References
1 Jaimes JA, André NM, Chappie JS, et al. Phylogenetic Analysis
and Structural Modeling of SARS-CoV-2 Spike Protein Reveals an
Evolutionary Distinct and Proteolytically Sensitive Activation Loop.J Mol Biol 2020;432 :3309–25.
doi:10.1016/j.jmb.2020.04.009
2 Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 Cell
Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven
Protease Inhibitor. Cell 2020;181 :271-280.e8.
doi:10.1016/j.cell.2020.02.052
3 Hoffmann M, Kleine-Weber H, Pöhlmann S. A Multibasic Cleavage Site in
the Spike Protein of SARS-CoV-2 Is Essential for Infection of Human Lung
Cells. Mol Cell 2020;78 :779-784.e5.
doi:10.1016/j.molcel.2020.04.022
4 Ziegler CGK, Allon SJ, Nyquist SK, et al. SARS-CoV-2 receptor
ACE2 is an interferon-stimulated gene in human airway epithelial cells
and is detected in specific cell subsets across tissues. CellPublished Online First: 27 April 2020. doi:10.1016/j.cell.2020.04.035
5 Kumar A, Prasoon P, Shekhawat PS, et al. Pathogenesis Guided
Therapeutic Management of COVID-19: An Immunological Perspective.SSRN Electron J Published Online First: 15 June 2020.
doi:10.2139/ssrn.3626907
6 Pedersen SF, Ho YC. SARS-CoV-2: A storm is raging. J. Clin. Invest.
2020;130 :2202–5. doi:10.1172/JCI137647
7 Tay MZ, Poh CM, Rénia L, et al. The trinity of COVID-19:
immunity, inflammation and intervention. Nat. Rev. Immunol. 2020;:1–12.
doi:10.1038/s41577-020-0311-8
8 Sungnak W, Huang N, Bécavin C, et al. SARS-CoV-2 entry factors
are highly expressed in nasal epithelial cells together with innate
immune genes. Nat Med 2020;:1–7. doi:10.1038/s41591-020-0868-6
9 Muus C, Luecken MD, Eraslan G, et al. Integrated analyses of
single-cell atlases reveal age, gender, and smoking status associations
with cell type-specific expression of mediators of SARS-CoV-2 viral
entry and highlights inflammatory programs in putative target cells.bioRxiv 2020;:2020.04.19.049254. doi:10.1101/2020.04.19.049254
10 Monaco G, Lee B, Xu W, et al. RNA-Seq Signatures Normalized by
mRNA Abundance Allow Absolute Deconvolution of Human Immune Cell Types.Cell Rep 2019;26 :1627-1640.e7.
doi:10.1016/j.celrep.2019.01.041
11 Schmiedel BJ, Singh D, Madrigal A, et al. Impact of Genetic
Polymorphisms on Human Immune Cell Gene Expression. Cell2018;175 :1701-1715.e16. doi:10.1016/j.cell.2018.10.022
12 Zhang X, Tan Y, Ling Y, et al. Viral and host factors related
to the clinical outcome of COVID-19. Nature 2020;:1–7.
doi:10.1038/s41586-020-2355-0
13 Tan L, Wang Q, Zhang D, et al. Lymphopenia predicts disease
severity of COVID-19: a descriptive and predictive study. Signal
Transduct. Target. Ther. 2020;5 :1–3.
doi:10.1038/s41392-020-0148-4
14 Lippi G, Henry BM. Eosinophil count in severe coronavirus disease
2019. QJM . 2020;113(7):511-512. doi:10.1093/qjmed/hcaa137
15 Diao B, Wang C, Tan Y, et al. Reduction and Functional
Exhaustion of T Cells in Patients With Coronavirus Disease 2019
(COVID-19). Front Immunol 2020;11 :827.
doi:10.3389/fimmu.2020.00827
16 Feng Z, Diao B, Wang R, et al. The Novel Severe Acute
Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Directly Decimates Human
Spleens and Lymph Nodes. medRxiv2020;2 :2020.03.27.20045427. doi:10.1101/2020.03.27.20045427
17 Ong EZ, Chan KR, Ooi EE. Viral Manipulation of Host Inhibitory
Receptor Signaling for Immune Evasion. PLoS Pathog. 2016;12 .
doi:10.1371/journal.ppat.1005776
18 Channappanavar R, Perlman S. Pathogenic human coronavirus infections:
causes and consequences of cytokine storm and immunopathology. Semin.
Immunopathol. 2017;39 :529–39. doi:10.1007/s00281-017-0629-x
19 Daly JL, Simonetti B, Antón-Plágaro C, et al. Neuropilin-1 is
a host factor for SARS-CoV-2 infection. bioRxiv2020;:2020.06.05.134114. doi:10.1101/2020.06.05.134114
20 NRP1 protein expression summary - The Human Protein Atlas.
https://www.proteinatlas.org/ENSG00000099250-NRP1 (accessed 13 Jul
2020).