References
Agangi, A., Hofmann, A., & Wohlgemuth-Ueberwasser, C.C. (2013). Pyrite
Zoning as a Record of Mineralization in the Ventersdorp Contact Reef,
Witwatersrand Basin, South Africa. Economic Geology, 108 ,
1243-1272. doi:10.2113/econgeo.108.6.1243
Bailey, J., Raub, T., Meckler, N., Harrison, B., Raub, T., Green, A., &
Orphan, V. (2010). Pseudofossils in relict methane seep carbonates
resemble endemic microbial consortia. Palaeogeography,
Palaeoclimatology, Palaeoecology, 285 , 131-142.
doi:10.1016/j.palaeo.2009.11.002
Barale, L., d’Atri, A., & Martire, L. (2013). The Role of Microbial
Activity In the Generation of Lower Cretaceous Mixed Fe-Oxide-phosphate
Ooids from the Provencal Domain, French Maritime Alps. Journal of
Sedimentary Research, 83 , 196-206. doi:10.2110/jsr.2013.15
Berner, R.A., De Leeuw, J.W., Spiro, B., Murchison, D.G., & Eglinton,
G. (1985). Sulphate Reduction, Organic Matter Decomposition and Pyrite
Formation [and Discussion]. Philosophical Transactions of The
Royal Society A: Mathematical, Physical and Engineering Sciences, 315 ,
25-38. doi:10.1098/rsta.1985.0027
Berner, R.A. (1984). Sedimentary pyrite formation: An update.Geochimica Et Cosmochimica Acta, 48 , 605-615.
doi:10.1016/0016-7037(84)90089-9
Cavalazzi, B., Barbieri, R., Cady, S.L., George, A.D., Gennaro, S.,
Westall, F., Lui, A., Canteri, R., Rossi, A.P., Ori, G.G., Taj-Eddine,
K. (2012). Iron-framboids in the hydrocarbon-related Middle Devonian
Hollard Mound of the Anti-Atlas mountain range in Morocco: Evidence of
potential microbial biosignatures. Sedimentary Geology, 263–264 ,
183–193. doi:10.1016/j.sedgeo.2011.09.007
Chi Fru, E., Ivarsson, M., Kilias, S.P., Bengtson, S., Belivanova, V.,
Marone, F., Fortin, D., Broman, C., Stampanoni, M. (2013). Fossilized
iron bacteria reveal a pathway to the origin of banded iron formations.Nature communications, 4 , 2050. doi:10.1038/ncomms3050
Cornell, R.M., & Schwertmann, U. (2003). The iron oxydes: structure,
Properties, Reactions, Occurences and Uses: Wiley-VCH.
Davies, P.J., Bubela, B., & Ferguson, J. (1978). The formation of
ooids. Sedimentology, 25 , 703-730.
doi:10.1111/j.1365-3091.1978.tb00326.x
Di Bella, M., Sabatino, G., Quartieri, S., Ferretti, A., Cavalazzi, B.,
Barbieri, R., Foucher, F., Messori, F., Italiano, F. (2019). Modern Iron
Ooids of Hydrothermal Origin as a Proxy for Ancient Deposits.Scientific Reports, 9:7017 . doi:10.1038/s41598-019-43181-y
Diaz, M.R., & Eberli, G. (2018). Decoding the mechanism of formation in
marineooids: A review. Earth-Science Reviews, 190 .
doi:10.1016/j.earscirev.2018.12.016
Diaz, M.R., Van Norstrand, J.D., Eberli, G.P., Piggot, A.M., Zhou, J.,
& Klaus, J.S. (2014). Functional gene diversity of oolitic sands from
Great Bahama Bank. Geobiology, 12 , 231-249. doi:10.1111/gbi.12079
Diaz, M.R., Piggot, A.M., Eberli, G.P., & Klaus, J.S. (2013). Bacterial
community of oolitic carbonate sediments of the Bahamas Archipelago.Marine Ecology Progress Series, 485 , 9-U30. doi:10.3354/meps10359
Diaz, M.R., Swart, P.K., Eberli, G.P., Oehlert, A.M., Devlin, Q., Saeid,
A., & Altabet, M.A. (2015). Geochemical evidence of microbial activity
within ooids. Sedimentology, 62 , 2090-2112. doi:10.1111/sed.12218
Duguid, S.M.A., Kyser, T.K., James, N.P., & Rankey, E.C. (2010).
Microbes and Ooids. Journal of Sedimentary Research, 80 , 236-251.
doi:10.2110/jsr.2010.027
Dunham, R.J. (1962). Classification of Carbonates Rocks According to
Deposicional texture. American Association of Petroleum Geologists
Memoir, 1 , 108-121.
Dupraz, C., Reid, R.P., Braissant, O., Decho, A.W., Norman, R.S., &
Visscher, P.T. (2009). Processes of carbonate precipitation in modern
microbial mats. Earth-Science Reviews, 96 , 141-162.
doi:10.1016/j.earscirev.2008.10.005
Embry, A.F., & Klovan, J.E. (1971). A late Devonian reef tract on
northeastern Banks Island, N.W.T. Bulletin of Canadian Petroleum
Geology, 19 , 730-781.
Erşan, Y.Ç., De Belie, N., & Boon, N. (2015). Microbially induced
CaCO3 precipitation through denitrification: An
optimization study in minimal nutrient environment. Biochemical
Engineering Journal, 101 , 108-118. doi:10.1016/j.bej.2015.05.006
Franceschi, M., Dal Corso, J., Posenato, R., Roghi, G., Masetti, D., &
Jenkyns, H.C. (2014). Early Pliensbachian (Early Jurassic) C-isotope
perturbation and the diffusion of the Lithiotis Fauna: Insights from the
western Tethys. Palaeogeography Palaeoclimatology Palaeoecology,
410 , 255-263. doi:10.1016/j.palaeo.2014.05.025
Franke, W., & Paul, J. (1980). Pelagic redbeds in the Devonian of
Germany — deposition and diagenesis. Sedimentary Geology, 25 ,
231-256. doi:10.1016/0037-0738(80)90043-3
Han, Z., Hu, X.M., Kemp, D.B., & Li, J. (2018). Carbonate-platform
response to the Toarcian Oceanic Anoxic Event in the southern
hemisphere: Implications for climatic change and biotic platform demise.Earth and Planetary Science Letters, 489 , 59-71.
doi:10.1016/j.epsl.2018.02.017
Han, Z., Hu, X.M., Li, J., & Garzanti, E. (2016).
Jurassic
carbonate microfacies and relative sea-level changes in the Tethys
Himalaya (southern Tibet). Palaeogeography, Palaeoclimatology,
Palaeoecology, 456 , 1-20. doi:10.1016/j.palaeo.2016.05.012
Hu, X. (2013). Distribution, Types and Origins of Phanerozoic Marine Red
Beds. Bulletin of Mineralogy Petrology and Geochemistry, 32 ,
335-342 (in Chinese with English abstract).
Huang, W.T., Jackson, M.J., Dekkers, M.J., Zhang, Y., Zhang, B., Guo,
Z.J., & Dupont-Nivet, G. (2019). Challenges in isolating primary
remanent magnetization from Tethyan carbonate rocks on the Tibetan
Plateau: Insight from remagnetized Upper Triassic limestones in the
eastern Qiangtang block. Earth and Planetary Science Letters,
523 :115692. doi:10.1016/j.epsl.2019.06.035
Jadoul, F., Berra, F., & Garzanti, E. (1998). The Tethys Himalayan
passive margin from Late Triassic to Early Cretaceous (South Tibet).Journal of Asian Earth Sciences, 16 , 173-194.
doi:10.1016/S0743-9547(98)00013-0
Javanbakht, M., Wanas, H., Jafarian, A., Shahsavan, N., & Sahraeyan, M.
(2018). Carbonate diagenesis in the Barremian-Aptian Tirgan Formation
(Kopet-Dagh Basin, NE Iran): Petrographic, geochemical and reservoir
quality constraints. Journal of African Earth Sciences, 144 ,
122-135. doi:10.1016/j.jafrearsci.2018.04.016
Kraal, P., Burton, E.D., & Bush, R.T. (2013). Iron monosulfide
accumulation and pyrite formation in eutrophic estuarine sediments.Geochimica Et Cosmochimica Acta, 122 , 75-88.
doi:10.1016/j.gca.2013.08.013
Li, F., Yan, J.X., Burne, R.V., Chen, Z.Q., Algeo, T.J., Zhang, W.,
Tian, L., Gan, Y.L., Liu, K., Xie, S.C. (2017). Paleo-seawater REE
compositions and microbial signatures preserved in laminae of Lower
Triassic ooids. Palaeogeography Palaeoclimatology Palaeoecology,
486 , 96-107. doi:10.1016/j.palaeo.2017.04.005
Li, F., Yan, J.X., Algeo, T., & Wu, X.Z. (2013). Paleoceanographic
conditions following the end-Permian mass extinction recorded by giant
ooids (Moyang, South China). Global and Planetary Change, 105 ,
102-120. doi:10.1016/j.gloplacha.2011.09.009
Li, X.H., & Wang, C.S. (2005). Reinterpretation of the jurassic across
the main himalayan ridge norh of nyalam, southern tibet, China.Geological Bulletin of China, 2 , 1121-1126 (in Chinese with
English abstract).
Lougheed, M.S., & Mancuso, J.J. (1973). Hematite Framboids in the
Negaunee Iron Formation, Michigan; evidence for Their Biogenic Origin.Economic Geology, 68 , 202-209. doi:10.2113/gsecongeo.68.2.202
Lu, L., Wang, R.C., Chen, F.R., Xue, J.Y., Zhang, P.H., & Lu, J.J.
(2005). Element mobility during pyrite weathering: Implications for acid
and heavy metal pollution at mining-impacted sites. Environmental
Geology, 49 , 82-89. doi:10.1007/s00254-005-0061-8
Mücke, A. (2006). Chamosite, siderite and the environmental conditions
of their formation in chamosite-type Phanerozoic ooidal ironstones.Ore Geology Reviews, 28 , 235-249.
doi:10.1016/j.oregeorev.2005.03.004
Mader, D. (2006). Diagenetic evolution of opaque and transparent heavy
minerals reflecting colour genesis in continental fluvial buntsandstein
red beds of the eifel (F.R. Germany). In (Vol. 4, pp. 531-560).
Mamet, B., & Préat, A. (2006). Iron-bacterial mediation in Phanerozoic
red limestones: State of the art. Sedimentary Geology, 185 ,
147-157. doi:10.1016/j.sedgeo.2005.12.009
Mariotti, G., Pruss, S.B., Summons, R.E., Newman, S.A., & Bosak, T.
(2018). Contribution of Benthic Processes to the Growth of Ooids on a
Low-Energy Shore in Cat Island, The Bahamas. Minerals, 8 , 21.
doi:10.3390/min8060252
Merinero, R., Lunar, R., Somoza, L., Díaz-del-Río, V., &
Martínez-Frías, J. (2009). Nucleation, growth and oxidation of
framboidal pyrite associated with hydrocarbon-derived submarine
chimneys: Lessons learned from the Gulf of Cadiz. European Journal
of Mineralogy, 21 , 947-961. doi:10.1127/0935-1221/2009/0021-1956
Morse, J.W., & Mackenzie, F.T. (1990). Geochemistry of sedimentary
carbonates. Developments in Sedimentology, 48 .
doi:10.1016/S0070-4571(08)70330-3
O’Reilly, S.S., Mariotti, G., Winter, A.R., Newman, S.A., Matys, E.D.,
McDermott, F., Pruss, S.B., Bosak, T., Summons, R.E., Klepac-Ceraj, V.
(2016). Molecular biosignatures reveal common benthic microbial sources
of organic matter in ooids and grapestones from Pigeon Cay, The Bahamas.Geobiology, 15 , 112-130. doi:10.1111/gbi.12196
Ostwald, J., & England, B.M. (1979). The Relationship Between Euhedral
and Framboidal Pyrite in Base-Metal Sulphide Ores. Mineralogical
Magazine, 43 , 297-300. doi:10.1180/minmag.1979.043.326.13
Pacton, M., Ariztegui, D., Wacey, D., Kilburn, M.R., Rollion-Bard, C.,
Farah, R., & Vasconcelos, C. (2012). Going nano: A new step toward
understanding the processes governing freshwater ooid formation.Geology, 40 , 547-550 doi:10.1130/G32846.1
Pan, G., Ding, J., Yao, D., Wang, L., 2004. The Guide Book of
1:1,500,000 Geologic Map of the Qinghai–Xizang (Tibet) Plateau and
Adjacent Areas. Chengdu Cartographic Publishing House, Chengdu (in
Chinese).
Posth, N.R., Konhauser, K.O., & Kappler, A. (2013). Microbiological
processes in banded iron formation deposition. Sedimentology, 60 ,
1733-1754. doi:10.1111/sed.12051
Préat, A., Mamet, B., De Ridder, C., Boulvain, F., & Gillan, D. (2000).
Iron bacterial and fungal mats, Bajocian stratotype (Mid-Jurassic,
Northern Normandy, France). Sedimentary Geology, 137 , 107-126.
doi:10.1016/S0037-0738(00)00101-9
Raiswell, R., & Berner, R.A. (1986). Pyrite and organic matter in
Phanerozoic normal marine shales. Geochimica Et Cosmochimica Acta,
50 , 1967-1976. doi:10.1016/0016-7037(86)90252-8
Rickard, D. (2012). Chapter 6 - Sedimentary Pyrite. In D. Rickard (Ed.),
Developments in Sedimentology (Vol. 65, pp. 233-285): Elsevier.
Soliman, M.F., & El Goresy, A. (2012). Framboidal and idiomorphic
pyrite in the upper Maastrichtian sedimentary rocks at Gabal Oweina,
Nile Valley, Egypt: Formation processes, oxidation products and genetic
implications to the origin of framboidal pyrite. Geochimica Et
Cosmochimica Acta, 90 , 195–220. doi:10.1016/j.gca.2012.05.004
Sturesson, U., Dronov, A., & Saadre, T. (1999). Lower Ordovician iron
ooids and associated oolitic clays in Russia and Estonia: A clue to the
origin of iron oolites? Sedimentary Geology, 123 , 63-80.
doi:10.1016/S0037-0738(98)00112-2
Suits, N.S., & Wilkin, R.T. (1998). Pyrite formation in the water
column and sediments of a meromictic lake. Geology, 26 ,
1099-1102.
doi:10.1130/0091-7613(1998)026<1099:pfitwc>2.3.co;2
Summons, R.E., Bird, L.R., Gillespie, A.L., Pruss, S.B., Roberts, M., &
Sessions, A.L. (2013). Lipid biomarkers in ooids from different
locations and ages: evidence for a common bacterial flora.Geobiology, 11 , 420-436. doi:10.1111/gbi.12047
Thomas, H.V., Large, R.E., Bull, S.W., Maslennikov, V., Berry, R.F.,
Fraser, R., Froud, S., Moye, R. (2011). Pyrite and Pyrrhotite Textures
and Composition in Sediments, Laminated Quartz Veins, and Reefs at
Bendigo Gold Mine, Australia: Insights for Ore Genesis. Economic
Geology, 106 , 1-31. doi:10.2113/econgeo.106.1.1
Wacey, D., Kilburn, M., Saunders, M., Cliff, J., Kong, C., Liu, A.,
Matthews, J., Brasier, M. (2015). Uncovering framboidal pyrite
biogenicity using nano-scale CN org mapping. Geology, 43 , 27.
doi:10.1130/G36048.1
Wan, X.Q. (1989). Jurassic foraminifera from Nyalam, Xizang (Tibet),
China. Acta Micropalaeontologica Sinica 6 , 139-152 (in Chinese
with English abstract).
Wang, C.S., Li, X.H., Hu, X. M., Wan, X.Q., Yin, J.R., Huang, Y.J.,
Huang, S.J., Li, G.B. (2005). Tethyan Himalayan Sedimentary Geology and
Continental Paleoceanography. Geological Publishing House, Beijing (373
pp., in Chinese).
Wang, P.K., Huang, Y.J., Wang, C.S., Feng, Z.H., & Huang, Q.H. (2013).
Pyrite morphology in the first member of the Late Cretaceous Qingshankou
Formation, Songliao Basin, Northeast China. Palaeogeography
Palaeoclimatology Palaeoecology, 385 , 125-136.
doi:10.1016/j.palaeo.2012.09.027
Weber, P.A., Stewart, W.A., Skinner, W.M., Weisener, C.G., Thomas, J.E.,
& Smart, R.S.C. (2004). Geochemical effects of oxidation products and
framboidal pyrite oxidation in acid mine drainage prediction techniques.Applied Geochemistry, 19 , 1953-1974.
doi:10.1016/j.apgeochem.2004.05.002
Wei, H.Y., Chen, D.Z., Wang, J.G., Yu, H., & Tucker, M.E. (2012).
Organic accumulation in the lower Chihsia Formation (Middle Permian) of
South China: Constraints from pyrite morphology and multiple geochemical
proxies. Palaeogeography Palaeoclimatology Palaeoecology, 353 ,
73-86. doi:10.1016/j.palaeo.2012.07.005
Wignall, P.B., Newton, R., & Brookfield, M.E. (2005). Pyrite framboid
evidence for oxygen-poor deposition during the Permian-Triassic crisis
in Kashmir. Palaeogeography Palaeoclimatology Palaeoecology, 216 ,
183-188. doi:10.1016/j.palaeo.2004.10.009
Wilkin, R.T., & Barnes, H.L. (1997). Pyrite formation in an anoxic
estuarine basin. American Journal of Science, 297 , 620-650.
doi:10.2475/ajs.297.6.620
Yin, J.R. (2010). Jurassic Ammonites of Tibet. Geological Publishing
House, Beijing (247 pp.; in Chinese with English abstract).
Zaborska, A., Wlodarska-Kowalczuk, M., Legeżyńska, J., Jankowska, E.,
Winogradow, A., & Deja, K. (2016). Sedimentary organic matter sources,
benthic consumption and burial in west Spitsbergen fjords – Signs of
maturing of Arctic fjordic systems? Journal of Marine Systems,
180 , 112-123. doi:10.1016/j.jmarsys.2016.11.005
Zhang, S., Henehan, M.J., Hull, P.M., Reid, R.P., Hardisty, D.S., Hood,
A.V.S., & Planavsky, N.J. (2016). Investigating controls on boron
isotope ratios in shallow marine carbonates. Earth and Planetary
Science Letters, 458 , 380-393. doi:10.1016/j.epsl.2016.10.059