Reference
Ainsworth E.A., & Long S.P. (2005). What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytologist, 165(2), 351-372. doi:10.1111/j.1469-8137.2004.01224.x
Ainsworth E.A., & Rogers A. (2007). The response of photosynthesis and stomatal conductance to rising [CO2]: mechanisms and environmental interactions. Plant, Cell and Environment, 30(3), 258-270. doi:10.1111/j.1365-3040.2007.01641.x
Albert K.R., Mikkelsen T.N., Michelsen A., Ro-Poulsen H., & van der Linden L. (2011). Interactive effects of drought, elevated CO2 and warming on photosynthetic capacity and photosystem performance in temperate heath plants. Journal of Plant Physiology, 168(13), 1550-1561.
Baker N. (2008). Chlorophyll Fluorescence: A Probe of Photosynthesis In Vivo. Annual review of plant biology, 59, 89-113. doi:10.1146/annurev.arplant.59.032607.092759
Baker N.R., & Oxborough K. (2004). Chlorophyll fluorescence as a probe of photosynthetic productivity. In Chlorophyll a Fluorescence (eds Papageorgiou GC & Govindjee), pp. 65-82. Springer.
Björkman O., & Demmig B. (1987). Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins. Planta, 170(4), 489-504. doi:10.1007/bf00402983
Demmig-Adams B., Ebbert V., Zarter C.R., & Adams W.W. (2008). Characteristics and species-dependent employment of flexible versus sustained thermal dissipation and photoinhibition. In Photoprotection, photoinhibition, gene regulation, and environment (eds: Demmig-Adams B., Adams WW., Mattoo AK.), pp. 39-48. Springer.
Faseela P., Sinisha A., Brestič M., & Puthur J.J.P. (2019). Chlorophyll a fluorescence parameters as indicators of a particular abiotic stress in rice. Photosynthetica, 57, 108-115.
Feng B., Liu P., Li G., Dong S.T., Wang F.H., Kong L.A., & Zhang J.W. (2014). Effect of Heat Stress on the Photosynthetic Characteristics in Flag Leaves at the Grain-Filling Stage of Different Heat-Resistant Winter Wheat Varieties. Journal of Agronomy and Crop Science, 200(2), 143-155. doi:10.1111/jac.12045
Fricke W., & Peters W.S. (2002). The biophysics of leaf growth in salt-stressed barley. A study at the cell level. Plant Physiology, 129(1), 374-388.
Gao M., Qi Y., Song W., & Xu H. (2016). Effects of di-n-butyl phthalate and di (2-ethylhexyl) phthalate on the growth, photosynthesis, and chlorophyll fluorescence of wheat seedlings. Chemosphere, 151, 76-83. doi:10.1016/j.chemosphere.2016.02.061
Holland V., Fragner L., Jungcurt T., Weckwerth W., & Brüggemann W. (2016). Girdling interruption between source and sink in Quercus pubescens does not trigger leaf senescence. Photosynthetica, 54(4), 589-597. doi:10.1007/s11099-016-0646-3
Huang L.F., Zheng J.H., Zhang Y.Y., Hu W.H., Mao W.H., Zhou Y.H., & Yu J.Q. (2006). Diurnal variations in gas exchange, chlorophyll fluorescence quenching and light allocation in soybean leaves: The cause for midday depression in CO2 assimilation. Scientia Horticulturae, 110(2), 214-218. doi:https://doi.org/10.1016/j.scienta.2006.07.001
Ibaraki Y., Iwabuchi K., & Okada M. (2005). Chlorophyll Fluorescence Analysis for Rice Leaves Grown under Elevated CO2 Conditions. Journal of Agricultural Meteorology, 60, 641-644. doi:10.2480/agrmet.641
Jiang H.X., Chen L.S., Zheng J.G., Han S., Tang N., & Smith B.R. (2008). Aluminum-induced effects on Photosystem II photochemistry in citrus leaves assessed by the chlorophyll a fluorescence transient. Tree Physiology, 28(12), 1863-1871. doi:10.1093/treephys/28.12.1863
Kalaji H.M., Govindjee., Bosa K., Kościelniak J., & Żuk-Gołaszewska K. (2011). Effects of salt stress on photosystem II efficiency and CO2 assimilation of two Syrian barley landraces. Environmental and Experimental Botany, 73, 64-72. doi:https://doi.org/10.1016/j.envexpbot.2010.10.009
Kalaji H.M., Rastogi A., Živčák M., Brestic M., Daszkowska-Golec A., Sitko K., . . . Cetner M.D. (2018). Prompt chlorophyll fluorescence as a tool for crop phenotyping: an example of barley landraces exposed to various abiotic stress factors. Photosynthetica, 56(3), 953-961. doi:10.1007/s11099-018-0766-z
Kalaji H.M., Schansker G., Ladle R.J., Goltsev V., Bosa K., Allakhverdiev S.I., . . . Zivcak M. (2014). Frequently asked questions about in vivo chlorophyll fluorescence: practical issues. Photosynthesis Research, 122(2), 121-158. doi:10.1007/s11120-014-0024-6
Klironomos J.N., Allen M.F., Rillig M.C., Piotrowski J., Makvandi-Nejad S., Wolfe B. E., & Powell J.R. (2005). Abrupt rise in atmospheric CO2 overestimates community response in a model plant-soil system. Nature, 433(7026), 621-624. doi:10.1038/nature03268
Lawlor D.W., & Tezara W. (2009). Causes of decreased photosynthetic rate and metabolic capacity in water-deficient leaf cells: a critical evaluation of mechanisms and integration of processes. Annals of Botany, 103(4), 561-579. doi:10.1093/aob/mcn244
Leakey A.D., Ainsworth E.A., Bernacchi C.J., Rogers A., Long S.P., & Ort D.R. (2009). Elevated CO2 effects on plant carbon, nitrogen, and water relations: six important lessons from FACE. Journal of Experimental Botany, 60(10), 2859-2876. doi:10.1093/jxb/erp096
Lepeduš H., Brkić I., Cesar V., Jurković V., Antunović J., Jambrović A., . . . Šimić D. (2012). Chlorophyll fluorescence analysis of photosynthetic performance in seven maize inbred lines under water-limited conditions. Periodicum Biologorum, 114(1), 73-76.
LI X., LIU YL., JIAO DM. (2002). The Relationship between Diurnal Variation of Fluorescence Parameters and Characteristics of Adaptation to Light Intensity in Leaves of Different Rice Varieties with High Yield (Oryza sat iva L.). ACTA AGRONOMICA SINICA 28 : 145-153 (in Chinese with English abstract).
Li X., Ulfat A., Lv Z., Fang L., Jiang D., & Liu F. (2019). Effect of multigenerational exposure to elevated atmospheric CO2 concentration on grain quality in wheat. Environmental and Experimental Botany, 157, 310-319.
Li Y., Song H., Zhou L., Xu Z., & Zhou, G. (2019). Vertical distributions of chlorophyll and nitrogen and their associations with photosynthesis under drought and rewatering regimes in a maize field. Agricultural and Forest Meteorology, 272-273, 40-54. doi:https://doi.org/10.1016/j.agrformet.2019.03.026
Lichtenthaler H. K., Buschmann C., & Knapp M. (2005). How to correctly determine the different chlorophyll fluorescence parameters and the chlorophyll fluorescence decrease ratio RFd of leaves with the PAM fluorometer. Photosynthetica, 43(3), 379-393. doi:10.1007/s11099-005-0062-6
Logan B.A., Demmig-Adams B., Rosenstiel T.N., & Adams III W.W. (1999). Effect of nitrogen limitation on foliar antioxidants in relationship to other metabolic characteristics. Planta, 209(2), 213-220. doi:10.1007/s004250050625
Long S.P., Ainsworth E.A., Rogers A., & Ort D.R. (2004). Rising atmospheric carbon dioxide: plants FACE the future. Annual Review of Plant Biology, 55, 591-628. doi:10.1146/annurev.arplant.55.031903.141610
Martínez-Carrasco R., Pérez P., & Morcuende R. (2005). Interactive effects of elevated CO2, temperature and nitrogen on photosynthesis of wheat grown under temperature gradient tunnels. Environmental and Experimental Botany, 54(1), 49-59. doi:https://doi.org/10.1016/j.envexpbot.2004.05.004
Maxwell K., & Johnson G.N. (2000). Chlorophyll fluorescence—a practical guide. Journal of Experimental Botany, 51(345), 659-668. https://doi.org/10.1093/jexbot/51.345.659
Xie R., Peng M., Wang T., Li T., & Meng F. 2018. Effect of High CO2 Concentration on Four Populus by the Fast Fluorescence Rise OJIP. Current Trends in Forest Research, CTFR-124.
Naumburg E., Loik M.E., & Smith S. (2004). Photosynthetic responses of Larrea tridentata to seasonal temperature extremes under elevated CO2. New Phytologist, 162(2), 323-330.
Pan C., Ahammed G.J., Li X., & Shi K. (2018). Elevated CO2 Improves Photosynthesis Under High Temperature by Attenuating the Functional Limitations to Energy Fluxes, Electron Transport and Redox Homeostasis in Tomato Leaves. Frontiers in plant science, 9, 1739. doi:10.3389/fpls.2018.01739
Panda D. (2011). Diurnal variations in gas exchange and chlorophyll fluorescence in rice leaves: the cause for midday depression in CO2 photosynthetic rate. Journal of Stress Physiology & Biochemistry, 7(4), 175-186.
Papageorgiou G.C. & Govindjee. (2007). Chlorophyll a fluorescence: a signature of photosynthesis (Vol. 19): Springer Science & Business Media.
Pfündel E. (1998). Estimating the contribution of Photosystem I to total leaf chlorophyll fluorescence. Photosynthesis Research, 56(2), 185-195. doi:10.1023/A:1006032804606
Poorter H., Niinemets Ü., Ntagkas N., Siebenkäs A., Mäenpää M., Matsubara S., & Pons,T. (2019). A meta-analysis of plant responses to light intensity for 70 traits ranging from molecules to whole plant performance. New Phytologist, 223(3), 1073-1105. doi:10.1111/nph.15754
Robredo A., Pérez-López U., Lacuesta M., Mena-Petite A., & Muñoz-Rueda A. (2010). Influence of water stress on photosynthetic characteristics in barley plants under ambient and elevated CO2 concentrations. Biologia Plantarum, 54(2), 285-292. doi:10.1007/s10535-010-0050-y
Roden J.S., & Ball M.C. (1996). The Effect of Elevated [CO2] on Growth and Photosynthesis of Two Eucalyptus Species Exposed to High Temperatures and Water Deficits. Plant physiology, 111(3), 909. doi:10.1104/pp.111.3.909
Ruhil K., Sheeba, Ahmad A., Iqbal M., & Tripathy B.C. (2015). Photosynthesis and growth responses of mustard (Brassica junceaL. cv Pusa Bold) plants to free air carbon dioxide enrichment (FACE). Protoplasma, 252(4), 935-946. doi:10.1007/s00709-014-0723-z
Shanmugam S., Kjaer K.H., Ottosen C., Rosenqvist E., Sharma D.K., Wollenweber B.C. (2013). The Alleviating Effect of Elevated CO2 on Heat Stress Susceptibility of Two Wheat (Triticum aestivum L.) Cultivars. Journal of Agronomy and Crops Science, 199(5), 340-350.
Strasser R.J., Srivastava A., Tsimilli-Michael M. (2000). The fluorescence transient as a tool to characterize and screen photosynthetic samples. In Probing Photosynthesis: Mechanism, Regulation and Adaptation (eds: Yunus M., Pathre U., & Mohanty P), pp. 443–480 London, UK.
Strasser R.J., Tsimilli-Michael M., & Srivastava A. (2004). Analysis of the chlorophyll a fluorescence transient. In Chlorophyll a fluorescence (eds Papageorgiou GC., & Govindjee), pp. 321-362, Springer.
Taiz L., & Zeiger E. (2010). Plant Physiology, Sinauer Associates.
Taub D.R., Seemann J.R., Coleman J. (2000). Growth in elevated CO2 protects photosynthesis against high-temperature damage. Plant Cell and Environment, 23(6), 649-656.
Tsimilli-Michael M. (2019). Revisiting JIP-test: An educative review on concepts, assumptions, approximations, definitions and terminology. Photosynthetica, 57, 90-107. doi:10.32615/ps.2019.150
Wu L., Shen S., Wang R., & Shu Q. (2007).The diurnal variation of photosynthesis of a xantha mutant in rice (Oryza sativaL.). Journal of Nuclear Agriculture Science, 21, 425-429 (in Chinese with English abstract).
Zhou R., Wu Z., Wang X., Rosenqvist E., Wang Y., Zhao T., & Ottosen CO. (2018). Evaluation of temperature stress tolerance in cultivated and wild tomatoes using photosynthesis and chlorophyll fluorescence. Horticulture, Environment, and Biotechnology, 59(4), 499-509. doi:10.1007/s13580-018-0050-y
Zhu X., Liu S., Sun L., Song F., Liu F., & Li X. (2018). Cold Tolerance of Photosynthetic Electron Transport System Is Enhanced in Wheat Plants Grown Under Elevated CO2. Frontiers in plant science, 9, 933-933. doi:10.3389/fpls.2018.00933
Ziska L. H., & Teramura A. H. (1992). CO2 Enhancement of Growth and Photosynthesis in Rice (Oryza sativa) : Modification by Increased Ultraviolet-B Radiation. Plant physiology, 99(2), 473-481. doi:10.1104/pp.99.2.473
Zong Y.Z., Wang W.F., Xue Q.W., & Shangguan Z.J.P. (2014). Interactive effects of elevated CO2 and drought on photosynthetic capacity and PSII performance in maize. Photosynthetica, 52(1), 63-70.