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Abstract

In this paper, we consider a class of non-cooperative critical nonlocal equation system with
variable exponents of the form:





−(−∆)s
p(·,·)u− |u|p(x)−2u = Fu(x, u, v) + |u|q(x)−2u, in RN ,

(−∆)s
p(·,·)v + |v|p(x)−2v = Fv(x, u, v) + |v|q(x)−2u, in RN ,

u, v ∈ W s,p(·,·)(RN ),

where ∇F = (Fu, Fv) is the gradient of a C1-function F : RN×R2 → R+ with respect to the variable
(u, v) ∈ R2. We also assume that{x ∈ RN : q(x) = p∗s(x)} 6= ∅, here p∗s(x) = Np(x, x)/(N − sp(x, x))
is the critical Sobolev exponent for variable exponents. With the help of the Limit index theory and
the concentration-compactness principles for fractional Sobolev spaces with variable exponents, we
establish the existence of infinitely many solutions for the problem under the suitable conditions on
the nonlinearity.

Keywords: Fractional p(·)-Laplacian; Limit index; Fractional Sobolev spaces with variable
exponents; Concentration-compactness principles; Variational method.

2010 MSC: 35B33; 35D30; 35J20; 46E35; 49J35.

1 Introduction and main results

In recent years, problems involving nonlocal operators have gained a lot of attentions due to their
occurrence in real-world applications, such as, the thin obstacle problem, optimization, finance, phase
transitions and also in pure mathematical research, such as, minimal surfaces, conservation laws (for
more details see for example [2, 12] and the references therein). The celebrated work of Nezza et al. [16]
provides the necessary functional set-up to study these nonlocal problems using variational method. We
refer [40] and references therein for more details on problems involving semi-linear fractional Laplace

∗ E-mail address: songyq16@mails.jlu.edu.cn(Y. Song), shisy@mail.jlu.edu.cn(S. Shi).
† Corresponding author at: Scientific Research Department, Changchun Normal University, Changchun 130032, Jilin,

PR China.

1



operator. In continuation to this, the problems involving quasilinear nonlocal fractional p-Laplace op-
erator are extensively studied by many researchers including Squassina, Palatucci, Mosconi, Rădulescu
et al. (see [41, 42]), where the authors studied various aspects, such as existence, multiplicity and
regularity of the solutions of the quasilinear nonlocal problem involving fractional p-Laplace operator.

On the other hand, in the recent years, the investigation on problems about differential equations
and variational problems involving p(·)-growth conditions has been the center of attention because
they can be presented as a model for many physical phenomena that arise in the research of elastic
mechanics, electrorheological fluids, image processing, etc. We refer the readers to [15, 17] and the ref-
erences therein. The Lebesgue-Sobolev spaces related to the p(·)-Laplacian are called variable exponent
Lebesgue-Sobolev spaces and were studied in [20, 29].

While this was happening, it is a natural question to investigate which results can be recovered when
the p(·)-Laplacian is changed into the fractional p(·)-Laplacian. In this regard, Kaumann et al.[28]
recently introduced a new class of fractional Sobolev spaces with variable exponents, and elliptic prob-
lems involving the fractional p(·)-Laplacian have been investigated [3]. The authors in [4] gave some
further elementary properties both on this function space and the related nonlocal operator. As appli-
cations, they investigated the existence of solutions for equations involving the fractional p(·)-Laplacian
by employing the critical point theory in [1]. Very recently, Ho and Kim [25] obtained fundamental
embedding for the new fractional Sobolev spaces with variable exponent that is a generalization of
well-known fractional Sobolev spaces. Using this, they demonstrated a priori bounds and multiplicity
of solutions of some nonlinear elliptic problems involving the fractional p(·)-Laplacian. We refer to
[44, 45] fractional Sobolev spaces with variable exponents and the corresponding nonlocal equations
with variable exponents.

To the authors’ best knowledge, though most properties of the classical fractional Sobolev spaces
have been extended to the fractional Sobolev spaces with variable exponents, there are few results for
the critical Sobolev type imbedding for these spaces. The critical problem was initially studied in the
seminal paper by Brezis-Nirenberg [10], which treated for Laplace equations. Since then there have
been extensions of [10] in many directions. Elliptic equations involving critical growth are delicate due
to the lack of compactness arising in connection with the variational approach. For such problems,
the concentration-compactness principles introduced by P.L. Lions [38, 39] and its variant at infinity
[6, 7, 14] have played a decisive role in showing a minimizing sequence or a Palais-Smale sequence is
precompact. By using these concentration-compactness principles or extending them to the Sobolev
spaces with fractional order or variable exponents, many authors have been successful to deal with
critical problems involving p-Laplacian or p(·)-Laplacian or fractional p-Laplacian, see e.g., [8, 9, 11, 13,
21, 23, 25, 32, ?, 34, 35, 46] and references therein. Recently, Ho and Kim [26] proved the concentration-
compactness principles for fractional Sobolev spaces with variable exponents and obtained the existence
of many solutions for a class of critical nonlocal problems with variable exponents.

The present paper is devoted to the solvability of non-cooperative critical nonlocal equation system
with variable exponents:





−(−∆)s
p(·,·)u− |u|p(x)−2u = Fu(x, u, v) + |u|q(x)−2u, in RN ,

(−∆)s
p(·,·)v + |v|p(x)−2v = Fv(x, u, v) + |v|q(x)−2u, in RN ,

u, v ∈ W s,p(·,·)(RN ),

(1.1)

where ∇F = (Fu, Fv) is the gradient of a C1-function F : RN × R2 → R+ with respect to the variable
(u, v) ∈ R2, p ∈ C(RN × RN ) is symmetric, i.e., p(x, y) = p(y, x) for all (x, y) ∈ RN × RN , q ∈ C(RN )
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satisfies
p(x) := p(x, x) < q(x) ≤ p∗s(x) :=

Np(x, x)
N − sp(x, x)

for all x ∈ RN .

The main aim of this paper is to obtain the existence results of a sequence of infinitely many solutions
to the problem (1.1). The strategy of the proof for these assertions is based on the applications of the
Limit index theory, which were initially introduced by Li [31] for local problems with subcritical growth
condition in bounded domains, in view of the variational nature of the problem considered. We also
refer the works related to those papers [27, 36, 37]. Motivated by the contribution cited above, we
shall study the existence of solutions for (1.1) with the help of the Limit index theory. We can see
that there are two main difficulties in considering our problem. Firstly, problem (1.1) involves critical
nonlocal which prevents us from applying the methods as before. To overcome the challenge we use
the concentration-compactness principles for fractional Sobolev spaces with variable exponents due to
[26] in order to prove the (PS)c condition at special levels c. The second difficulty is that the energy
functional associated to the problem is strongly indefinite in the sense that it is neither unbounded from
below or from above on any subspace of finite codimension. Therefore, one cannot apply the symmetric
mountain pass theorem on the energy functional. To our best knowledge, there are no existence results
about the critical nonlocal problems with variable exponents (1.1).

In the rest of this paper, we always assume that the variable exponents p, q and the function f satisfy
the following assumptions:

(P) p : RN × RN → R is uniformly continuous and symmetric such that

1 < p := inf
(x,y)∈RN×RN

p(x, y) ≤ sup
(x,y)∈RN×RN

p(x, y) =: p <
N

s
;

there exists ε0 ∈ (0, 1
2) such that p(x, y) = p for all x, y ∈ RN satisfying |x − y| < ε0 and

supy∈RN p(x, y) = p for all x ∈ RN ; and |{x ∈ RN : p∗(x) 6= p}| < ∞, where p∗(x) :=
infy∈RN p(x, y) for x ∈ RN .

(Q) q : RN → R is uniformly continuous such that p∗(x) ≤ q(x) ≤ p∗s for all x ∈ RN and C := |{x ∈
RN : q(x) = p∗s}| 6= ∅.

(E∞) There exist lim
|x|,|y|→∞

p(x, y) = p̄ and lim
|x|→∞

q(x) = q∞ for p̄ given by (P) and some q∞ ∈ (1,∞).

(F) (F1) F ∈ C1(RN × R2,R+), here R+ = {x ∈ R|x ≥ 0}; and there exist two positive constants
C1, C2 > 0, the function r with r ∈ C(RN ,R+), infx∈RN [q(x)− r(x)] > 0 and r− > p such that

|Fs(r, s, t)|+ |Ft(r, s, t)| ≤ C1(x)|s|r(x)−1 + C2(x)|t|r(x)−1.

(F2) there exist p < θ < q− such that 0 < θF (r, s, t) ≤ sFs(r, s, t) + tFt(r, s, t), for any (r, s, t) ∈
(RN × R2,R+).

(F3) sFs(x, s, t) ≥ 0 for all (x, s, t) ∈ RN × R2.

(F4) F (x, s, t) = F (x,−s,−t) for all (x, s, t) ∈ RN× ∈ R2.

The main result of this paper is as follows.

Theorem 1.1. Let (P), (Q) and (E∞) hold. If F satisfies (F1)–(F4) are fulfilled. Then problem (1.1)
possesses infinitely many solutions.
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The rest of our paper is organized as follows. In Section 2, we briefly review some properties of the
Sobolev spaces with fractional order or variable exponents. Moreover, we introduce the Limit Index
Theory due to Li [31]. In Section 3, we prove the Palais-Smale condition at some special energy levels by
using the concentration-compactness principles for fractional Sobolev spaces with variable exponents.
The proof of the main result Theorem 1.1 is given in Section 4.

2 Fractional Sobolev spaces and Limit Index Theory

This section will be divided into three parts. First, we briefly review the definitions and list some basic
properties of the Lebesgue spaces. Second, we recall and we establish some qualitative properties of
the new fractional Sobolev spaces with variable exponent. Finally, we recall the Limit Index Theory
due to Li [31].

2.1 Variable exponent Lebesgue spaces and fractional Sobolev spaces

In this subsection, we recall some useful properties of variable exponent spaces. For more details we
refer the reader to [17, 18, 29], and the references therein.

Set
C+(Ω) = {h ∈ C(Ω) : min

x∈Ω
h(x) > 1}.

For any h ∈ C+(Ω) we define

h+ = sup
x∈Ω

h(x) and h− = inf
x∈Ω

h(x).

We can introduce the variable exponent Lebesgue space as follows:

Lp(·)(Ω) =
{
u : u is a measurable real-valued functionsuch that

∫

Ω
|u(x)|p(x) dx < ∞}

,

for p ∈ C+(Ω). Defining the norm on Lp(x)(Ω) by

|u|p(·) = inf
{
µ > 0 :

∫

Ω

∣∣∣∣
u(x)
µ

∣∣∣∣
p(x)

dx ≤ 1
}
,

then the space Lp(x)(Ω) is a Banach space, we call it a generalized Lebesgue space.

Proposition 2.1. [17, 19] (i) The space (Lp(x)(Ω), | · |p(x)) is a separable, uniform convex Banach
space, and its conjugate space is Lp∗(x)(Ω), where 1/p∗(x) + 1/p(x) = 1. For any u ∈ Lp(x)(Ω) and
v ∈ Lp∗(x)(Ω), we have

∣∣
∫

Ω
uv dx

∣∣ ≤
( 1

p−
+

1
p−∗

)
|u|p(·)|v|p∗(·); (2.1)

(ii) If 0 < |Ω| < ∞ and p1, p2 are variable exponents in C+(Ω) such that p1 ≤ p2 in Ω, then the
embedding Lp2(·)(Ω) ↪→ Lp1(·)(Ω) is continuous.

Proposition 2.2. [17, 19] The mapping ρp(·) : Lp(·)(Ω) → R defined by

ρp(·)(u) =
∫

Ω
|u|p(x) dx.
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Then the following relations hold:

|u|p(·) < 1 (= 1; > 1) ⇔ ρp(·)(u) < 1 (= 1; > 1),

|u|p(·) > 1 ⇒ |u|p−p(·) ≤ ρp(·)(u) ≤ |u|p+

p(·),

|u|p(·) < 1 ⇒ |u|p+

p(·) ≤ ρp(·)(u) ≤ |u|p−p(·),

|un − u|p(·) → 0 ⇔ ρp(·)(un − u) → 0.

Let s ∈ (0, 1) and p ∈ (1,∞) be constants. Define the fractional Sobolev space W s,p(Ω) as

W s,p(Ω) :=
{

u ∈ Lp(Ω) :
∫∫

Ω

|u(x)− u(y)|p
|x− y|N+sp

dxdy < ∞
}

endowed with norm

‖u‖s,p,Ω :=
(

u ∈ Lp(Ω) :
∫

Ω
|u(x)|pdx +

∫∫

Ω

|u(x)− u(y)|p
|x− y|N+sp

dxdy

) 1
p

.

We recall the following crucial imbeddings:

Proposition 2.3. [16] Let s ∈ (0, 1) and p ∈ (1,∞) be such that sp < N . It holds that
(i) W s,p(Ω) ↪→↪→ Lq(Ω) if Ω is bounded and 1 ≤ q < Np

N−sp =: p∗s;
(ii) W s,p(Ω) ↪→ Lq(Ω) if Ω is bounded and p ≤ q ≤ Np

N−sp =: p∗s.

2.2 Fractional Sobolev spaces with variable exponent

In this subsection, we recall the fractional Sobolev spaces with variable exponents that was first in-
troduced in [28], and was then refined in [25]. Furthermore, we will obtain a critical Sobolev type
imbedding on these spaces.

Let Ω be a bounded Lipschitz domain in RN or Ω = RN . In the following, for brevity, we write p(x)
instead of p(x, x) and with this notation, p ∈ C+(Ω̄). Define

W s,p (·,·)(Ω) :=

{
u ∈ Lp(·)(Ω) :

∫

Ω

∫

Ω

|u(x)− u(y)|p(x,y)

|x− y|N+sp(x,y)
dx dy < +∞

}

endowed with the norm
‖u‖s,p,Ω := inf

{
λ > 0 : MΩ(

u

λ
) < 1

}
,

where

MΩ(u) :=
∫

Ω
|u|p(x) dx +

∫

Ω

∫

Ω

|u(x)− u(y)|p(x,y)

|x− y|N+sp(x,y)
dx dy.

Then W s,p (·,·)(Ω) is a separable reflexive Banach space (see [3, 4, 28]). On W s,p (·,·)(Ω), we also make
use of the following norm

|u|s,p,Ω := ‖u‖Lp(·)(Ω) + [u]s,p,Ω,

where

[u]s,p,Ω := inf

{
λ > 0 :

∫

Ω

∫

Ω

|u(x)− u(y)|p(x,y)

λp(x,y)|x− y|N+sp(x,y)
dx dy < 1

}
.
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Note that ‖ · ‖s,p,Ω and | · |s,p,Ω are equivalent norms on W s,p (·,·)(Ω) with the relation

1
2
‖u‖s,p,Ω ≤ |u|s,p,Ω ≤ 2‖u‖s,p,Ω, ∀ u ∈ W s,p (·,·)(Ω). (2.2)

Remark 2.1. It is clear that if p satisfies (P), then p(x, x) = p for all x ∈ RN . Hence, by Theorem
3.3 in [26], we have

W s,p (·,·)(RN ) ↪→ Lp∗s(·)(RN ). (2.3)

On the other hand, by (P) we have that for any u ∈ Lp(RN ),
∫

x∈RN

|u|p∗(x)dx =
∫

p∗(x)=p
|u|p∗(x)dx +

∫

p∗(x) 6=p
|u|p∗(x)dx

≤
∫

p∗(x)=p
|u|pdx +

∫

p∗(x) 6=p

[
1 + |u|p] dx

=
∣∣{x ∈ RN : p∗(x) 6= p}

∣∣ +
∫

x∈RN

|u|pdx < ∞.

Hence, Lp(RN ) ⊂ Lp∗(·)(RN ). From this and (2.3) we obtain

W s,p (·,·)(RN ) ↪→ Lt(·)(RN ). (2.4)

for any t ∈ C(RN ) satisfying p∗(x) ≤ t(x) ≤ p∗s for all x ∈ RN . In particular, (Q) yields

Sq := inf
u∈W s,p (·,·)(RN )\{0}

‖u‖
‖u‖Lq(·)(RN )

(2.5)

In what follows, when Ω is understood, we just write ‖ · ‖s,p , | · |s,p and [·]s,p instead of ‖ · ‖s,p,Ω ,
| · |s,p,Ω and [·]s,p,Ω , respectively. We also denote the ball in RN centered at z with radius ε by Bε(z)
and denote the Lebesgue measure of a set E ⊂ RN by |E|. For brevity, we write Bε and Bc

ε instead of
Bε(0) and RN \Bε(0), respectively.

Proposition 2.4. ([25]) On W s,p (·,·)(Ω) it holds that
(i) for u ∈ W s,p (·,·)(Ω), λ = ‖u‖s,p if and only if MΩ(u

λ) = 1;
(ii) MΩ(u) > 1(= 1; < 1) if and only if ‖u‖s,p > 1(= 1; < 1) , respectively;
(iii) if ‖u‖s,p ≥ 1, then ‖u‖p−

s,p ≤ MΩ(u) ≤ ‖u‖p+

s,p;
(iv) if ‖u‖s,p < 1, then ‖u‖p+

s,p ≤ MΩ(u) ≤ ‖u‖p−
s,p.

Theorem 2.1. (Subcrtitical imbeddings, [25]). It holds that
(i) W s,p (·,·)(Ω) ↪→↪→ Lr(·)(Ω), if Ω is a bounded Lipschitz domain and r ∈ C+(Ω) such that r(x) <

Np(x)
N−sp(x) =: p∗s(x) for all x ∈ Ω;

(ii) W s,p (·,·)(RN ) ↪→ Lr(·)(RN ) for any uniformly continuous function r ∈ C+(RN ) satisfying p(x) ≤
r(x) for all x ∈ RN and infx∈RN (p∗s(x)− r(x)) > 0 ;
(iii) W s,p (·,·)(RN ) ↪→↪→ L

r(·)
loc (RN ) for any r ∈ C+(RN ) satisfying r(x) < p∗s(x) for all x ∈ RN .
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2.3 Limit Index Theory

In this section, we recall the Limit Index Theory due to Li [31]. In order to do that, we introduce the
following definitions.

Definition 2.1. [31, 43] The action of a topological group G on a normed space Z is a continuous map

G× Z → Z : [g, z] 7→ gz

such that
1 · z = z, (gh)z = g(hz) z 7→ gz is linear, ∀ g, h ∈ G.

The action is isometric if
‖gz‖ = ‖z‖, ∀ g ∈ G, z ∈ Z.

And in this case Z is called the G-space.
The set of invariant points is defined by

Fix(G) := {z ∈ Z : gz = z, ∀ g ∈ G} .

A set A ⊂ Z is invariant if gA = A for every g ∈ G. A function ϕ : Z → R is invariant ϕ ◦ g = ϕ for
every g ∈ G, z ∈ Z. A map f : Z → Z is equivariant if g ◦ f = f ◦ g for every g ∈ G.

Suppose that Z is a G-Banach space, that is, there is a G isometric action on Z. Let

Σ := {A ⊂ Z : A is closed and gA = A,∀ g ∈ G}

be a family of all G-invariant closed subsets of Z, and let

Γ :=
{
h ∈ C0(Z, Z) : h(gu) = g(hu), g ∈ G

}

be the class of all G-equivariant mappings of Z. Finally, we call the set

O(u) := {gu : g ∈ G}

the G-orbit of u.

Definition 2.2. [31] An index for (G, Σ,Γ) is a mapping i : Σ → Z+ ∪ {+∞} (where Z+ is the set of
all nonnegative integers) such that for all A,B ∈ Σ, h ∈ Γ, the following conditions are satisfied:
(1) i(A) = 0 ⇔ A = ∅;
(2) (Monotonicity) A ⊂ B ⇒ i(A) ≤ i(B);
(3) (Subadditivity) i(A ∪B) ≤ i(A) + i(B);
(4) (supervariance) i(A) ≤ i(h(A)),∀ h ∈ Γ;
(5) (Continuity) If A is compact and A ∩ Fix(G) = ∅, then i(A) < +∞ and there is a G-invariant
neighbourhood N of A such that i(N) = i(A);
(6) (Normalization) If x 6∈ Fix(G), then i(O(x)) = 1.

Definition 2.3. [5] An index theory is said to satisfy the d-dimensional property if there is a positive
integer d such that

i(V dk ∩ S1) = k

for all dk-dimensional subspaces V dk ∈ Σ such that V dk ∩Fix(G) = {0}, where S1 is the unit sphere in
Z.
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Suppose that U and V are G-invariant closed subspaces of Z such that

Z = U ⊕ V,

where V is infinite dimensional and

V =
∞⋃

j=1

Vj ,

where Vj is a dnj-dimensional G-invariant subspace of V , j = 1, 2, · · · , and V1 ⊂ V2 ⊂ · · · ⊂ Vn ⊂ · · · .
Let

Zj = U ⊕ Vj ,

and ∀ A ∈ Σ, let
Aj = A⊕ Zj .

Definition 2.4. [31] Let i be an index theory satisfying the d-dimensional property. A limit index with
respect to (Zj) induced by i is a mapping

i∞ : Σ → Z ∪ {−∞,+∞}

given by
i∞(A) = lim sup

j→∞
(i(Aj)− nj).

Proposition 2.5. [31] Let A,B ∈ Σ. Then i∞ satisfies:
(1) A = ∅ ⇒ i∞ = −∞;
(2) (Monotonicity) A ⊂ B ⇒ i∞(A) ≤ i∞(B);
(3) (Subadditivity) i∞(A ∪B) ≤ i∞(A) + i∞(B);
(4) If V ∩ Fix(G) = {0}, then i∞(Sρ ∩ V ) = 0, where Sρ = {z ∈ Z : ‖z‖ = ρ};
(5) If Y0 and Ỹ0 are G-invariant closed subspaces of V such that V = Y0 ⊕ Ỹ0, Ỹ0 ⊂ Vj0 for some j0

and dim(Y0) = dm, then i∞(Sρ ∩ Y0) ≥ −m.

Definition 2.5. [43] A functional I ∈ C1(Z, R) is said to satisfy the condition (PS)∗c if any sequence
{unk

}, unk
∈ Znk

such that

I(unk
) → c, dInk

(unk) → 0, as k →∞

possesses a convergent subsequence, where Znk
is the nk-dimensional subspace of Z, Ink

= I|Znk
.

Theorem 2.2. [31] Assume that
(B1) I ∈ C1(Z, R) is G-invariant;
(B2) There are G-invariant closed subspaces U and V such that V is infinite dimensional and Z = U⊕V ;
(B3) There is a sequence of G-invariant finite dimensional subspaces

V1 ⊂ V2 ⊂ · · · ⊂ Vj ⊂ · · · , dim(Vj) = dnj ,

such that V = ∪∞j=1Vj;
(B4) There is an index theory i on Z satisfying the d-dimensional property;
(B5) There are G-invariant subspaces Y0, Ỹ0, Y1 of V such that V = Y0 ⊕ Ỹ0, Y1, Ỹ0 ⊂ Vj0 for some j0

and dim(Ỹ0) = dm < dk = dim(Y1);
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(B6) There are α and β, α < β such that f satisfies (PS)∗c , ∀ c ∈ [α, β];

(B7)





(a) either Fix(G) ⊂ U ⊕ Y1, or Fix(G) ∩ V = {0},
(b) there is ρ > 0 such that ∀ u ∈ Y0 ∩ Sρ, f(z) ≥ α,

(c) ∀ z ∈ U ⊕ Y1, f(z) ≤ β,

if i∞ is the limit index corresponding to i, then the numbers

cj = inf
i∞(A)≥j

sup
z∈A

f(u), −k + 1 ≤ j ≤ −m,

are critical values of f , and α ≤ c−k+1 ≤ · · · ≤ c−m ≤ β. Moreover, if c = cl = · · · = cl+r, r ≥ 0, then
i(Kc) ≥ r + 1, where Kc = {z ∈ Z : df(z) = 0, f(z) = c}.

3 Verification of (PS)c condition

In this section, we perform a careful analysis of the behavior of minimizing sequences with the aid of
concentration-compactness principles for fractional Sobolev spaces with variable exponents due to [26],
which allows to recover compactness below some critical threshold.

Let M(RN ) be the space of all signed finite Radon measures on RN endowed with the total variation
norm. Note that we may identify M(RN ) with the dual of C0(RN ), the completion of all continuous
functions u : RN → R whose support is compact relative to the supremum norm ‖ · ‖∞ (see, e.g., [22]).

Theorem 3.1. Assume that (P) and (Q) hold. Let {un} be a bounded sequence in W s,p (·,·)(RN ) such
that

un ⇀ u in W s,p (·,·)(RN ),

|un|p̄ +
∫

RN

|un(x)− un(y)|p(x,y)

|x− y|N+sp(s,y)
dy

∗
⇀ µ in M(RN ),

|un|q(x) ∗
⇀ ν in M(RN ).

Then, there exist sets {µi}i∈I ⊂ (0,∞), {νi}i∈I ⊂ (0,∞) and {xi}i∈I ⊂ C, where I is an at most
countable index set, such that

µ ≥ |u|p̄ +
∫

RN

|u(x)− u(y)|p(x,y)

|x− y|N+sp(x,y)
dy +

∑

i∈I

µiδxi ,

ν = |u|q(x) +
∑

i∈I

νiδxi ,

Sqν
1

p̄∗s
i ≤ µ

1
p̄

i , ∀i ∈ I.

For possible loss of mass at infinity, we have the following.

Theorem 3.2. Assume that (P), (Q) and (E∞) hold. Let {un} be a sequence in W s,p (·,·)(RN ) as in
Theorem 3.1. Set

ν∞ := lim
R→∞

lim sup
n→∞

∫

Bc
R

|un|q(x) dx,
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µ∞ := lim
R→∞

lim sup
n→∞

∫

Bc
R

[
|un|p̄ +

∫

RN

|un(x)− un(y)|p(x,y)

|x− y|N+sp(x,y)
dy

]
dx.

Then
lim sup

n→∞

∫

RN

|un|q(x) dx = ν(RN ) + ν∞,

lim sup
n→∞

∫

RN

[
|un|p̄ +

∫

RN

|u(x)− u(y)|p(x,y)

|x− y|N+sp(x,y)
dy

]
dx = µ(RN ) + µ∞.

Then
Sqν

1
q∞∞ ≤ µ

1
p̄∞.

Now, we turn to prove (PS)c condition for J . In order to apply Theorem 3.1 and 3.2, let us
denote G1 = O(N) is the group of orthogonal linear transformations in RN . E = W s,p (·,·)(RN ),
EG1 = W s,p

O(N) := {u ∈ W s,p (·,·)(RN ) : gu(x) = u(g−1x) = u(x), g ∈ O(N)}. G2 = Z2, Y = E × E,
X = YG1 = EG1 × EG1 . c denotes a positive constant and can be determined in concrete conditions.

To determine solutions to problem (1.1), we will apply Theorem 2.2 for Y endowed with the norm
‖(u, v)‖s,p = ‖u‖s,p + ‖v‖s,p. Consequently, by [3, 4, 28], we know that (Y, ‖ · ‖s,p) is a reflexive Banach
space. Let us consider the Euler-Lagrange functional associated to (1.1), defined by J : Y → R

J (u, v) = −
∫∫

R2N

|u(x)− u(y)|p(x,y)

p(x, y)|x− y|N+sp(x,y)
dxdy − 1

p(x)

∫

RN

|u|p(x)dx− 1
q(x)

∫

RN

|u|q(x)dx

+
∫∫

R2N

|v(x)− v(y)|p(x,y)

p(x, y)|x− y|N+sp(x,y)
dxdy +

1
p(x)

∫

RN

|v|p(x)dx− 1
q(x)

∫

RN

|v|q(x)dx

−
∫

RN

F (x, u, v)dx. (3.1)

It is clear that under the assumptions (F), J is of class C1(Y,R). Moreover, for all (u, v), (z1, z2) ∈ Y ,
its Fréchet derivative is given by

〈J ′(u, v), (z1, z2)〉 = −[u, z1]−
∫

RN

|u|p(x)−2uz1dx−
∫

RN

|u|q(x)−2uz1dx

+[v, z2] +
∫

RN

|v|p(x)−2vz2dx−
∫

RN

|v|q(x)−2vz2dx

−
∫

RN

Fu(x, u, v)z1dx−
∫

RN

Fv(x, u, v)z2dx = 0,

where

[ζ, zi] :=
∫∫

R2N

|ζ(x)− ζ(y)|p(x,y)−2(ζ(x)− ζ(y))(zi(x)− zi(y))
|x− y|N+sp(x,y)

dxdy for i = 1, 2.

It is easy to check that J ∈ C1 and the weak solutions for problem (1.1) coincide with the critical
points of J . By conditions (P) and (F4), it is immediate to see that J is O(N)-invariant. Then by
the principle of symmetric criticality of Krawcewicz and Marzantowicz [30], we know that (u, v) is a
critical point of J if and only if (u, v) is a critical point of J = J |X=EG1

×EG1
. Therefore, it suffices to

prove the existence of a sequence of critical points of J on Y .
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Lemma 3.1. Assume that (P), (Q), (E∞) and (F) hold. Let {(unk
, vnk

)} be a sequence such that
{(unk

, vnk
)} ∈ Xnk

,

Jnk
(unk

, vnk
) → c <

(
1
θ
− 1

q−

)
min

{
Spτ+

q , Spτ−
q

}
, dJnk

(unk
, vnk

) → 0, as k →∞,

where Jnk
= J |Xnk

. Then {(unk
, vnk

)} contains a subsequence converging strongly in X.

Proof. First, we show that {(unk
, vnk

)} is bounded in X. If not, we may assume that ‖unk
‖s,p > 1 and

‖vnk
‖s,p > 1 for any integer n. We have by condition (F3),

o(1)‖unk
‖s,p ≥ 〈−dJnk

(unk
, vnk

), (unk
, 0)〉

=
∫∫

R2N

|unk
(x)− unk

(y)|p(x,y)

|x− y|N+sp(x,y)
dxdy +

∫

RN

|unk
|pdx

+
∫

RN

|unk
|q(x)dx +

∫

RN

Fu(x, unk
, vnk

)unk
dx

≥
∫∫

R2N

|unk
(x)− unk

(y)|p(x,y)

|x− y|N+sp(x,y)
dxdy +

∫

RN

|unk
|pdx

≥ ‖unk
‖p−

s,p, (3.2)

Since p− > 1, from (3.2), we know that {unk
} is bounded. On the one hand, we have by condition (F2),

c + o(1)‖vnk
‖s,p = Jnk

(0, vnk
)− 1

θ
〈dJnk

(unk
, vnk

), (0, vnk
)〉

=
∫∫

R2N

|vnk
(x)− vnk

(y)|p(x,y)

p(x, y)|x− y|N+sp(x,y)
dxdy − 1

θ

∫∫

R2N

|vnk
(x)− vnk

(y)|p(x,y)

|x− y|N+sp(x,y)
dxdy

+
(

1
p
− 1

θ

) ∫

RN

|vnk
|pdx +

(
1
θ
− 1

q(x)

) ∫

RN

|vnk
|q(x)dx

−
∫

RN

[
F (x, 0, vnk

)− 1
θ
Fv(x, 0, vnk

)vnk

]
dx

≥
(

1
p
− 1

θ

) ∫∫

R2N

|vnk
(x)− vnk

(y)|p(x,y)

|x− y|N+sp(x,y)
dxdy +

(
1
p
− 1

θ

) ∫

RN

|vnk
|pdx

≥
(

1
p
− 1

θ

)
‖vnk

‖p−
s,p.

This face implies that {vnk
} is bounded in E. Thus ‖unk

‖s,p + ‖vnk
‖s,p is bounded in X.

Next, we prove that {(unk
, vnk

)} contains a subsequence converging strongly in X.
On the one hand, we note that {unk

} is bounded in EG1 . Hence, up to a subsequence, unk
⇀ u0

weakly in EG1 and unk
(x) → u0(x), a.e. in RN . We claim that unk

→ u0 strongly in EG1 . It follows
from condition (F3) that

0 ← 〈−dJnk
(unk

− u0, vnk
), (unk

− u0, 0)〉
= [unk

− u0, unk
− u0] +

∫

RN

|unk
− u0|p(x)dx

+
∫

RN

|unk
− u0|q(x)dx +

∫

RN

Fu(x, unk
− u0, vnk

)(unk
− u0)dx

≥ ‖unk
− u0‖p−

s,p.
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This fact imply that

unk
→ u0 strongly in EG1 . (3.3)

In the following we will prove that there exists v ∈ EG1 such that

vnk
→ v0 strongly in EG1 . (3.4)

Since {vnk
} is also bounded in E. So we may assume that there exists v0 and a subsequence, still

denoted by {vnk
} ⊂ E such that

vnk
(x) → v0(x) for a.e. x ∈ RN ,

vnk
⇀ v0 in W s,p(·,·)(RN ),

Vnk
(x) ⇀ µ ≥ V0(x) +

∑

i∈I

δxiµi weak*-sense of measures in M(RN ), (3.5)

|vnk
|q(x) ⇀ ν = |v0|q(x) +

∑

i∈I

δxiνi weak*-sense of measures in M(RN ), (3.6)

Sqν
1

p∗s
i ≤ µ

1
p

i for i ∈ I, (3.7)

where

Vnk
(x) := |vnk

(x)|p +
∫

RN

|vnk
(x)− vnk

(y)|p(x,y)

|x− y|N+sp(x,y)
dy

and

V0(x) := |v0(x)|p +
∫

RN

|v0(x)− v0(y)|p(x,y)

|x− y|N+sp(x,y)
dy

for n ∈ N and x ∈ RN . Moreover, we have

lim sup
n→∞

∫

RN

Vnk
(x)dx = µ(RN ) + µ∞, (3.8)

lim sup
n→∞

∫

RN

|vnk
|q(x)dx = ν(RN ) + ν∞, (3.9)

Sqν
1

q∞∞ ≤ µ
1
p∞. (3.10)

First, we will prove that I = ∅. Now, we suppose on the contrary that I 6= ∅. Let i ∈ I and we can
construct a smooth cut-off function φε,i centered at zi such that

0 ≤ φε,i(x) ≤ 1, φε,i(x) = 1 in B
(
zi,

ε

2

)
, φε,i(x) = 0 in RN \B (zi, ε) , |∇φε,i(x)| ≤ 4

ε
,

for any ε > 0 small. It is not difficult to see that {vnk
φε,i} is a bounded sequence in E. From this, we

can obtain that limn→∞〈dJnk
(unk

, vnk
), (0, vnk

φε,i)〉 = 0, that is, i.e.

−
∫∫

R2N

|vnk
(x)− vnk

(y)|p(x,y)−2(vnk
(x)− vnk

(y))vnk
(y)(φε,i(x)− φε,i(y))

|x− y|N+sp(x,y)
dxdy

=
∫

RN

Vn(x)φε,idx−
∫

RN

Fv(x, unk
, vnk

)vnk
φε,idx−

∫

RN

|vnk
|q(x)φε,idx + on(1). (3.11)
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Note that the boundedness of {vnk
} in E implies the boundedness of {vnk

} in Lq(·)(RN ) due to Theorem
3.3. Hence, from (F1) and the Lebesgue dominated convergence theorem we have∫

RN

Fv(x, unk
, vnk

)vnk
φε,i(x)dx →

∫

RN

Fv(x, u0, v0)v0φε,i(x)dx as n →∞. (3.12)

From the definition of φε,i(x), we obtain
∣∣∣∣
∫

RN

Fv(x, u0, v0)v0φε,idx

∣∣∣∣ ≤
∫

Bε(0)
|Fv(x, u0, v0)v0|dx → 0 as ε → 0. (3.13)

On the other hand, let δ > 0 be arbitrary and fixed. By the boundedness of {vnk
} in Lq(·)(RN ) and the

Young inequality, we have∣∣∣∣∣
∫∫

R2N

|vnk
(x)− vnk

(y)|p(x,y)−2(vnk
(x)− vnk

(y))vnk
(y)(φε,i(x)− φε,i(y))

|x− y|N+sp(x,y)
dxdy

∣∣∣∣∣

≤ δ

∫∫

R2N

|vnk
(x)− vnk

(y)|p(x,y)

|x− y|N+sp(x,y)
dxdy + C

∫∫

R2N

|vnk
(y)|p(x,y) |φε,i(x)− φε,i(y)|p(x,y)

|x− y|N+sp(x,y)
dxdy

≤ Cδ + C

∫∫

R2N

|vnk
(y)|p(x,y) |φε,i(x)− φε,i(y)|p(x,y)

|x− y|N+sp(x,y)
dx. (3.14)

Taking limit superior in (3.17) as n → ∞ then taking limit superior as ε → 0 with taking Lemma 4.4
into account in [29], we have

lim
ε→0

lim
n→∞

∫∫

R2N

|vnk
(y)|p(x,y) |φε,i(x)− φε,i(y)|p(x,y)

|x− y|N+sp(x,y)
dx = 0. (3.15)

Since δ > 0 was chosen arbitrarily we obtain

lim sup
ε→0

lim sup
n→∞

∫∫

R2N

|vnk
(x)− vnk

(y)|p(x,y)−2(vnk
(x)− vnk

(y))vnk
(y)(φε,i(x)− φε,i(y))

|x− y|N+sp(x,y)
dxdy = 0.(3.16)

Since φε,i has compact support, letting n → ∞ and ε → 0 in (3.11), we can deduce from (3.15) and
(3.16) that

µi ≤ νi.

Inserting this into (3.7), we deduce

νi ≥ S
q(zi)p

q(zi)−p ≥ min
{

Spτ+

q , Spτ−
q

}
. (3.17)

It follows from (3.17) that

c = lim
n→∞

(
Jnk

(0, vnk
)− 1

θ
〈dJnk

(unk
, vnk

), (0, vnk
)〉

)

≥ lim
n→∞

[(
1
p
− 1

θ

) ∫∫

R2N

|vnk
(x)− vnk

(y)|p(x,y)

|x− y|N+sp(x,y)
dxdy +

(
1
p
− 1

θ

) ∫

RN

|vnk
|pdx

]

+
(

1
θ
− 1

q(x)

) ∫

RN

|vnk
|q(x)dx−

∫

RN

[
F (x, 0, vnk

)− 1
θ
Fv(x, 0, vnk

)vnk

]
dx

≥
∫

RN

(
1
θ
− 1

q(x)

)
|vnk

|q(x)dx ≥
(

1
θ
− 1

q−

) ∫

RN

|vnk
|q(x)φε,idx ≥

(
1
θ
− 1

q−

)
νi

>

(
1
θ
− 1

q−

)
min

{
Spτ+

q , Spτ−
q

}
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as ε → 0, which is a contradiction. Hence I = ∅.
Next, we prove that ν∞ = 0. Suppose on the contrary that ν∞ > 0. To obtain the possible

concentration of mass at infinity, we similarly define a cut off function φR ∈ C∞
0 (RN ) such that

φR(x) = 0 on |x| < R and φR(x) = 1 on |x| > R + 1. We can verify that {vnk
φR} is bounded in E,

hence 〈dJnk
(unk

, vnk
), (0, vnk

φR)〉 → 0 as n →∞, which implies

−
∫∫

R2N

|vnk
(x)− vnk

(y)|p(x,y)−2(vnk
(x)− vnk

(y))vnk
(y)(φR(x)− φR(y))

|x− y|N+sp(x,y)
dxdy

=
∫

RN

Vn(x)φRdx−
∫

RN

Fv(x, unk
, vnk

)vnk
φRdx−

∫

RN

|vnk
|q(x)φRdx + on(1). (3.18)

Note that vnk
→ v0 weakly in W s,p(·,·)(RN ), then

∫
RN Fv(x, u, v)(vnk

− v0)ϕRdx → 0. As
∣∣∣∣
∫

RN

(Fv(x, unk
, vnk

)− Fv(x, u0, v0))vnk
φRdx

∣∣∣∣ ≤ c|(Fv(x, unk
, vnk

)− Fv(x, u0, v0))φR|(p∗s)′ |vnk
|p∗s

≤ c|(Fv(x, unk
, vnk

)− Fv(x, u0, v0))|(p∗s)′,RN\BR(0),

by condition (F1), for any ε > 0, there exists R1 > 0 such that

|(Fv(x, unk
, vnk

)− Fv(x, u0, v0))|(p∗s)′,RN\BR(0) < ε

as R > R1 and n ∈ N. Note that
∫

RN

F (x, u0, v0)v0ϕRdx → 0 as R →∞. Thus we obtain that

lim
R→∞

lim sup
n→∞

∫

RN

Fv(x, unk
, vnk

)vnk
ϕRdx

= lim
R→∞

lim sup
n→∞

∫

RN

[(Fv(x, unk
, vnk

)− Fv(x, u0, v0))vnk
ϕR + Fv(x, u0, v0)(vnk

− v) + Fv(x, u0, v0)v0ϕR]dx

= lim
R→∞

(
lim sup

n→∞

∫

RN

(Fv(x, unk
, vnk

)− Fv(x, u0, v0))vnk
ϕRdx +

∫

RN

Fv(x, u0, v0)v0ϕRdx

)

= lim
R→∞

lim sup
n→∞

∫

RN

(Fv(x, unk
, vnk

)− Fv(x, u0, v0))vnk
ϕRdx + lim

R→∞

∫

RN

Fv(x, u0, v0)v0ϕRdx

= 0.

Moreover, we proceed as in (3.16) to get
∣∣∣∣∣
∫∫

R2N

|vnk
(x)− vnk

(y)|p(x,y)−2(vnk
(x)− vnk

(y))vnk
(y)(φR(x)− φR(y))

|x− y|N+sp(x,y)
dxdy

∣∣∣∣∣

≤ Cδ + C

∫∫

R2N

|vnk
(y)|p(x,y) |φR(x)− φR(y)|p(x,y)

|x− y|N+sp(x,y)
dx (3.19)

for each δ > 0 arbitrary and fixed. Taking limit superior in the last estimate as n →∞ and then taking
limit as R →∞, we obtain

lim sup
R→∞

lim sup
n→∞

∫∫

R2N

|vnk
(x)− vnk

(y)|p(x,y)−2(vnk
(x)− vnk

(y))vnk
(y)(φR(x)− φR(y))

|x− y|N+sp(x,y)
dxdy = 0,(3.20)
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since δ > 0 can be taken arbitrarily. Letting R → ∞ in (3.18), we can deduce from (3.19) and (3.20)
that

µ∞ ≤ ν∞. (3.21)

Combining (3.10) with (3.21) gives

ν∞ ≥ S
q∞p

q∞−p ≥ min
{

Spτ+

q , Spτ−
q

}
. (3.22)

If (3.22) holds. Thus

c = lim
n→∞

(
Jnk

(0, vnk
)− 1

θ
〈dJnk

(unk
, vnk

), (0, vnk
)〉

)

≥
∫

RN

(
1
θ
− 1

q(x)

)
|vnk

|q(x)dx ≥
(

1
θ
− 1

q−

) ∫

RN

|vnk
|q(x)φRdx ≥

(
1
θ
− 1

q−

)
ν∞

≥
(

1
θ
− 1

q−

)
min

{
Spτ+

q , Spτ−
q

}
(3.23)

as R → ∞, which is a contradiction, we can prove that ν∞ = 0. Combining the facts that I = ∅ and
ν∞ = 0, we obtain

lim sup
n→∞

∫

RN

|vnk
|q(x)dx =

∫

RN

|v0|q(x)dx.

By a Brézis-Lieb Lemma type result for the Lebesgue spaces with variable exponents (see e.g., [[24],
Lemma 3.9]), we have

∫

RN

|vnk
− v0|q(x)dx → 0,

i.e., vnk
→ v0 in Lq(·)(RN ). Consequently, we have

∫

RN

|vnk
|q(x)−2vnk

(vnk
− v0)dx → 0, (3.24)

by invoking Proposition 2.3 and the boundedness of {un}n in Lq(·)(RN ). Also, we easily obtain
∫

RN

Fv(x, unk
, vnk

)(vnk
− v0)dx → 0. (3.25)

Let us now introduce, for simplicity, for all v ∈ E the linear functional L(v) on E defined by

〈L(v), w〉 =
∫∫

R2N

|v(x)− v(y)|p(x,y)−2(v(x)− v(y))(w(x)− w(y))
|x− y|N+sp(x,y)

dxdy +
∫

RN

|v|p(x)−2vwdx

for all w ∈ W s,p(·,·)(RN ). Obviously, from the Hölder inequality, we deduce that L is also continuous
and satisfy

|〈L(v), w〉| ≤ max{‖v‖q− , ‖v‖q+}‖w‖ for all w ∈ E.
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Hence, the weak convergence of {vnk
} in E gives that

lim
n→∞〈L(v0), vnk

− v0〉 = 0. (3.26)

Clearly, 〈L(vnk
), vnk

− v0〉 → 0 as n →∞. Hence, by (3.26), one has

lim
n→∞〈L(vnk

)− L(v0), vnk
− v0〉 = 0. (3.27)

Let us now recall the well-known Simon inequalities:

|s− t|p ≤
{

C
′
p

(|s|p−2s− |t|p−2t
) · (s− t) for p ≥ 2

Cp
′′ [(|s|p−2s− |t|p−2t

) · (s− t)
]p/2 (|s|p + |t|p)(2−p)/2 for 1 < p < 2,

(3.28)

for all s, t ∈ RN , where C
′
p and Cp

′′ are positive constants depending only on p.
By (3.27) and (3.28) we get

lim
n→∞

(∫∫

R2N

|vnk
(x)− v0(y)|p(x,y)

|x− y|N+sp(x,y)
dxdy +

∫

RN

|vnk
− v0|pdx

)

= lim
n→∞ (〈L(vnk

), vnk
− v0〉 − 〈L(v0), vnk

− v0〉) = 0.

This fact implies that {vnk
} strongly converges to v0 in E.

In conclusion, we get {(unk
, vnk

)} contains a subsequence converging strongly in X. Hence the proof
is complete.

4 Proof of Theorem 1.1

Proof of Theorem 1.1 Now we shall verify the conditions of Theorem 2.2. Set

Y = U ⊕ V, U = EG1 × {0}, V = {0} × EG1 ,

Y0 = {0} × Em⊥
G1

, Y1 = {0} × E
(k)
G1

,

where m and k are to be determined. It is clear that Y0, Y1 are G-invariant and codimV Y0 = m, dim Y1 =
k. Obviously, (B1), (B2), (B4) in Theorem 2.2 are satisfied. Set Vj = E

(j)
G1

= span{e1, e2, · · · , ej}, then
(B3) is also satisfied. In the following we verify the conditions in (B7). Since Fix(G) ∩ V = 0, (a)
of (B7) holds. It remains to verify (b), (c) of (B7). Next, we focus our attention on the case when
(u, v) ∈ X with ‖u‖s,p < 1 and ‖v‖s,p < 1.

(i) If (0, v) ∈ Y0 ∩ Sρm (where ρm is to be determined) then by (f1) and (f3), for any v ∈ E with
‖v‖s,p < 1, we find that

J(0, v) =
∫∫

R2N

|v(x)− v(y)|p(x,y)

p(x, y)|x− y|N+sp(x,y)
dxdy +

1
p

∫

RN

|v|pdx− 1
q(x)

∫

RN

|v|q(x)dx−
∫

RN

F (x, 0, v)dx

≥ 1
p
‖v‖p

s,p − c‖v‖p∗s
s,p − c‖v‖r+

s,p,

since p < r+ < p∗s, there exists ρ > 0 such that J(0, v) ≥ α for every ‖v‖s,p = ρ, that is (b) of (B7)
holds.
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(ii) From (H1) we have

J(u, 0) = −
∫∫

R2N

|u(x)− u(y)|p(x,y)

p(x, y)|x− y|N+sp(x,y)
dxdy − 1

p

∫

RN

|u|pdx− 1
q(x)

∫

RN

|u|q(x)dx

−
∫

RN

F (x, u, 0)dx

≤ 0.

Therefore, we can choose α such that

α > sup
u∈EG1

J(u, 0).

For each (u, v) ∈ U ⊕ Y1, we have

J(u, v) = −
∫∫

R2N

|u(x)− u(y)|p(x,y)

p(x, y)|x− y|N+sp(x,y)
dxdy − 1

p

∫

RN

|u|pdx− 1
q(x)

∫

RN

|u|q(x)dx

+
∫∫

R2N

|v(x)− v(y)|p(x,y)

p(x, y)|x− y|N+sp(x,y)
dxdy +

1
p

∫

RN

|v|pdx− 1
q(x)

∫

RN

|v|q(x)dx

−
∫

RN

F (x, u, v)dx (4.1)

≤ 1
p
‖v‖p− − 1

q
|v|q(·)q(·) + α

Because of the fact that on the finite-dimensional space Y1 all norms are equivalent, we can choose
k > m and βk > αm such that

JU⊕Y1 ≤ βk,

so we get (c) in (B7). By Lemma 3.1, for any c ∈ [αm, βk], J(u, v) satisfies the condition of (PS)∗c , then
(B6) in Theorem 2.2 holds. So according to Theorem 2.2,

cj = inf
i∞(A)≥j

sup
z∈A

J(u, v), −k + 1 ≤ j ≤ −m, αm ≤ cj ≤ βk,

are critical values of J . Letting m →∞, we can get an unbounded sequence of critical values cj . And
because the functional J is even, we obtain two critical points ±uj of J corresponding to cj . 2
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