\(v=0,\ \ u=u_{w}+L\left[\frac{\partial u}{\partial r}+\frac{u}{r+R}\right],\ -k\frac{\partial T}{\partial r}=h_{w}\left(T_{w}-T\right),\ \ \frac{\partial H_{1}}{\partial r}=H_{2}=0\), \(N=-n\frac{\partial u}{\partial r}\) at \(r\rightarrow 0\), \(u=0,\ \ H_{2}=\frac{\text{as}H_{0}}{1-\alpha t},\ \ T\rightarrow T_{\infty},\ \ N\rightarrow 0,\ \ at\ r\rightarrow\infty\).
(7)