TIME PERIODIC SOLUTIONS FOR THE FULL QUANTUM EULER EQUATION

MIN LI AND XIANZHONG YAO*

ABSTRACT. In this paper, we establish the existence and uniqueness of a time periodic solution to the
full compressible quantum Euler equations. First, we prove the existence of time periodic solutions under
some smallness assumptions imposed on the external force in a periodic domain by a regularized approx-
imation scheme and the Leray-Schauder degree theory. Then the result is generalized to R® by adapting
a limiting method and a diagonal argument. The uniqueness of the time periodic solutions is also given.
Compared to classical Euler equations, the third-order quantum spatial derivatives are considered which
need some elaborated treatments thereof in obtaining the highest-order energy estimates.

Keywords: Time periodic solutions, Full quantum FEuler equations, Uniform estimates, Leray-
Schauder degree theory.

1. INTRODUCTION

Quantum-type fluids are increasingly important with the development of the ultra-small electronic
devices in nano-scale, where the quantum effects (particle tunneling through potential barriers and built-
up in quantum wells) are present, such as the simulation of resonant tunneling diodes [10], superfluid [24]
and superconductivity [9]. See also [3,12] for more results and physics backgrounds. In contrast to the
Kinetic theory, the advantage of the macroscopic quantum-type model relies on the fact that it provides
the possibility of accurate and efficient numerical simulations by measuring the macroscopic variables (like
electron density and the electron current density). Proceeding from the recently developed derivation
for the macroscopic quantum-type fluid and related models, the compressible quantum hydrodynamical
equations are perfectly demonstrated in [1,10,11,18] by a moment expansion of the Wigner-Boltzmann
equation [10] and the expansion of the thermal equilibrium Wigner distribution function [31]. In these
models, the quantum effects terms can be viewed as the first quantum corrections O(h?) of the classical
hydrodynamic equations, where A is the Planck constant divided by 2.

The main purpose of this paper is to consider the existence and uniqueness of a time periodic solution
to the three dimensional full quantum Euler equations with damping and a time periodic external force

O¢n + div(nu) = 0, (1.1a)
O¢(nu) + divinu @ u + P) = —%—i—nf, (1.1b)
Tm
1 _
oW + div(uW + uP) + divg = —— (W — gn(T—T))7 (1.1c)
TE

where n, u, T are the electron density, the electron velocity and the temperature, respectively. T is the
lattice temperature. P = (P;;)3x3 is the quantum correction to the stress tensor which was derived by
Ancona and Tiersten [2] and Ancona and Iafrate [1]. W is the quantum correction for energy density,
which is first derived by Wigner [31]. ¢ is the total heat flux consisted of third-order moment [10,17] and
the Chapman-Enskog expansion. Moreover, the constants 7,,, 7. model the standard momentum and
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energy relaxation times approximations respectively. f is the given external time periodic force with a
period T > 0. With quantum corrections, the above quantities ¢, P and W are defined by

h2n . 4
q=—kVT — Q(Au + 2Vdivu) + O(R%),

h’n_, 4
P=-nTl- ﬁv logn + O(R*),
and )
3 1 hn
= "nT + —nfu* — —A1l 4
w 5" +2n|u| 2 ogn + O(h*),
respectively, where I is the unit matrix in R3*3. According to

n? R _Ayn
Edlv(n(v ® V)logn) = Env J

the quantum mechanical effects can be interpreted as a force closely related to the quantum Bohm

potential [4]
2
Q) = 1AV
m \/n

We note that the majority of efforts of the quantum hydrodynamic equations were made in the well-
posedness [10,17,18,25] and asymptotic behaviors [22,25,26]. For recent works, Pu and Guo [25] obtained
the global existence of smooth solutions to the quantum hydrodynamic models with viscosity and estab-
lished the semiclassical limit of solutions under small initial data. Later in [26], the initial boundary
value problem of system (1.1) when f = 0 was studied. However, for the periodic solutions case, there is
little mathematically result available. Therefore, the purpose of this paper is to study the existence and
uniqueness of the time periodic solutions for the non-isentropic quantum Euler system around a constant
state (¢,0,T) over the physical space R3.

There exists an extensive literature in past decades about the time periodic solutions for the classical
compressible flow [5,7,8,13,15,20,21,23,29]. In the study of the Navier-Stokes equation, one can refer
to [20,29] for the case of periodic domain and [16,19,21,23] for the whole space. See also [7,14] for the
Navier-Stokes-Korteweg system and [5, 6,13, 28] for the magnetohydrodynamic equations. In addition to
these results, one can see [8,15,30] and reference therein for the initial boundary value problem. Below we
only review some of them related to our work. In [23], Ma, Ukai and Yang investigated the existence of
time periodic solutions by the linear decay analysis and the contraction mapping theorem where the space
dimension n > 5. Kagei and Tsuda [21] also considered the existence of time periodic solutions via the
spectral properties on the case n > 3. Moreover, the existence of time periodic solutions of Navier-Stokes
equations in the whole space R? was present in Jin and Yang [19] by uniform estimates and the topological
degree theory. Then the similar problem in the periodic domain 2 C R? was discussed in [20]. In a recent
work, Cai et al. [7] studied the isentropic compressible Navier-Stokes-Korteweg System with friction, and
pointed out that the friction term provides a good effect in the proof. However, when the viscous term
is replaced by the damping term, the related study is very limited so far. Here, we only mention the
work about the case n = 3 by Tan et al. [29], who proved the existence of time periodic solutions of
the compressible Euler equation under some small and structure data assumptions in a bounded domain
with periodic boundary. Our present work can be regarded as an extension of the previous work [29] in
the sense that the quantum effects and thermal conduction are taken into account.

Even though we have employed the similar argument from [19,29], the so-called full quantum hydro-
dynamic model (1.1) carries some new feature such as the strong nonlinearity and coupling, which makes
the study more mathematically challenging. We also remark that the case of full quantum Navier-Stokes
equations is easier than the system under consideration since the high-order viscous term pAu+ AVdivu
can be used to control the quantum effects terms as [25,27]. Indeed, a full use of the energy equation is
employed in this present paper. Precisely, there is only the low-order dissipation of damping in system




(1.1) when obtaining the highest-order energy estimates for the velocity field. And thus, we make a deep
analysis of the structure for system (2.1) and introduce the elaborated energy estimates in some proper
norm. The weighted energy norm we finally adopt is

lo, w00l = sup (11(u. 0,85, iVu, F2A) (1) s + [V p(8) 2
te[0,17*]

i
+ / (INp(0) 3 + 11 0.0, 5. K B2 Ap) ()] )t (1.2)
0

T T
e [ NI RV A O it + [ 07V, T Ap) 1) .
0 0

In addition, the structural assumptions of the external force is dispensable in this paper since we can
obtain the basic L? estimates by the structure of (2.20) directly.

For convenience, we assume 7,,, 7. = 1 in system (1.1). By making use of the variable transformation
¥? = n, system (1.1) can be reformulated as

20,4 + pdivu + 2u - Vip = 0, (1.3a)
A A
Btu+u~Vu+VT+2T%w—%w+ Zijw+u:f, (1.3b)
2 26 AT K2 R V- Vdive 1 _
T+ =Tdi VT — 22 2 QivAu= — 22 " P = (T =T
oT + 3 divu +u -V 3 2 18dlv u=-g ” 3|u| ( )
h? 9
tagAlogy’, (1.3¢)
(waua T)(xvo) = (wOaanTO)- (13d)

Our purpose of this present paper is to consider the time periodic solutions for system (1.3) around a
constant state (¢,0,T). For this, letting (p,u,8) = (¢ — ¢, u, T —T), system (1.3) can be written in the
perturbation form

20,p + Pdivu = —pdivu — 2u - Vp, (1.4a)
B2 B2 pVAp ovp
ou+u-Vu+VO0+27Vp— =VAp+u=——= — —2 _
t 6v 6 V(p+9) o+
\Y% h? VpA
oy L0 2 PRy (1.4b)

p+1 6 (p+u)?

2 2K . 2k (p? + 2p) A0
00 + glevu “ 3 Al — ﬁdlvAu = —?7152(‘0 PP —u-Veo
2 W2 Vp-Vdivu  |uf? h? 5
—=0d — - — =0+ —=Al 1.4
ghdive+ 5= 3 + 35 A log v, (1.4c)
(p7u79)(x70) = (/007“0,90)7 (14d)

where v =

<~

Before starting, we introduce some notations which will be used frequently throughout this paper. We
denote the solution spaces in the periodic domain Q% and in the whole space R? respectively by
(u,0) € L>(0,T*; L2(Q%)) N L2(0, T*; L2(QR));
(Vp,Vu) € L>=(0,T*; H*(QR)) N L2(0,T*; H2(Q7));

XB=|(p,u,6): (AVu, AV p, B2 Ap) € L>=(0,T*; H3(QF)) N L2(0, T*; H3(QF)); (1.5)

(V0, hdivu, A2Vdivu, B3V Ap) € L*°(0,T*; H*(QF)) N L2(0,T*; H3(QF));

(eY2Vp, he' 2 Ap, 212V Ap) € L>=(0,T*; H*(Q%)) N L2(0, T*; H3(QR));

and (p,u, 0) is periodic in time and space that satisfies fQR pdx =0,
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and

(,1,0) € L(0,T" L°(R?));
(u,0) € L>(0,T*; L2(R?)) N L2(0,T*; L*(R3));
(Vp, V) € L®(0, T*; H2(R®)) N L2(0, T*; H2(R?);
X =|(p,u,o): (AVu, AV p, B2 Ap) € L>=(0,T*; H3(R?)) N L2(0, T*; H3(R?)); (1.6)
(VO, hdivu, B2Vdivu, BBV Ap) € L>(0, T*; H2(R?)) N L2(0, T*; H3(R?));
(eY2Vp, hel 2 Ap, 212V Ap) € L>=(0,T*; H2(R3)) N L?(0,T*; H3(R3));
and (p,u,0) is periodic with the same time period as f.

For some positive constant d, set

Xit={(p,u.0) € X% [l(p,u, 0)]] < d?}, (1.7)
and
Xa=A{(p.u,0) € X;ll(p,u, )]l <d”}, (1.8)
where the norm || - || is defined in (1.2).

Moreover, C' denotes a generic constant independent of e, R, h, while C. is a constant dependent
on e. [A,B] = AB — BA is the commutator of A and B, and the periodic domain is denoted by
QF = (=7, 7)2 C R3. In addition, W*P(QF) is the usual Sobolev space, and we omit the domain QF for
simplicity if it does not cause any confusion. Let C®® be the set of all functions, such that

|f(l‘,t) - f(y75)|
(2.0)£(y,s) 1T — Y|+ [t — s

< o0

Finally, for any multi-index «, we denote 0% = 0g10520g2 by the partial differential derivatives. We

sometimes abuse the notation 9**! to mean 9**7, |3| = 1, for some multi-index f3.

1.1. The main results of this paper. The goal of this paper is to prove the following theorems

Theorem 1.1. Let the time periodic force f € L*(0,T*; H*(R®)). If || fllr2(0,7+ 13 (r2)) is sufficiently
small, then the initial value problem (1.4) admits a solution (p,u,0) € Xg4,, where Xg, is defined in (1.8).

Theorem 1.2. Under the same assumption of Theorem 1.1, there exists a sufficiently small positive
constant p such that, provided that

sup ([IVpll2 + [I(u, 0, iV p, iV u, i?Ap) | 3a) < p,

te[0,T%]

and the solution (p,u, 0) satisfies (p1,u1,01) = (p2,us2,02) at infinite, system (1.4) admits a unique smooth
solution (p,u,0) € Xq,.

The structure of this article is as follows. In Sect. 2, we introduce the operator y and prove the
existence of the time periodic solutions for the approximate problem (2.1) in a periodic domain by
topological degree theory and the uniform (in €, R, h) energy estimates. It is the core of technical part of
the proof. In Sect. 3, the uniform bounds and Arzela-Ascoli theorem allow us to get a limit function in
R3. In addition, we prove the uniqueness of time periodic solutions. Finally, some preliminary inequalities
are given in the Appendix.



2. THE EXISTENCE OF TIME PERIODIC SOLUTIONS IN A PERIODIC DOMAIN

To prove the existence of time periodic solutions in the periodic domain QF = (—R, R)? C R?, we
introduce the following approximated system

20;p + Ydivu — eAp = —pdivu — 2u - Vp, (2.1a)
h? Y OVp pVp
Ou+u- VquVGJerprf—_VAer — = — —2 = + 2y —
t 60 6 b(p+v) “ptd Tp+d
2
h L’Af’z 4R (2.1b)
6 (p+1)
2 - 2 2 2p0) A
0,0 + ~Tdivu — —2- A — iideu o LA,O _ 26 (0 +2p0) A0
3 3w2 184 3 92(p+ )
h? A h? d 2 R 2
——#—U-VG—deivu 7M_M_7&, (2.1¢)
18¢(p+v) 3 9 ptv 3 18(p+y)?
where fF is a sufficiently smooth time periodic function with
R — fin L?(0,T*; H}(R?)) as R — oo. (2.2)

Proposition 2.1. Let f£ be a smooth function with periodic boundary and f% € L2(0,T*; H3(QF)).
There exists some suitably small positive constant A and dy, independent of R, h and €, such that if

||fR||L2(0,T*;H3) <A,
the initial value problem (2.1) admits a solution (p,u,0) € Xé‘:‘)

The rest of this section is devoting to the proof of Proposition 2.1. The result is obtained by the
combination of the topological degree theory and the elaborate energy estimates. Notice that the as-
sumption fQ r pdr = 0 holds in general due to the conservation of mass. Different from the previous
works [5,7,19,20,28,29], the symmetry of the external force is unnecessary since we can obtain the L?
estimates for the velocity and the temperature by the structure of (1.3) directly. Moreover, inspired by
the idea in [29], we linearize the term u-Vu in the case of the quantum Euler system in order to guarantee
the closed estimate in Lemma 2.2. Indeed, the main difficulty comes from the quantum Bohm potential
term and the dispersive velocity A2Adivu. For this, we fully utilize the linearized structure of system
(2.6) and substitute the energy equation into the higher order energy estimate for A6.

2.1. introduction of an operator x. To begin with, we work with the following linear system

20;p + Ydivu — eAp = —7pdivii — 271 - Vp, (2.3a)
h2 R2T pVAp 0V p vy
ou+71u-Vu+VO+29Vp — —=VAp+u=—— - —2 =42 =
T TP e 6 oro  mhtd | thd
7127' VpAp R
+7fB, 2.3b
6 (it w) (2.3b)
D10 + Td Af — th‘A +6— hZA iV — 2ridiva
1vu—— 1IVAU — = —TU " — =T 1vu
t 302 180 "7 3
527' Vp-Vdiva 7‘ 2 R*r |Vp|? 2K (1252 + 27 p0)) AG B ﬁ PN (2.30)
9 Th+Y 18 (tp+ ) 3 Arp+ ) 18 Y(rp+)
for any given (p, 4, 9~) € X[t for any 7 € [0,1]. Next we define the operator x
s XEx 0,1 — XE,
X d [ } (2.4)

(511, 0),7) = (p, u,0).
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In what follows, we focus on the properties of the operator Y.

Lemma 2.1. For any 7 € [0, 1], the operator x is well defined.

Proof. Tt follows from Sobolev embedding H? < L and the smallness of positive constant d that

_ 3n
Sn+7p§7,

_ 3T
n+7’9<?

| S
l\-”\’ﬂ\

for any (p,u,0) € XE.
Consider the homogenous liner system

20;p + 1pdivu — eAp = 0,

2
8tu+711-Vu+V9+2’pr—thAp—&—u:O,

8t(9+§Tdivu— szQ—hSdIVAU—‘rQ— &Ap_

with the initial value condition (p, u,8)(z,0) = (po, uo, o) that satisfies

/ podz = 0.
QR

Multiplying (2.6b) by u, and using integration by parts, we have
1d

For the first term of the RHS of (2.8), by Sobolev embedding H? < L, we have
1/ diviiful? <Cr|\divil| e ||ul|2.

For the second term of the RHS of (2.8), using integration by parts and (2.6¢), we have

— Vo -u
QR
2
3 w0 - Ae—h—dlvAqu@fh—Ap)
T Jon 302 189
3 d K 3
— 2 - 92 6 - Vdivu — —— 2
Tt o " T /QRIv 107 Jop VO Vive— o | 1O+ 12sz

3 d 3 h?
<22 |9|27—_/ |9|27,L_2/ Vo2 — — [ V6. Vdivu
AT dt Jon 2T Jor T2 Jon 12T Jonr
+ 8| ke 2 Ap|22 + C12||0)3,
where 4 is a sufficiently small positive constant. Again, (2.6a) gives

27 27d/ 9
) Vp u=—>" 20,p — eAp) = — L= -
Y VP 7 QR/)( ip — eAp) ot QR\,O\

2ey 2
— Vpl~.
7 QR| |
Similarly,

h? h? n? d h%e
— VAp -u=— Ap(20ip — eAp) = —— — V2——_/ Apl?.
60 Jon VAP U GwQ/QR p(20ip — eAp) 6w2dt/QR|p\ 607 QR\/JI

Therefore, we have

d
21w 2,00 )72 + 11017 + [[ullZe + el VollZe + Rl ApllZ +

< O7l|dival gallul|Zz + ollhe"?Ap|| 22 + C=1?(|6]1 2.

0 -
12T/ Vo - Vdivu

T h2
_T diviilul? — VO u—2 AV — VAp - u.
gl + e =3 [ il [ 0wz [ Gpous fo [ vap

(2.5)

(2.8)

(2.9)



To close the estimate (2.9), we multiply (2.6b) by —E—;Vdivu to obtain

d R R . hPT . . 4 .
—||hdivu|| 7. + = ||divul|7. =—= a-Vu-Vdivu — —= VAp - Vdivu
dt T T Jor 60T Jor
Yo ' (2.10)
+ 2 / Vp-Vdivu + = [ V8. Vdivu.
T Jor T Jor
Now we will deal with the RHS of (2.10). For the first term, by integration by parts, we have
h2
—j—/ - Vu - Vdivu
Y Jar
h2
AT div(a - Vu)divu
v Jor
h? h?
= 2r Vi : Vudivu — % @ - Vdivudivu
Y Jar ¥ Jor
h? h?
AT Vi : Vudivu + —— / divi|divu|?
v Jor 29? Jor

< C7||(Vai, divit)|| Lo | AVl 2.
For the second term on the RHS of (2.10), using (2.6a), we have
A
60T Jor
A
= “ 60T /QR ApA(20ip — eAp)

mod hte
g Iy GV
62T dt Jor 6v°T Jor

VAp - Vdivu

Similarly,
2 2
vaz Vo Vdivu
2vh?
=——= Vp- -V (20ip — eA
T Jon VP (20ep — eAp)

__27h2d/ ‘v |2_27h2€/ |A |2
o ’L/_)T dt Jor P 7,/;T QR I

According to integration by parts and (2.6¢), we decompose the last term on the RHS of (2.10) into

h2
? on VHleV’LL
h? 1152
= — Vo - Vdivu — = Afdivu
12T Jor 12T Jor
h2 117121;2 2 _ K2 B2
=— [ V6 Vdivu — — 90 + =Tdivu — —divAu + 0 — ——=Ap)di
197 Jon vu— —7 /QR( 16 + 3Tdive — JodivAu+ 187 p)divu
w2 111242 L1R"y2 117242
=7 [ VO Vdivu — divul* — ——— / Vdivu|> — —— D;0di
12T Jor VT ok /QRl Wl = Tt [, Vel = =g | difdivu
11722

52
2 60— " Ap)divu.
8Tk /QR( 15y AP divu
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To make it easier to read, we separately deal with the above estimate. By integration by parts and (2.6b),
117242

. 9,6d;i
8T,‘{ or 't 1vu
2,72 279
_ R g/ el . LU0 / -
8Tr di QR 8Tk QR
11h%9? d 117242 .
=7 [ 0d = VO - (tii- Vu + VO +27Vp — —VA
8Tk dt/ WU+ o /QR (T4 - Vu+ VO +29Vp 60 p+u)
_11ﬁ21/)2 1/2 2.1/2 2
<~ Fn i |, 0dive + Ol [[(V, hVu)|[Zz + 0[|(e/2Vp, h2' 2V Ap)|| 7

+ Ceh2||(u>V9)HLz7

where ¢ is a sufficient small positive constant. By Holder’s inequality and Young’s inequality, we deduce

11k2 K2 . 1/2 2 . 2
—_77/ (0 — —=Ap)divu < d§||he™ = Ap||72 + Cch|(Adivu, 0)] 72
QR

8TY%k 184
Hence, we have
h2
ed /QR Vo - Vdivu
h? 117242 11A%)?
< —= V9 Vdivu v / |divu|? — }/) / |Vdivau|?
12T 12k Jqr 144Tk Jqr
thwz / Ocdiva + 5]|(1/2V p, e /2 A p, 22V Ap) |2,
8Tk dt

+ C.hl|(u, VO, hdivu, 0) ||L2 + CO1||t)| L= ||(VO, AV u) ||L2.

Summing up the above estimates, we conclude the desired inequality

d
pril |(hdivu, BV p, I2Ap) | 4 B2 ||divu||2 . + B Vdivu|2. + h2e||Ap||2. + Ble||VAp|2.
h? 112 d .
ST o Vo - Vdivu + ——=— STin Tt Jon fdivu (2.11)

< 8)|(e"/2Vp, he' 1 Ap, P2V Ap)||72 + Ceh| (u, VO, Adivu, 6) |7
+ O7| (@, Vi, divit) || o< || (VO, AV u) || 2.
On the other hand, applying the operator Vx to (2.6b), and multiplying the result by h?V x u, we

derive

h? d
—— | VxuP+ RV xuli:=—7h? [ V x (@ Vu)V x u.
2 dt QR QR

With the aid of (4.1), (4.5) and (4.7), we obtain
—7h? [ V x (@ Vu)V xu
QR

h2
:—Tﬁ2/ (vXudiva—vXu-va—vX(va-u))vXu+T—/ divii|V x ul?
QR 2 QR

< O7[| Vil g2 [ BV x ul| 7.
Hence,
R d

2 dl /Q IV % ul® + B[V x u|[fa < OT|| V]l g2 || AV x ulFs. (2.12)



Combining (2.9), (2.11) and (2.12), and using the curl-div decomposition for the gradient, we arrive
at
d

dt
+ 1| Vdivu|Z. + Re| Apll72 + e VAp[Z. <0,

/ |(p,u, 8, iV u, iV p, 12 Ap) | + €| Vpll7z + 1015 + [lullZe + 2%[[Vul 22
or (2.13)

for appropriately small positive constants d,d and i. Here, we don’t need the uniform (in R, /i, ) energy
estimates. Based on the Gronwall inequality and Duhamel’s principle, we have (p,u,0) is the desired
time periodic solution to system (2.3) since the period of (p, @, 0~) is T*.

For the uniqueness of the periodic solution (p, u, #) to system (2.3) we assume there exists two different
solutions (p1,u1,01) and (pa, us, 02) of system (2.3). Then, (p1,u1,61) — (p2,us2,02) is the solution to the
homogeneous system (2.6). Using the inequality (2.13) and integrating from 0 to T*, we have

0 < ellVpllZs + 11017 + [lull> <0,
which leads p = u = 6 = 0, thanks to poincdre inequality. Moreover, recalling the definition (2.4), we
have, ~
X((ﬁv u, 9)7 O) =0.
Therefore, the operator x is well defined. O

Lemma 2.2. If d is appropriately small, the operator x is compact and continuous.

The proof is similar to Lemmas 2.2-2.3 in [29]. The only difference comes from the higher order
quantum terms. Indeed, it is slightly easier than those of Section 2.2 since we don’t need the uniform
estimates w.r.t. h,e, R. Here, we only deal with the following quantum terms for simplicity. The other
terms can be proved by “repeating” the proof of Lemma 2.1 in this paper and Lemmas 2.2-2.3 in [29].
The idea is still to apply 9 to (2.6b), and multiply the result by 9% (u — h—;Vdivu) on both sides. Letting
a be a multi-index with 0 < |a| < 3, we obtain

h2
L =—— O*VAp - 0%
6v Jor
FL2
=— — O%Ap - 0%(20ip — eAp + Tpdivi + 274 - V)
612 Jor
_md h%e

oz 1ol G [ 10 gl el Aplfs + Clle vl + [l 1V Ale)
where 0 is a suitably small positive constant. By integration by parts and Lemmas 4.1 and 4.2, we deduce
h? oV Ap
_ T v ’_’7/{) 9%
6 Jor Y+T7p
:@ o*-1 €VA'5
6 QR ’(/J + Tﬁ

<CT(|ll = 10* T VAR 2 + 110°7H (L= )| 2 AV Al <) |V 1
Y+Th

I =

) . aa-{-lu

<6 hVullFs + IVl IRV Al 77
Using Lemma 4.2 again, we have
6T Jor V+TP

. oo A ~ o P _ :
<C7(||pll L= 1?0V Ap| L2 + (|0 (15+Tﬁ)llmIIWA/}HLB)I\hQVdWUIIm

<80 Vdivulys + CIVA= BV s + 511262V Mgl + Celll |12V dival .

I3 ) - 0%Vdivu
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Combining the above estimates with the proof of Lemmas 2.2-2.3 in [29], and recalling (2.13), we

finally obtain
10,0, 55,1, 12059) s + <[Vl + 101300+ s + 2V
+ 0| Vdivul|Fs + B%e|Ap||Fa + he[ VAl
< OVl + |I(@, 0,5 p, iV, R2Ap)| %) || (@, 0, VO, BV p, BV, B2 Ap, K2V diva) || %
+0|I(e/2Vp, he' P Ap, W2 PV AD) s + Cll f s,
thanks to the fact that ¢, d, i are enough small.

Integrating (2.14) over [0, T*], we arrive at

-
/ (el(Vp, RAp, B2V Ap)||Fs + [|(0,u, VO, AV, B2V divu) |3 ) dt
0

(2.14)

-
<C sup (|[VAlF= + (@0, AV p, AV, B2 Ap) | Fs) / (@, 6, V6, hN 5, AV, B> Ap, B>V divii)|| 7 dt
0,7*] 0

te|

T T*
i / 1(1/2V 5, he' A, W' PV Ap)|[Fyedt + C / 1 £1[7clt = M,
0 0

which leads there exists ¢t € (0,7*) such that
el (Vp, RAp, B2V Ap) (to) |35 + [|(6, u, VO, BNV u, K2V divu)(to)||%s < CM.
Then Poincare’s inequality yields
I(p,0,u, V6, iNu, iV p, K2 Ap)(to)||%s < CM.
Integrating (2.14) again from to to ¢ with ¢ € (¢o, T*], we have
I(p, 0,1, VO, iNu, iV p, B2 Ap)(t)||%s < CM.
Therefore, using the time periodicity, we have

sup ||(p,0,u, VO, hNu, iV p, K> Ap)(t)||5s < CM.

I
tE[O,T*]

For the completeness of the proof, one can refer to [29] for details.

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)

2.2. Uniform energy estimates. In this subsection, we will obtain some uniform (in R, &) energy
estimares for system (2.20). It is noted that the arguments are indeed independent of A. To begin with,

we introduce the nonlinear approximated system

20;p + Ydivu — eAp = —7pdivu — 271 - Vp,
T+ 76 h? Ap R
0 Vo + 2= Vp——V — = —7u-V
it VO + 2V - (Tpﬂb)ﬂt Tu-Vu+1f7
2 2k Af h? 2 Ap 27

o0+ =Tdivu — ————— — —divAu+6 — — = = —7u -Vl — —0di
0 +3 wvu 3 (Tp+¢)2 13 WAY + 87p+ 0 TU 3 wvu

W WV Ve K (9P

39 Tp+9 18 (tp+¢)?’

where 7 € (0,1]. If 7 = 1, we prove the existence of time periodic solutions to system (2.1).

(2.20a)

(2.20Db)

(2.20c)

Lemma 2.3. Let X be a normal linear space, 2 be open and bounded subset of X, the map I — F be
completely continuous field in §, where I is the unit mapping. Provided that (I — F)(9Q) # 0. Further,

if deg(I — F,Q,0) # 0, the equation (I — F)(z) =0 has a solution in Q.
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The Leray-Schauder degree has the following property

Lemma 2.4. Let x : X® x [0,1] = X be completed continuous. For any 7 € [0,1], if (I — x)(-,T) # 0,
we have deg(I — x,$,0) is dependent of T.

See [32] for more results about the topological degree theory.
Based on Lemmas 2.3-2.4, to show the existence of solutions to system (2.1), namely,

X(Ui]'):U’ U:(p7u’9)€XdR7

we need to prove that there exists some positive constant dg, such that, for any 7 € (0, 1],

where we denote By, (0) by a ball of radius dy centered at the origin.

Therefore, the main target is hereafter to obtain uniform (in ¢, R, i) bounds, which play a significant
role in the proof of Proposition 2.1. At first, we give the zero, one, two and three order energy estimates
for solutions to system (2.20).

Lemma 2.5. Let 0 < dg < 1 be a suitably small constant, and (p,u,0) € 83(10 (0) be a solution of system
(2.20). Then there holds

D 0,6, 59 0) B+ ulles + 1615 + <Vl + b0l — o [ (L2 )2 Addiva
dt ) Uy Uy H H H H H 12 OR T+ 70
< Crd2(|Vpllu= + (.0, V0, BV p, AVu, 2 Ap) || 15) + 8| W2V divul % + CHIAY pl3s (2:22)
+ Ol £
Proof. Applying the operator 9% to system (2.20), we have
20ip + (Y 4+ Tp)divit — eAp = —27u - Vp + hy, (2.23a)
- T+ h* VAp R
Ot +u+ Vo + 2~ Vp——= = —7u-Vi+ hy +70%f", 2.23b
t b+1p P 6 %+ 7p 2 f ( )
~ — ) 2 ~ 2 2 ~
00 + g(TJr T6)diva — Q—K_L - h—divAﬁ +6— W _4p = =—7u-Vl
3 3 (0+7p2 18 187p+ ¢
R?Vp-Vdivu |[u*> A% |Vp|?
oo (A L o N . 2N 9 2.23
+70°( b +7p 3 18(Tp+¢)2)+ 3 (2.23¢)
where
(804p’ 804,“’ 6(19) = (ﬁ) ﬁ, é)7
and
hy = — 7[0%, p]divu — 27[0%,u] - Vp,
T+716 h? 1
ho = — 7[0%, u] - Vu — 2[0%, ———|Vp + —[0°V, = Ap,
2 = —7(0% 1] b ks G Lol LT (2.24)
2T 2K 1 h? 1
hs = — —1[0%, 6]di —[0%, ———— A0+ —[90%, ——]Ap — T[0%, u] - V.
== % v 0" A0 Ll )~ 7lo% )
According to Sobolev embedding and the Moser type calculus inequality (4.2), we get
1Pal[pess <CTIIVpllLsl|Vull g2 + CTI[Vpl| 2|Vl s (2.25)

SCTd()HVU||H2,
17l e <CTdo||Vullgasr, k=01, (2.26)
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V(T + 6) Y Vo(T + 70) Y
h <C = + = ||V + — + = Vollp~
Ihalle <CrOIES) o am IVl + 1S5+ V)
1 ) 1 (2.27)
+ C7l[Vull L [Vul g2 + CT(IV(=——) 2= [|1A"Apl g5 + AV ( Mlms|[hApllLe)
+7p b+Tp
<Ctdo([|(Vp, Vu)|lm2 + [|(hVp, thp)lle),
and
[hsllL2 <7do([|(VO, Vu)|lg= + |(VO, AV )| s). (2.28)
Multiplying system (2.23) by Ao(p, 4, é)T, and integrating over the periodic domain Q. we get
. K2 Y4+Tp\2 -
NS NT 2 2 sz .
3148 G DI + [l + 1015+l — 35 [ (s Addiva
P ) (2.29)
- VA Ry
6 /R T+70 ; b
where
2 0 0
A= 10 (P+7p)? 0
0= T+76 ~ ) (230)
00 gy
Ris :/ (hi + ha + h3) Ao (p, 0, 6), (2.31)
QR
and

) 2 37 (Y +7p)%uy, 4
_ Aol(p. 1. 0|2 + T/ . Wj‘TP)U 12 / . a 5
Rio / A Aol (p,a,0))? + - dlv(7T+7—9 )|u| + - dlv(i(T+7'0)2 )|9|
7 27, . Ui 2 2 2
+T/ (¢ +7p)? 9o R 4 37'/ (¢+Tp)28a(h Vp-Vdivu |y +h Vol )9
QR QR

T+716 2 T+710 9 Y+T1p 3 18 (rp+)2
h? VTP, h? Y +7p " 1 A
— A_ Odiva 4+ — V(= 2. Vldivi, — / V(= 2.v60
Jr12 (T+T9) ¥ 6 Jor (T+T9) R QR (T—I—TH)

(¢+Tp)2 s / i / o h2/ VTP N o
V(LT by or | Vp-ap— 4 Vip— | V(2T ) v
+/ ( T+ 16 ) W pVprtp A | VT |, ((T+79)2 ) p

Here, we have used the equation

h? Y+ T7p\2 .
C vAG
12 (T+7-9) divAal
h2 Y+Tp K )+ 7p\2 .
T2 r 2 i ivi - 2.32
12 V(T+7—9) - Vdivid + 12/ (TJrTO) Vdivi - VO ( )
hQ R ARIN r? Y+ 7p\2 ;R V+TPNZ 4
= Afdiva — — A= wvald — = Y . -
12 (T+T0) Odiva 12 Jo (T+7—9) divad 6 /QRV<T+79) Vodivi

In what follows, we focus on the following terms involving the quantum effects. For the other terms on
(2.29), we can bound them as [29] by the continuity and momentum equations. More precisely, for the
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last term on the LHS of (2.29), we use integration by parts and (2.23a) to obtain

52 W+ Tp
N
QRTJrTGv pu
hQ VT n? Y +T7p
Apdivii+ = p oA
QRT+7'0 pdivie + 6 V(T+T0) unp
= n? Y+ 7p
== = 20:p —eNp+21u-Vp—h n v(Y N
6 QRT+79( i = EAp+ 2w Vp = ) + 6 /QR (T+T€) u=p
n? d [Vp|* | R |Ap|2 B2 1
TG dt Jor T % |onT = | Vi -V pdyp
6df/ﬂRT+79+ 6 /S2RT+7'9+ 3 /QR (Tg) VoD (2.33)
h2 1 hQ A[)hl hZT
6 0779 ’ 7/ - V(= SVou-Vh
6 Jo t(T—I—TH)‘ AT+ or T+ 70 3 Jon (T+7-0) pu-Vp
2T h2r VpTVuV,é 72 ’(Z—f—’]’p
-2 2 PP [ VpTVuVp R j s
6 Jor 1V<T+ )|V| T3 or T +76 * 6/ V(T—i—re) usp
n? d VA2 R [ |AH?
> — __ _7_5 h1/2A hQVd 2
= 6 dt Jon T—|—7-9+ 6 /QR T+ 76 (e P ivu)||%s

— O7d}||(u, VO, hdivu, B Ap)|| grs

thanks to Holder’s inequality, Young’s inequality and the bound (2.5).
Estimates for the RHS of (2.29). For the first term R; 1, combining Hélder’s inequality, Gagliardo-
Nirenberg inequality with the estimates (2.25), (2.27) and (2.28), we get

Ru1 <[ Aolloo (| ossl|pll e + 11z, ha) 21l (, 6)] 2)

2 9 (2.34)
<Crds([[(Vo, Vu)l gz + [|(VO, AV p, h* Ap)|| r3).

It remains to estimate the last term on the RHS of (2.29). Combining Holder inequality, Young’s
inequality with the estimates (2.38) and (2.40), we get
Ry <COTd3(||Vpl gz + || (u, 0, VO, hdivu)|| gs) + 6||(u, B> Vdivu)||3s

2.35
ORIV, 0| + Ol £, (2.35)

where ¢ is a sufficiently small positive constant. For simplify, we only deal with the following terms. By

w-l-‘rp 2 qa ( Vp-Vdivu e
r(Frg)?0 (71% )0 can be estimated as

integration by parts, term 2T [, (

h2r Y4 Tp o Vp - Vdivuy 4
-z 2o )0

6 Jor T+T70 V+Tp

_ _hzi ((QE+TP)29A)aa—1<vPVd1VU>

6 QR (T +76)2 Y +Tp (2.36)

Vp
< CﬁQT(H@ ||L<>°||leVUIIH2 + Hz/) g ||H2||Vd1VUHL°°)(1 + 1V, VO 2) 0] 124
< Crd2)|0]| ma
Moreover, when |a| = 0,
@ (¢ +7p)Vp - Vdivud
6 Jaor (T + 76)2

(2.37)

< C|[nVdivul| || (hVp, 0)]|7»
< Crd3||hVul 2.
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Similarly, term [, u - Vpp can be bounded by

)
5 [ Vo0 < Crlples Vlasulle < Ol
Otherwise, when |«| > 0,

1/ w-Vp=— [ divulp|? < Crd2|Vu| .
2 QR 4 QR

Putting these estimates (2.33)-(2.35) for any multi-index 0 < || < 3 together, recalling (2.5) and choosing
0, h sufficiently small, we complete the proof of Lemma 2.5. g

From system (2.23) directly, we deduce the following estimates.

Lemma 2.6. Under the same conditions in lemma 2.5, we derive

ol > <CI(Vu, eAp)lla> + Crdo[[(Vu, V)| g2, (2.38)

[well 2 <CII(VE, V)|l > + Cll(u, B Ap) || s + Crdo||(Vu, Vo, BAp, RPN Ap) |2 + C7|| f 5| 2, (2.39)
and
10:1| 52 <C||(8, Vu)| gz + C||(V6‘,h2Vdivu)||H3 + Crdo(||VO| g2 + ||(u, VO, hdivu)|| g3). (2.40)

Note that it follows from Lemmas 2.5-2.6 that we need to deal with not just the estimates for
(hVu, h?Ap, R?Vdivu) but also the term % fQR(ﬁi:Z)QAédiva, which is not necessary in [7,25,29]. To
do this, we employ the structure of equations (2.23a)-(2.23¢) comprehensively and define a new weighted
norm (1.2). For the higher order derivatives of Vu, we use the curl-div decomposition of the gradient.

Next, we give the estimates for the vorticity.

Lemma 2.7. Under the same conditions in lemma 2.5, we have

d

v x ul|3s + B2V x ul|]s < Crd3||[(VO, Y x u)||gs + C7|| f2]|%s. (2.41)
Proof. Applying the operator 9°V x to (2.20b), and multiplying the result by A?V x i, we derive

d 2
LNAY x @22 + B[V x @22 = J/ divulV x % — h%/ 0°,u] - VY x u-V x @
dt 2 Jar QR (2.42)

—h2/ 8”‘(2V(1j+79) ><Vp+7divuV><u—TV><u~Vu—TfR> -V x a,
QR Y+T1p

thanks to Lemma 4.4. We proceed to deal with the RHS of (2.42). For the first term, by Holder inequality,
we have
h2r . 5 o
— divu|V X ue|® < CTdil|AV X ul|ge. (2.43)
2 Jor
By Lemma 4.2, we have

—hgr/ [0%u]-VV xu-V x4

QR
< Cr(||Vul o< [|BY % ullms + |Vl g2 || BVY % | e )[|BY X u| gs (2.44)
< CTd2||hV X ul gs.
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According to the estimates (4.1) and (4.3), we have

) -
T
—% o O‘( (lb::‘_:z) pr—l—TdivuVxu—Tqu~Vu—TfR) -V xu
T+76 T+710
S OV L=1aVpllas 1AV X ul s + CIAV (———) [ s [ Vpll o= AV X u] g5
Y+7p Y+7p (2.45)

+ Cr(||(div, V)| Lo |BY X || g5 + ||(Adiva, AVW)|| g ||V X ]| o) ||AV % w3
+ CT|| ] 1= | AV X ul g
< O||AV x u||%s + CTd2|[(V, AV x u)||gs + OT|| fE|%s.

Putting all the above estimates for any multi-index 0 < |a| < 3 together, we completes the proof of
Lemma 2.7. ]

The next task is to obtain the higher order estimate for the divergence of the velocity field. To this
end, we need to control the singular term 7}—; Jo R(;/’—,I:Z
estimates for solutions to system (2.23). Indeed, by making full use of the energy equation (2.23c) and
integration by parts, we obtain some “good term” which appears on the left as (2.48). This provides the

possibility to close the inequality (2.52).

)2Afdivi, in lemma 2.5 and derive some higher

Lemma 2.8. Under the same conditions in lemma 2.5, we have

4 s a2 W d [ @),
@ A n ’ @ AL
gl (Pdive, iV o, W 8p)le + 35 | (g Sk dt o (T 1 7o)z Ve

+ || (hdivu, h2divu, he'/? Ap, B2V Ap) ||%4s (2.46)
< 56, V6,3V p, BT Ap)s + CHl(u,0, V0, A, K p)[3s + Ol s

+ Crd2||(u, VO, AN u, AN p, B2 Ap) || .

h? Y+T1p

)2A0divi +

Proof. Multiplying (2.23b) by —%, integrating over the periodic domain Qp, we get

d h (¥ +1p)VAp - Vdivie V+Tp
—||hdiva|?. + B2 ||dival|2. = — — - 2K2 _ 5 - Vdivi
g Irdivallze + h[|divallz 6 Jon (T +76)? + QRT+79V"’ Vdivi
b+ 7p)2V0 - Vdivi (1 + 7p)? o
h2 (w . h2 e, . d
+ /QR (T 1 70)2 + hor o (T+70)2u Vi - Vdivi

+Tp\2 .. T A
—hQ/QRv(;ﬁHg) d1vuu—h2/QRV(?+T'Z> - tydiva
LB at(,(?—i_Tp)Q‘diV’LALF (247
2 Jor T+ 760
e / (¥ +7p)*(ha + 70 f7) - Vdiva
QR (T + 76)?

8

A

= g Ry ;.
i=1
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Estimates of the RHS of (2.47). For the first term R 1, by integration by parts, (2.23a), (2.26) and
Lemmas 4.1-4.3, we derive

n (¢ + Tp)ApAdiva B Y +7p .
Ry —— _ - — ). vdivaAp
2076 Jon T @ 4702 76 Jon ((T+79)2) use
__714/ A[)A(Z&tﬁ—sA[}+2ru~Vﬁ—h1)_7147'/ (A, pldivaiAp
o 6 QR (T + 7'9)2 6 QR (T + ’7'9)2

nt )
L (M
6 QR (T+7'9)2

Rt d Ap|? R4 1 2 hie VAp|?

:_77/ 7\7P|2+7/ @(7 )|AP‘2_7 |77,0‘2
B 1 N2 . ., HKr , u o B[ AA U]V
Mg o [ e e T [ A%

T Qr T + 762 3 Jar (T+70)2

)  VdivaAp

6

T+ 76

B Ap BAr (A, pldivaAp B Y +7p

- — V(i—=—"-—) -Vh — — Bt b ot — T ) . VdiviAp
6 Jor ((T+7-0)2) YT Jor T 4702 T 6 Jon ((T+79)2) vasp
ht d |ApPP hte IVAp|?

- Gdt QR (T+T9)2 6 QR (T+7'9)2
+ 6||(R2Vdivu, BEV Ap) (| %,

+ O7d3 || (hV p, ANV u, B2 Ap) || s

where ¢ is a sufficiently small positive constant. Similarly,

d V[ |Ap|? ,
< — 2% — _ —2K2 / s V2N B2 2
Ry < —2h dt/QRT—f—TH he QRT+T9+5||(715 p, R*Vdivu)||%;

+ C7d2||(VO, iV u, iV p, B2 Ap)|| g5

For the third term Ry 3 on the RHS of (2.47), there involves the five order derivatives of 6, which
cannot be controlled as usual. To do this, we substitute the equation (2.23c) and apply integration by
parts to divide it into

)+ 7p)2Addivi / YAHTPNZ A
— _ h2 (/(/) z o h2 . od
Ry 3 /QR T+ 70)2 o V( ) Vodiva

T+ 70
G (¢ + 7p)2Afdiva 1152 / (¢ 4 7p)2 Abdivi
o ].2 QR (T+T9)2 ].2 QR (T+T9)2
e Y+ Tp 2 CAtion
K /QRV(:MW) Védivi
R (Y +7p)PAddivi 11h2/ (¢ + 7p)¥|dival>  11h* / (1 + 7p)*|Vdiva|? (2.48)
T 12 Jogr (T +76)2 126 Jonr T+70 1445 Jor (T +70)2 ’
2 " 49 D100 4 A 4
_11A / (1/1+T,0) dfdiva  11h / ((1/_J+Tp) )Vdivﬁdivﬁ
8k Jar (T + 76)? 144k Jor  \(T 4 716)?
/) 2 . 2 " 4, 2 N
—h"’/ v(?*T‘)) Vidivi — 27 / (1?*7”)2 (of W _Ap _)diva
r T+ 716 8k Jor (T +70) 18rp+1
2 7 3 R 2 . : 2 2 2
_11a T/ (z/_;+7’p) {u~V€—8a (EVp_ Vdivu  |u]*  A* |Vp|_ ) 3 hg}divﬁ.
8k Jar (T + 76)? 9 Y+71p 3 18 (tp+ )2

We first deal with the fourth term of Rj 3, it requires more effort since there is higher order derivative
of 90, which is not closed by Lemma 2.6. From integration by parts, (2.23b) and the estimates (2.27),
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(2.38) and (2.40), we have

1 (¢ +7p)*
8k /QR (T + 70)2

=i o it g [ (G a1 [0 (G )

_ _1222 % /QR Médiva + 1;/?2 . t(g;ﬁi:’;;)édiva - % s Q?i:gie) ;ﬁfp
+%:2 mv(%é)(a+vé+2§i:9vp+m Vi — hy — 79° 1)

< —1;22;1 - gi:g;zédiva +0|/(V8, Y2V p, B2V divu, B3V Ap) || %

+ C7d2||(u, VO, hN p, hVu)| g5 + C7|| |35 + Ch||(u, VO, AV p) || %,

where 0 is some sufficiently small positive constant. By using (2.28) and Young’s inequality, the other
terms in Ry 3 can be bounded by

510, B Ap, B2V divu)||3s + CTda||(VO, AV p, hdivu)||3s + Chl|hdivaul|3;s.

Hence, combining all estimates for R 3, we have

Rooe B2 [ (4 71p)*Abdivi 11h2/ (¥ + 7p)*|dival>  11h* / (4 + 7p)*| Vdiva|?
=712 Jor (T +70)2 125 Jor T+ 76 144k Jor (T +70)?
117* d (W+71p)t 5. 1/2 2 29 1: 3 2 R|2
+ C7d2||(u, 0, V0, ENu, AV p, B2 Ap) || s + CHl|(u, VO, AV p, AV u) || %5 -

For the fourth term Ry 4 on the RHS of (2.47), it already consists of the derivatives of the velocity at
the five order. And thus we use integration by parts two times to obtain

Roa :—hQT/QRu-Vﬁ-V(;i:g)zdivﬂ—hQT/QR(ﬁizg)QVu:Vﬁdivﬂ

e / (LETPy2 Gdivadiva
QR T+79

:fFLQT/QRU~Vﬁ~V(?i:g)zdivﬂ—hQT/QR(?i:ZVVU:Vﬁdivﬂ
Wr

(W +7p)u
d ~r - r7
2 QR IV( (T + T9)2
<Crdy||hVul%s.

>|divﬁ|2

For the last four terms on the RHS of (2.47), by integration by parts, the Moser inequality (4.2), and
the estimates (2.27) and (2.38)-(2.40) that

8
> " Ry <Crd3|[(VO, hVu, hV p, B> Ap)| s + 6||h>Vdivul|3s + C7[| £ 7|35
=5

Hence, adding all above estimates together, choosing d, 4 enough small, we complete the proof of
Lemma 2.8. ]

In the following, for constructing the closed estimate, we need some uniform bounds for the density.
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Lemma 2.9. Let (p,u,0) € dBq,(0) be a solution to system (2.20). Then there exists a constant 0 <
dy < 1, independent €, R, such that, for any positive constant m < 1,

d
2 Vo3 + w2 Apll3: +m? / DUV p < Cm||(u, divu, V0, e80) |2z + C7l| 7%
QR

(2.49)
+Crdi(1(Vp, V) 2 + [0V pll o),
WP+ A P2 [ < O, V0.0, e )

dt Jo (2.50)

+ Crdy || (RN p, AN u, B2 Ap) || s + O fF]| s,

and
m?h || Ap||3s + m2h ||V Ap| |3 +m2h4%/ divaAp
Qr
< Cm?||(u, VO, hVu, hie'/? Ap, 2V divu, B2eV Ap)||%s + Cd2|| (AN p, AW u, 2 Ap) || gs + C7| £ 7|25,

(2.51)

Proof. Applying the operator 9° (|8] = 0,1,2) to (2.20b) and multiplying the result by 9°Vp, we have

T 0 h? 98 Apl?
or Y+ Tp 6 Jar v+7p

< —%/ 05udPV p+ C|(u, dives, VO, eAp) 22 + C7|L £
QR

+Crd(|[(Vp, V)| 2 + |hV pll =),
thanks to Lemmas 4.1 and 4.2, Young’s inequality and Holder inequality. Multiplying a suitably small
positive constant m? on both sides, and using (2.5), we obtain (2.49).
Again, we use the denotation (9p, 9%u, 9%0) = (p, 4, 0) in Lemma 2.5 for brevity. Multiplying (2.23b)
by h%Vp, integrating over the periodic domain Q, we have

T 0 e Ap|?
2h2/ _+T |vﬁ‘2+7/ | p|
QR

U+ Tp 6 Jor ¢ +7p
< _h2% a-Vp+h / divar((¢ + 7p)divii — eAp — by + 27u - V) + Ch?(|(u, VO) |3
Qr Qr

+ Crdg || (RN p, iV u, B* Ap) || s + O[] £ 71 3o
d
< —h2%/ - Vp+ C|l(u, VO, hVu, he' 2 Ap) |45 + Crd2|| (A p, iV u, B2 Ap)|| gs + C7 fE|%s,
Qr

thanks to (4.4) and the estimate (2.27). Taking the summation for all |a| = 3,|8| = 2 and combining
(2.5), we prove (2.50).
Next, multiplying (2.23b) by —A*VAp, and integrating over the periodic domain Q, we get

R ApllFs + RV A s
< —54% / divaAp — b Vo pVdivi + C||(u, VO)||3s + CTdd||(RV p, AV u, h* Ap)|| grs
Qr Qr
+ Ol 1%
< —h4% / divaAp + C||(u, VO, h>Vdivu, B2V Ap)||3s + CTd3 || (hV p, iV u, B2 Ap) || s
Qr
+ Ol f s
thanks to (2.23a). Then Lemma 2.9 is complete. O
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By using these lemmas and the topological degree theory, we will establish the end of the proof of
Proposition 2.1

Proof. Combining Lemma 2.5, Lemma 2.7, Lemma 2.8 and Lemma 2.9, and integrating the result from
0 to T*, we obtain, for some suitably small positive constants m,e and h

o
/ (vauip + [[(u, 0, V0, AN u, BV p, B2 Ap) | B + [|(2 Vi, he® Ap, B2V Ap) |3
0

+ ||[(R2Vdivu, BBV Ap)||%s ) dt
I Pl 25

W=

.
< OTllf R a0 7m0 + Ord /O IVl -+l 0, V0, BV, BV p, 12 Ap) [yt

< CT||fRH%2(O,T*;H3) + Cngv
where ¢ = 0, 1. Here, we have used the curl-div decomposition of the gradient
IVullis < ClIVull s + Clldival .
From (2.52), there exists ¢y € (0,7) such that

IV p(to) 1372 + 1w, 6, V8, hVu, AV p, h* Ap) (to) 315 + || (€2 Vp, he? Ap, eV Ap) (to) 375

. Cr cr (2.53)
+ || (R*Vdivu, B2V Ap)(to) || 3 < FHJCRHQB(O,T*;HB) + ng-

Combining (2.22), (2.41) with (2.46), we have

d
— (IVpllZ= + [1(u. 0, V0,V p, BV, 12 Ap) 35
<Ol f 3 + Crdg (1Vpllarz + 11(u, 0, V0, AN p, AN u, h* Ap)||3;5)

(2.54)

where we take m, d, ¢, ii suitably small (namely 0 < ¢ < fi,d < m < 1) such that those terms without 7
ahead disappear. Integrating (2.54) over to to t (tg < t < T*) and using (2.53), we deduce that

IV () 32 + 1| (w, 8, V8, N p, iV u, h* Ap) (1) || 3
< |[Vp(to)lIF= + [I(u, 8, V0, AV p, AN w, h* Ap) (to)l|3rs + CI|F R l[72(0 70,5y + O (2.55)
< CT||fR||%2(O,T*;H3) + Crdy.
Moreover, according to
IV p(0) 72 + 1| (w, 0, V0, 8V p, N u, B> Ap) (0)][75
— V(T2 + ||, 0, V0,V p, hVu, 28 p)(T*) 4 (2.56)
< CTHfR||2L2(0,T*;H3) + Crdg,
there holds

€0, T*

From (2.52) and (2.57), we have

lo,u, O <CrIF 1B 0 ey + O

2 (2.58)
<CN +0dj < %,

when dy and X are sufficiently small such that CA\? + Cdj < d3/2. Thus, we prove the condition (2.21)
of the Leray-Schauder degree theory. Then based on Lemmas 2.3 and 2.4, we obtain the existence of
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time periodic solutions to the approximated system (2.1) in a sequence of bounded domain. Recalling
the result x((p, @, 8),0) = 0 in the proof of Lemma 2.1, we have

deg(I — x(+, 1), B4, (0),0) = deg(I — x(-,0), By, (0),0) = deg(I, By, (0),0) = 1. (2.59)
This completes the proof of Proposition 2.1. O

3. THE EXISTENCE AND UNIQUENESS OF A TIME PERIODIC SOLUTION IN R3

3.1. The proof of Theorem 1.1. In this section, we focus on proving the existence of time periodic
solutions in R? by passing the limit in the approximated system (2.1).

Proof. To study the convergence as ¢ — 0, R — oo, we denote the solution to the approximate system
(2.1) by (pF,uf 6%). From (2.58), we have

eVe
I(pZ, ul, 65)]l < Cdo,

where dj is independent of € and R. Integrating (2.54) from ¢ to ¢ + h, and then integrating the result
over [0,T*], we have

| U900+ Dl + 1100, 90,500,190 B2 80) ¢+ 1) )
= (IVPMI3z + (. 0, V0, 1V p, RV u, 12 Ap) (2) [775) }dt < Cldo).
By the strong compactness of LP, there exist the subsequence {(pfn ,ui,@i)}j’l‘;l and the solution
(p",u,0%) € X}, such that
(pf;, ui’,ei) — (pR,uR,QR) strongly in LZ(O,T*; LG(QR)),
and
(VOE aVpl  hvul  n?ApE ) — (VR hVp" Avu®, B2 Ap™), (3.1)
strong in L2(0,T*; H3(QR));
(Vui,Vpi) — (Vpl, Vu®), (3.2)
strong in L2(0,T*; H?(QF)).

Then, we claim

R , R npR
(ps s Ug 765 )”C%% ((O,T*)xQR) < Cdo

With the aid of the fact p® € L>(0,7*, W'6) and Sobolev embedding theorem, it is easy to see that
pf e Cz, for any t € (0,T*). Denote a ball centered at = € QF with radius r = |ty — t1]* (0 < t; < t5 <
T*) as B,. From the condition 9;pf* € L%(0,T*, L?), there holds

/ PP () — P (s 1) de

r

ta
< / | [ 0pFdt|dx
B, Jt (3.3)

to N to N
s|</ / |atp§|2dt>é</ / 12dtdr)}|
t1 B, t1 B,

< Clty — to| 5+,
which leads, there exists a point & € B,., such that

~ ~ 1l_an
IpE (&, t1) — pl (&, t2)] < Clty —to] 775
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Consequently, for any x € QF,
o2 (x,t1) — pli(x, t2)| <Ipf(x,t1) — pZ (@, t)| + |0 (3, 11) — pL (T, t2)| + |PE(Z, t2) — pE (0, 12)]
<20ty — to]® + Clty — to]2~ %
Setting a = %, we have
1
|p§<.’1),t1) - p?(l‘,tg” < C‘tl - t2|8'
Thus, we deduce, for any x,y € QF and t,s € (0,7%),
E(,t) = p(y,5)| < Clt — 8| + Cla — |,
The process to deal with the variables uf* and 6% is similar. Therefore, by Arzela-Ascoli theorem,

(pfm ug! Hfi) — (p",u,0M) uniformly.

&n’

Thus as € — 0 (n — 00), we can conclude that the limit function (p%, uft, 0%) satisfies system (1.4). This
completes the proof for the existence of time periodic solutions of system (1.4) in the periodic domain
OFr.

We are now in a position to construct a subsequence (p*, uft* #7) such that (p*, uf*, ) converges
in Qf% and (pfr+1 yBe+r gRrv1) C (pBr yfe 9Rr) converges in QF++1. Repeating the above process and
combining the diagonal argument, we are able to choose a Cantor diagonal subsequence (pf*», ufn )
such that (pfr uf» 0F») — (p,u,0) asn — oo in R3. Consequently, we extend the time periodic classical
solutions of system (1.4) to the whole space R3. This complete the proof. O

3.2. The proof of Theorem 1.2. Our next object is to prove the uniqueness of the time periodic
solutions. Assume (p1,u1,601) and (p2,uz,62) are the time periodic solutions to system (1.4). Setting
q=p1—p2, V=1 —ug, ¥ =01 — 0, we have (¢,v,?) satisfies the following

20,q 4 Ydive = —qdivu; — padive — 2v - Vpy — 2uy - Vg, (3.4a)
h? VAq _ -
O + Vi +29Vqg — — - +v=—v-Vu —uz- Vo —2(g(p1,01) — §(p2,62)) V1
6 p2+¢
. K2 qVApy K2 K2
—2G(p2, 02)Vq — = i 2 Go0) = 5(02)Apr + (o)) Ag, 3.4b
9(p2,02)Va - T mid) T 6 (3(p1) = g(p2))Ap1 + ~=3(p2)) Aq (3.4b)
2 _ . 2 AV 2. 2 . 2 .
09 + glevv — EHW - 1—8d1vAu =—v-Vl —uy- VI — gﬁdlvul - g@gdlvv
12 B _ h2 _
+§((P1 + 9)g(p1) — (p2 + ¥)g(p2)) Vdivuy + 3(02 +1)g(p2) Vdive
25 (20 + 31;- Pz)QQQJ 7 (3.4¢)
3 (pr+1)*(p2 + )
where
. 0—vp Vp
90,p) ==, 9(p) = — =5
) Y+p (p+v)?

We can prove the uniqueness of system (1.4) by similar energy estimates as Sect. 2 when ff = 0. Thus,
choosing a suitably small dy, we can conclude

-
[ (194l + 10,9, 90,194, 570, 12 A s )t < 0. (35)
0

Combining the fact (p1,u1,601) = (p2,usz,02) at infinite, we deduce (g, v,9) = 0. This complete the proof
of Theorem 1.2.



22 M. LI, X. YANG

4. APPENDIX

For reader’s convenience, we list some inequalities which will be frequently in the proof of Theorem
2.1.

Lemma 4.1. Let p,q,r > 1 be some positive integers. Assuming 0 < a,m < I, then we have, for some
generic constant ¢ € [0,1],

IV fllze <CIV G IV FILS (4.1)

where

Provided that ¢ = 1, we have | — a # 3/q.
Next, we give the Moser type calculus inequality

Lemma 4.2. Let o be any multi-index with |a| = k, k > 1. Then one has

110, flgllze <CIV fllzallo* " gllLr + ClO* fllzsllgl e, (4.2)
and
10%(f)llr <ClFllLallO%gllLr + CllO* flLellgll e (4.3)
where f,g €S, p,r,s € (1,00) that satisfies % = % + % = % + %
Lemma 4.3. Let a be a multi-index and f € S, it holds
10V fllz2 < ClO“AS| 2. (4.4)
Proof. By the Riesz operator R;, (EJT) = %f, where R;R; is bounded from L to LP with 1 < p < oo,

we conclude

107V fll 2 = [0°VAT'VAS| 2 = |0"RiR;Af |12 < CllO*Af| 2

O

Lemma 4.4. Assume that f,g be any vector functions. There holds
[ Vg=(Vxg)x f+(Vx[)xg+V(f-9)=Vf-g, (4.5)
V x (Vx f)=V(divf) - Af, (4.6)

and

V x (f xg)= fdivg—gdivf+(g-V)f = (f-V)g. (4.7)
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