst 44:261-280.
Stomeo, F., Valverde, A., Pointing, S.B., Mckay, C.P., Warren-Rhodes, K.A., Tuffin, M.I., et al. (2013) Hypolithic and soil microbial community assembly along an aridity gradient in the Namib Desert. Extremophiles  17: 329-337.
Tran, D.M., Sugimoto, H., Nguyen, D.A., Watanabe, T., Suzuki, K. (2018) Identification and characterization of chitinolytic bacteria isolated from a freshwater lake. Bioscience, Biotechnology, and Biochemistry 82: 343-355,
Valverde, A., Makhalanyane, T. P., Seely, M., Cowan, D. A. (2015)Cyanobacteria drive community composition and functionality in rock-soil interface communities. Mol Ecol  24: 812-821.
Warren-Rhodes, K.A., Mckay, C.P., Boyle, L.N., Wing, M.R., Kiekebusch, E.M., Cowan, D.A., et al. (2013) Physical ecology of hypolithic communities in the central Namib Desert: the role of fog, rain, rock habitat, and light. J Geophys Res -Biogeo 118:1451-1460.
Xia, S., Shi, Y., Fu, Y., Ma, X. (2005) DGGE analysis of 16S rDNA of ammonia-oxidizing bacteria in chemical-biological flocculation and chemical coagulation systems. Appl Microbiol Biotechnol69: 99-105.
Xia, Z., Bai, E., Wang, Q., Gao, D., Zhou, J., Jiang, P., Wu, J. (2016) Biogeographic Distribution Patterns of Bacteria in Typical Chinese Forest Soils. Front Microbiol 7: 1106.
Yang, X., Eitel, B. (2016) Understanding the interactions between climate change, landscape evolution, surface processes and tectonics in the earth system: what can the studies of chinese deserts contribute?Acta Geol Sin 90: 1444-1454.
Yu, Z.H., Luo, X.S., Liu, M., Huang, Q. (2015) Diversity of ionizing radiation-resistant bacteria obtained from the Taklimakan Desert. J Basic Microb  55: 135-140.
Yun, Y., Wang, H., Man, B., Xiang, X., Zhou, J., Qiu, X., et al. (2016) The relationship between pH and bacterial communities in a single karst ecosystem and its implication for soil acidification. Front Microbiol 7: 1955.
Zeglin, L.H., Dahm, C.N., Barrett, J.E., Gooseff, M.N., Fitpatrick, S.K., Takacs-Vesbach, C.D. (2011) Bacterial community structure along moisture gradients in the parafluvial sediments of two ephemeral desert streams. Microb Ecol 61: 543-556.
Zhang, B., Kong, W., Wu, N., Zhang, Y. (2016a) Bacterial diversity and community along the succession of biological soil crusts in the Gurbantunggut Desert, northern China. J Basic Microb  56:670-679.
Zhang, B.L., Wu X.K., Zhang W., Chen X.M., Zhang G.S., Ai X., et al. (2016b) Diversity and succession of Actinobacteria in the forelands of the Tianshan Glacier, China. Geomicrobiology Journal33: 716-723.
Zhang, K., Shi, Y., Cui, X., Yue, P., Li, K., Liu, X., et al. (2019) Salinity is a key determinant for soil microbial communities in a desert ecosystem. mSystems  4: e00225-18.
Zhang, L., Wu, G.L., Wang, Y., Dai, J., Fang, C.X. (2010) Bacillus deserti sp. nov., a novel bacterium isolated from the desert of Xinjiang, China. A Van Leeuw 99: 221-229.
Zhao, Y.G., Zhang, F.H., Yang, L., Wang, D., Wang, W.C. (2019) Response of soil bacterial community structure to diferent reclamation years of abandoned salinized farmland in arid China. Archives of Microbiology 201: 1219-1232.
Zhu, Z., Chen, Z., Wu, Z., Li, J., Li, B., Wu, G. (1981) Study on the geomorphology of wind-drift sands in the Taklamakan Desert. Beijing: Science Press (in Chinese)
Zhu, Z. D. (1964) Movement patterns of sand dunes nearby oasis at southwestern margins of Taklimakan Desert. Acta Geol Sin 3: 33-47.
Fig. 1 The map of sampling sites in the Taklimakan Desert.
Fig. 2 The bacterial communities at the phyla level (A) and genus level (B) in the surface samples. Only the phyla or genera with more than 1% relative abundance in at least one sample are presented.
Fig. 3 PCoA graph (A) and distance box plot (B) showing the significant differences in bacterial communities in the surface sand.
Fig. 4 Redundancy analyses (RDA) result showing the correlation between bacteria community (at the phylum level) and physicochemical parameters. Top 10 phyla and only significantly correlated environmental factors were shown.
Fig. 5 Spearman correlation analyses showing the bacterial phyla that are significant positively/negatively correlated with the sand physicochemical parameters in the surface samples. *0.01 < p ≤ 0.05, **0.001 < p ≤ 0.01, ***p ≤ 0.001.
Fig. 6 Cladogram showing the distribution of bacterial lineages (A) and LDA analysis the influence of abundance on the different effect size (B) in bacterial communities associated with the surface and subsurface samples. Cladogram circles indicate phylogenetic taxa from phylum to genus. LDA scores ≥ 2.
Table 1 Physicochemical property of the sand samples.