References
1. Gepreel KA, Nofal TA, Al-Sayali NS. Optical soliton solutions for nonlinear evolution equations in mathematical physics by using the extended (\(G^{\prime}/G\))-expansion function method. J Comput Theoretical Nanoscience . 2017;14 (2): 979 –90.
2. Febreia MF, Facao MV, Latas SV, Sousa MH., Optical solitons in fibers for communication systems. Fibers and Integrated Optics . 2005;24 (3-4): 287 –313.
3. Hosseini K, Kumar D, Kaplan M, Bejarbaneh EY. New exact traveling wave solutions of the unstable nonlinear Schrödinger equations,Commun Theor Phys . 2017;68:761–67.
4. Xianguo X, Wu J. Riemann–Hilbert approach and N-soliton solutions for a generalized Sasa–Satsuma equation. Wave Motion . 2016;60: 62 –72.
5. Tasbozan O, Kurt A, Tozar A. New optical solutions of complex Ginzburg–Landau equation arising in semiconductor lasers. Applied Phys B . 2019;125(6): 104.
6. Biswas A, Alqahtani RT. Chirp-free bright optical solitons for perturbed Gerdjikov–Ivanov equation by semi-inverse variational principle, Optik 2017;147: 72 –76.
7. Bansal A, Biswas A, Triki H, Zhou Q, Moshokoa SP, Belic M. Optical solitons and group invariant solutions to Lakshmanan–Porsezian–Daniel model in optical fibers and PCF. Optik 2018;160: 86 –91.
8. Rezazadeh H, Kumar D, Neirameh A, Eslami M, Mirzazadeh M. Applications of three methods for obtaining optical soliton solutions for the Lakshmanan–Porsezian–Daniel model with Kerr law nonlinearity.Pramana 2019;94(1): 39.
9. Zhao Y, Fan E, N-soliton solution for a higher-order Chen–Lee–Liu equation with nonzero boundary conditions, Modern Physics Letters B . 2020;34(04): 2050054.
10. Triki H, Babatin MM, Biswas A. Chirped bright solitons for Chen–Lee–Liu equation in optical fibers and PCF. Optik2017;149: 300 –303.
11. Kudryashov NA. General solution of the traveling wave reduction for the perturbed Chen-Lee-Liu equation. Optik 2019;186: 339 –49.
12. Kumar D, Joardar AK, Hoque A, Paul GC. Investigation of dynamics of nematicons in liquid crystals by extended sinh-Gordon equation expansion method. Opt Quant Electron. 2019; 51(7): 212.
13. Mirzazadeh M, Eslami M, Biswas A. Dispersive optical solitons by Kudryashov’s method. Optik 2014;125(23): 6874 –80.
14. Zhou Q, Kumar D, Mirzazadeh M, Eslami M, Rezazadeh H. Optical soliton in nonlocal nonlinear medium with cubic-quintic nonlinearities and spatio-temporal dispersion. Acta Physica Polonica A . 2018;134(6): 1204 –10.
15. Kumar D, Kaplan M. Application of the modified Kudryashov method to the generalized Schrödinger–Boussinesq equations. Opt Quant Electron . 2018;50(9): 329.
16. Kaplan M, Hosseini K, Samadani F, Raza N. Optical soliton solutions of the cubic-quintic non-linear Schrödinger’s equation including an anti-cubic term. J Modern Optics . 2018;65(12):1431–36.
17. Yasar E, Yıldırım Y, Adem AR. Perturbed optical solitons with spatio-temporal dispersion in (2+1)-dimensions by extended Kudryashov method. Optik. 2018;158: 1–14.
18. Biswas A, Mirzazadeh M, Eslami M, Zhou Q, Bhrawy A, Belic M. Optical solitons in nanofibers with spatio-temporal dispersion by trial solution method. Optik . 2016;127(18): 7250 –57.
19. Ekici M, Sonmezoglu A, Biswas A, Belic MR. Optical solitons in (2+1)–dimensions with Kundu–Mukherjee–Naskar equation by extended trial function scheme. Chinese J Phys . 2019;57: 72–77.
20. Yıldırım Y. Optical solitons to Kundu–Mukherjee–Naskar model with modified simple equation approach. Optik . 2019;184: 247–52.
21. Inc M, Aliyu AI, Yusuf A, Baleanu D. Optical solitons to the resonance nonlinear Schrödinger equation by sine-Gordon equation method.Superlattice Microst. 2018;113: 541–549.
22. Kumar D, Hosseini K, Samadani F. The sine-Gordon expansion method to look for the traveling wave solutions of the Tzitzéica type equations in nonlinear optics. Optik. 2017;149: 439–46.
23. Seadawy AR, Kumar D, Chakrabarty AK. Dispersive optical soliton solutions for the hyperbolic and cubic-quintic nonlinear Schrödinger equations via the extended sinh-Gordon equation expansion method.Eur Phys J Plus . 2018;133(5):182.
24. Bulut H, Sulaiman TA, Baskonus HM. Dark, bright and other soliton solutions to the Heisenberg ferromagnetic spin chain equation,Superlattice Microst. 2018;123: 12–19.
25. Kumar D, Manafian J, Hawlader F, Ranjbaran A. New closed form soliton and other solutions of the Kundu–Eckhaus equation via the extended sinh-Gordon equation expansion method. Optik. 2018;160: 159–167.
26. Kudryashov NA. Simplest equation method to look for exact solutions of nonlinear differential equations. Chaos Solitons Fractal.2005;24(5): 1217–31.
27. Bilige S, Chaolu T, Wang X. Application of the extended simplest equation method to the coupled Schrödinger-Boussinesq equation.Appl Math Comput . 2013;224: 517–23.
28. Rezazadeh H, Mirhosseini-Alizamini SM, Eslami M, Rezazadeh M, Mirzazadeh M, Abbagari S. New optical solitons of nonlinear conformable fractional Schrödinger-Hirota equation. Optik. 2018;172: 545–53.
29. Khater MMA, Seadawy AR, Lu D. Dispersive optical soliton solutions for higher order nonlinear Sasa-Satsuma equation in mono mode fibers via new auxiliary equation method. Superlattice Microst. 2018;113: 346–58.
30. Kundu A, Mukherjee A, Naskar T. Modelling rogue waves through exact dynamical lump soliton controlled by ocean currents. Proceedings of the Royal Society A. 2014;470: 20130576.
31. Qiu D, Zhang Y, He J. The rogue wave solutions of a new (2+1)-dimensional equation, Communs Nonlinear Sci Numel Simulation. 2016;30(1-3): 307–15.
32. Kundu A, Mukherjee A. Novel integrable higher-dimensional nonlinear Schrodinger equation: properties, solutions, applications. arXiv . 2013; 1305.4023.
33. Yıldırım Y. Optical solitons to Kundu–Mukherjee–Naskar model with trial equation approach. Optik . 2019;183: 1061–65.
34. Aliyu AI, Li Y, Baleanu D. Single and combined optical solitons and conservation laws in (2+1)-dimensions with Kundu–Mukherjee–Naskar equation. Chinese J Phys. 2020; 63: 410–18.
35. Yıldırım Y, Mirzazadeh M. Optical pulses with Kundu-Mukherjee-Naskar model in fiber communication systems. Chinese J Phys. 2020;64: 183–93.
36. Jhangeer A, Seadawy AR, Ali F, Ahmed A. New complex waves of perturbed Shrödinger equation with Kerr law nonlinearity and Kundu-Mukherjee-Naskar equation. Results Phys. 2020;16: 102816.
37. Biswas A, Guzman JV, Bansal A, Kara AH, Alzahrani AK, Zhou Q, Belic MR. Optical dromions, domain walls and conservation laws with Kundu–Mukherjee–Naskar equation via traveling waves and Lie symmetry,Results Phys. 2020;16: 102850.
38. Yıldırım Y. Optical solitons to Kundu–Mukherjee–Naskar model in birefringent fibers with modified simple equation approach.Optik. 2019;184: 121–27.
39. Kudryashov NA. General solution of traveling wave reduction for the Kundu–Mukherjee–Naskar model. Optik . 2019;186: 22 – 27.
40. Khalil R, Al Horani M, Yousef A, Sababheh M. A new definition of fractional derivative, J Comput Appl Math . 2014; 264: 65–70.
41. Abdeljawad T. On conformable fractional calculus. J Comput Appl Math . 2015;279, 57–66.
42. Kumar D, Seadawy AR, Joardar AK. Modified Kudryashov method via new exact solutions for some conformable fractional differential equations arising in mathematical biology. Chinese J Phys . 2018;56(1): 75 –85.
43. Kumar D, Darvishi MT, Joardar AK. Modified Kudryashov method and its application to the fractional version of the variety of Boussinesq-like equations in shallow water. Opt Quant Electron . 2018;50(3): 128.
44. Foroutan M, Kumar D, Manafian J, Hoque A. New explicit soliton and other solutions for the conformable fractional Biswas–Milovic equation with Kerr and parabolic nonlinearity through an integration scheme.Optik. 2018;170: 190 – 202.
45. Ferdous F, Hafez MG, Biswas A, Ekici M, Zhou Q, Alfiras M, Moshokoa SP, Belic MR. Oblique resonant optical solitons with Kerr and parabolic law nonlinearities and fractional temporal evolution by generalized\(exp\ (-\ \Phi\ (\xi))\)-expansion. Optik . 2019;178: 439–48.
46. Akther S, Hafez MG, Ferdous F. Oblique resonance wave phenomena for nonlinear coupled evolution equations with fractional temporal evolution, Eur Phys J Plus. 2019;134(9): 473.
47. Ferdous F, Hafez MG. Oblique closed form solutions of some important fractional evolution equations via the modified Kudryashov method arising in physical problems. J Ocean Eng Sci. 2018;3(3): 244–52.