REFERENCES
Abad, J., Pariente, F., Hernandez, L., & Lorenzo, E. (1998). A quartz
crystal microbalance assay for detection of antibodies against the
recombinant African swine fever virus attachment protein p12 in swine
serum. Analytica Chimica Acta, 368 (3), 183-189.
Brookes, S., Sun, H., Dixon, L., & Parkhouse, R. (1998).
Characterization of African swine fever virion proteins j5R and j13L:
immuno-localization in virus particles and assembly sites. Journal
of General Virology, 79 (5), 1179-1188.
Costard, S., Mur, L., Lubroth, J., Sanchez-Vizcaino, J., & Pfeiffer, D.
U. (2013). Epidemiology of African swine fever virus. Virus
research, 173 (1), 191-197.
Daigle, J., Onyilagha, C., Truong, T., Van Phan, L., Nga, B. T. T.,
Nguyen, T. L., . . . Ambagala, A. (2020). Rapid and highly sensitive
portable detection of African swine fever virus. Transboundary and
Emerging Diseases .
Dixon, L. K., Escribano, J., Martins, C., Rock, D. L., Salas, M., &
Wilkinson, P. J. (2005). Asfarviridae. virus taxonomy, eighth
report of the ICTV , 135-143.
Fernández‐Pinero, J., Gallardo, C., Elizalde, M., Robles, A., Gómez, C.,
Bishop, R., . . . Pelayo, V. (2013). Molecular diagnosis of African
swine fever by a new real‐time PCR using universal probe library.Transboundary and Emerging Diseases, 60 (1), 48-58.
Gogin, A., Gerasimov, V., Malogolovkin, A., & Kolbasov, D. (2013).
African swine fever in the North Caucasus region and the Russian
Federation in years 2007–2012. Virus research, 173 (1), 198-203.
Heilmann, M., Lkhagvasuren, A., Adyasuren, T., Khishgee, B., Bold, B.,
Ankhanbaatar, U., . . . Dietze, K. (2020). African Swine Fever in
Mongolia: Course of the Epidemic and Applied Control Measures.Veterinary Sciences, 7 (1), 24.
Khomenko, S., Beltrán-Alcrudo, D., Rozstalnyy, A., Gogin, A., Kolbasov,
D., Pinto, J., . . . Martin, V. (2013). African swine fever in the
Russian Federation: risk factors. Empres Watch, 28 , 1-14.
Kim, H. J., Cho, K. H., Lee, S. K., Kim, D. Y., Nah, J. J., Kim, H. J.,
. . . Choi, J. G. (2020). Outbreak of African swine fever in South
Korea, 2019. Transboundary and emerging diseases, 67 (2), 473-475.
King, D. P., Reid, S. M., Hutchings, G. H., Grierson, S. S., Wilkinson,
P. J., Dixon, L. K., . . . Drew, T. W. (2003). Development of a TaqMan®
PCR assay with internal amplification control for the detection of
African swine fever virus. Journal of virological methods,
107 (1), 53-61.
Le, V. P., Jeong, D. G., Yoon, S.-W., Kwon, H.-M., Trinh, T. B. N., Lan,
N. T., . . . Tuyen, N. V. (2019). Outbreak of African swine fever,
Vietnam, 2019. Emerging Infectious Diseases, 25 (7), 1433.
Montgomery, R. E. (1921). On a form of swine fever occurring in British
East Africa (Kenya Colony). Journal of comparative pathology and
therapeutics, 34 , 159-191.
Oura, C., Edwards, L., & Batten, C. (2013). Virological diagnosis of
African swine fever—comparative study of available tests. Virus
research, 173 (1), 150-158.
Plowright, W. (1977). Vector transmission of African swine fever
virus. Paper presented at the Hog cholera/classical swine fever and
African swine fever, Hannover (Germany, FR), 6 Sep 1976.
Rodriguez, F., Ley, V., Gómez-Puertas, P., García, R., Rodriguez, J., &
Escribano, J. (1996). The structural protein p54 is essential for
African swine fever virus viability. Virus research, 40 (2),
161-167.
Rowlands, R. J., Michaud, V., Heath, L., Hutchings, G., Oura, C.,
Vosloo, W., . . . Dixon, L. K. (2008). African swine fever virus
isolate, Georgia, 2007. Emerging infectious diseases, 14 (12),
1870.
Sánchez-Vizcaíno, J., Mur, L., Gomez-Villamandos, J., & Carrasco, L.
(2015). An update on the epidemiology and pathology of African swine
fever. Journal of Comparative Pathology, 152 (1), 9-21.
Tignon, M., Gallardo, C., Iscaro, C., Hutet, E., Van der Stede, Y.,
Kolbasov, D., . . . Arias, M. (2011). Development and inter-laboratory
validation study of an improved new real-time PCR assay with internal
control for detection and laboratory diagnosis of African swine fever
virus. Journal of virological methods, 178 (1-2), 161-170.
Uhlig, S., Frost, K., Colson, B., Simon, K., Mäde, D., Reiting, R., . .
. Grohmann, L. (2015). Validation of qualitative PCR methods on the
basis of mathematical–statistical modelling of the probability of
detection. Accreditation and Quality Assurance, 20 (2), 75-83.
Wang, A., Jia, R., Liu, Y., Zhou, J., Qi, Y., Chen, Y., . . . Zhang, J.
(2020). Development of a novel quantitative real‐time PCR assay with
lyophilized powder reagent to detect African swine fever virus in blood
samples of domestic pigs in China. Transboundary and Emerging
Diseases, 67 (1), 284-297.
Wang, Y., Xu, L., Noll, L., Stoy, C., Porter, E., Fu, J., . . . Dodd, K.
A. (2020). Development of a real‐time PCR assay for detection of African
swine fever virus with an endogenous internal control.Transboundary and Emerging Diseases .
Zhao, D., Liu, R., Zhang, X., Li, F., Wang, J., Zhang, J., . . . Wu, X.
(2019). Replication and virulence in pigs of the first African swine
fever virus isolated in China. Emerging microbes & infections,
8 (1), 438-447.
Zsak, L., Borca, M., Risatti, G., Zsak, A., French, R., Lu, Z., . . .
Nelson, W. (2005). Preclinical diagnosis of African swine fever in
contact-exposed swine by a real-time PCR assay. Journal of
clinical microbiology, 43 (1), 112-119.