References
1. Gepreel KA, Nofal TA, Al-Sayali NS. Optical soliton solutions for
nonlinear evolution equations in mathematical physics by using the
extended (\(G^{\prime}/G\))-expansion function method. J Comput
Theoretical Nanoscience . 2017;14 (2): 979 –90.
2. Febreia MF, Facao MV, Latas SV, Sousa MH., Optical solitons in fibers
for communication systems. Fibers and Integrated Optics . 2005;24
(3-4): 287 –313.
3. Hosseini K, Kumar D, Kaplan M, Bejarbaneh EY. New exact traveling
wave solutions of the unstable nonlinear Schrödinger equations,Commun Theor Phys . 2017;68:761–67.
4. Xianguo X, Wu J. Riemann–Hilbert approach and N-soliton solutions
for a generalized Sasa–Satsuma equation. Wave Motion . 2016;60:
62 –72.
5. Tasbozan O, Kurt A, Tozar A. New optical solutions of complex
Ginzburg–Landau equation arising in semiconductor lasers. Applied
Phys B . 2019;125(6): 104.
6. Biswas A, Alqahtani RT. Chirp-free bright optical solitons for
perturbed Gerdjikov–Ivanov equation by semi-inverse variational
principle, Optik 2017;147: 72 –76.
7. Bansal A, Biswas A, Triki H, Zhou Q, Moshokoa SP, Belic M. Optical
solitons and group invariant solutions to Lakshmanan–Porsezian–Daniel
model in optical fibers and PCF. Optik 2018;160: 86 –91.
8. Rezazadeh H, Kumar D, Neirameh A, Eslami M, Mirzazadeh M.
Applications of three methods for obtaining optical soliton solutions
for the Lakshmanan–Porsezian–Daniel model with Kerr law nonlinearity.Pramana 2019;94(1): 39.
9. Zhao Y, Fan E, N-soliton solution for a higher-order Chen–Lee–Liu
equation with nonzero boundary conditions, Modern Physics Letters
B . 2020;34(04): 2050054.
10. Triki H, Babatin MM, Biswas A. Chirped bright solitons for
Chen–Lee–Liu equation in optical fibers and PCF. Optik2017;149: 300 –303.
11. Kudryashov NA. General solution of the traveling wave reduction for
the perturbed Chen-Lee-Liu equation. Optik 2019;186: 339 –49.
12. Kumar D, Joardar AK, Hoque A, Paul GC. Investigation of dynamics of
nematicons in liquid crystals by extended sinh-Gordon equation expansion
method. Opt Quant Electron. 2019; 51(7): 212.
13. Mirzazadeh M, Eslami M, Biswas A. Dispersive optical solitons by
Kudryashov’s method. Optik 2014;125(23): 6874 –80.
14. Zhou Q, Kumar D, Mirzazadeh M, Eslami M, Rezazadeh H. Optical
soliton in nonlocal nonlinear medium with cubic-quintic nonlinearities
and spatio-temporal dispersion. Acta Physica Polonica A .
2018;134(6): 1204 –10.
15. Kumar D, Kaplan M. Application of the modified Kudryashov method to
the generalized Schrödinger–Boussinesq equations. Opt Quant
Electron . 2018;50(9): 329.
16. Kaplan M, Hosseini K, Samadani F, Raza N. Optical soliton solutions
of the cubic-quintic non-linear Schrödinger’s equation including an
anti-cubic term. J Modern Optics . 2018;65(12):1431–36.
17. Yasar E, Yıldırım Y, Adem AR. Perturbed optical solitons with
spatio-temporal dispersion in (2+1)-dimensions by extended Kudryashov
method. Optik. 2018;158: 1–14.
18. Biswas A, Mirzazadeh M, Eslami M, Zhou Q, Bhrawy A, Belic M. Optical
solitons in nanofibers with spatio-temporal dispersion by trial solution
method. Optik . 2016;127(18): 7250 –57.
19. Ekici M, Sonmezoglu A, Biswas A, Belic MR. Optical solitons in
(2+1)–dimensions with Kundu–Mukherjee–Naskar equation by extended
trial function scheme. Chinese J Phys . 2019;57: 72–77.
20. Yıldırım Y. Optical solitons to Kundu–Mukherjee–Naskar model with
modified simple equation approach. Optik . 2019;184: 247–52.
21. Inc M, Aliyu AI, Yusuf A, Baleanu D. Optical solitons to the
resonance nonlinear Schrödinger equation by sine-Gordon equation method.Superlattice Microst. 2018;113: 541–549.
22. Kumar D, Hosseini K, Samadani F. The sine-Gordon expansion method to
look for the traveling wave solutions of the Tzitzéica type equations in
nonlinear optics. Optik. 2017;149: 439–46.
23. Seadawy AR, Kumar D, Chakrabarty AK. Dispersive optical soliton
solutions for the hyperbolic and cubic-quintic nonlinear Schrödinger
equations via the extended sinh-Gordon equation expansion method.Eur Phys J Plus . 2018;133(5):182.
24. Bulut H, Sulaiman TA, Baskonus HM. Dark, bright and other soliton
solutions to the Heisenberg ferromagnetic spin chain equation,Superlattice Microst. 2018;123: 12–19.
25. Kumar D, Manafian J, Hawlader F, Ranjbaran A. New closed form
soliton and other solutions of the Kundu–Eckhaus equation via the
extended sinh-Gordon equation expansion method. Optik. 2018;160:
159–167.
26. Kudryashov NA. Simplest equation method to look for exact solutions
of nonlinear differential equations. Chaos Solitons Fractal.2005;24(5): 1217–31.
27. Bilige S, Chaolu T, Wang X. Application of the extended simplest
equation method to the coupled Schrödinger-Boussinesq equation.Appl Math Comput . 2013;224: 517–23.
28. Rezazadeh H, Mirhosseini-Alizamini SM, Eslami M, Rezazadeh M,
Mirzazadeh M, Abbagari S. New optical solitons of nonlinear conformable
fractional Schrödinger-Hirota equation. Optik. 2018;172: 545–53.
29. Khater MMA, Seadawy AR, Lu D. Dispersive optical soliton solutions
for higher order nonlinear Sasa-Satsuma equation in mono mode fibers via
new auxiliary equation method. Superlattice Microst. 2018;113:
346–58.
30. Kundu A, Mukherjee A, Naskar T. Modelling rogue waves through exact
dynamical lump soliton controlled by ocean currents. Proceedings
of the Royal Society A. 2014;470: 20130576.
31. Qiu D, Zhang Y, He J. The rogue wave solutions of a new
(2+1)-dimensional equation, Communs Nonlinear Sci Numel
Simulation. 2016;30(1-3): 307–15.
32. Kundu A, Mukherjee A. Novel integrable higher-dimensional nonlinear
Schrodinger equation: properties, solutions, applications. arXiv .
2013; 1305.4023.
33. Yıldırım Y. Optical solitons to Kundu–Mukherjee–Naskar model with
trial equation approach. Optik . 2019;183: 1061–65.
34. Aliyu AI, Li Y, Baleanu D. Single and combined optical solitons and
conservation laws in (2+1)-dimensions with Kundu–Mukherjee–Naskar
equation. Chinese J Phys. 2020; 63: 410–18.
35. Yıldırım Y, Mirzazadeh M. Optical pulses with Kundu-Mukherjee-Naskar
model in fiber communication systems. Chinese J Phys. 2020;64:
183–93.
36. Jhangeer A, Seadawy AR, Ali F, Ahmed A. New complex waves of
perturbed Shrödinger equation with Kerr law nonlinearity and
Kundu-Mukherjee-Naskar equation. Results Phys. 2020;16: 102816.
37. Biswas A, Guzman JV, Bansal A, Kara AH, Alzahrani AK, Zhou Q, Belic
MR. Optical dromions, domain walls and conservation laws with
Kundu–Mukherjee–Naskar equation via traveling waves and Lie symmetry,Results Phys. 2020;16: 102850.
38. Yıldırım Y. Optical solitons to Kundu–Mukherjee–Naskar model in
birefringent fibers with modified simple equation approach.Optik. 2019;184: 121–27.
39. Kudryashov NA. General solution of traveling wave reduction for the
Kundu–Mukherjee–Naskar model. Optik . 2019;186: 22 – 27.
40. Khalil R, Al Horani M, Yousef A, Sababheh M. A new definition of
fractional derivative, J Comput Appl Math . 2014; 264: 65–70.
41. Abdeljawad T. On conformable fractional calculus. J Comput
Appl Math . 2015;279, 57–66.
42. Kumar D, Seadawy AR, Joardar AK. Modified Kudryashov method via new
exact solutions for some conformable fractional differential equations
arising in mathematical biology. Chinese J Phys . 2018;56(1): 75
–85.
43. Kumar D, Darvishi MT, Joardar AK. Modified Kudryashov method and its
application to the fractional version of the variety of Boussinesq-like
equations in shallow water. Opt Quant Electron . 2018;50(3): 128.
44. Foroutan M, Kumar D, Manafian J, Hoque A. New explicit soliton and
other solutions for the conformable fractional Biswas–Milovic equation
with Kerr and parabolic nonlinearity through an integration scheme.Optik. 2018;170: 190 – 202.
45. Ferdous F, Hafez MG, Biswas A, Ekici M, Zhou Q, Alfiras M, Moshokoa
SP, Belic MR. Oblique resonant optical solitons with Kerr and parabolic
law nonlinearities and fractional temporal evolution by generalized\(exp\ (-\ \Phi\ (\xi))\)-expansion. Optik . 2019;178: 439–48.
46. Akther S, Hafez MG, Ferdous F. Oblique resonance wave phenomena for
nonlinear coupled evolution equations with fractional temporal
evolution, Eur Phys J Plus. 2019;134(9): 473.
47. Ferdous F, Hafez MG. Oblique closed form solutions of some important
fractional evolution equations via the modified Kudryashov method
arising in physical problems. J Ocean Eng Sci. 2018;3(3):
244–52.