
Current and future invasion potential of Senna didymobotrya under the changing climate in 
Africa

Elias Cherenet Weldemariam1,   Dejene  W. Sintayehu 2

1Department of Geo-information Sciences, Haramaya University, Dire Dawa , Ethiopia

Email: eliachent@gmail.com

2 College of Agriculture and Environmental Sciences, Haramaya University, Dire Dawa , 
Ethiopia

Email: sintekal@gmail.com

Abstract 

Senna didymobotrya is an invasive flowering shrub native to Africa. Climate change is thought
to facilitate the introduction and spread of invasive alien species. Following the ongoing climate
and land-use changes, the potential invasion of S. didymobotrya species across the continent is
expected to increase in the future. However, information on the extent of invasion is lacking. The
present study aimed at examining the present and future invasive potential of  S. didymobotrya
under the changing climatic conditions using the Species Distribution Model. Two representative
concentration pathways (RCP4.5, and RCP8.5), and seven bioclimatic including one topographic
variables  were  used  to  simulate  the  current  and future  (2050s and 2070s)  distribution  of  S.
didymobotrya invasion in Africa. The model performance evaluation is done based on, the area
under  the receiver  operating  characteristic  curve  (AUC) and true  skills  statistics  (TSS).  The
results of the study showed that under current climatic conditions 18% of the continent of Africa
is suitable for  S.  didymobotrya  establishment and invasion. Eastern Africa is seen as the most
suitable habitats for S. didymobotrya invasion followed by southern Africa. The predicted model
shows that in the 2050s under RCP4.5 and RCP8.5, 3.4% and 3.17% of the continent will be
highly suitable for S. didymobotrya invasion, respectively.  In the 2070s, the highly suitable area
for the species is predicted to be 3.18 % and 2.73% in RCP4.5 and RCP8.5, respectively. The
low to moderate suitability under RCP 4.5 and RCP8.5 in the 2050s is projected as 17.4 % and
20.5 % and this area is increased in the 2070s to19.11% and 22.82 for the RCP 4.5 and RCP 8.5,
respectively. The results of this study indicate a significant increase in the vulnerability of habitat
for S. didymobotrya invasion under the future climatic conditions.  Moreover, our current finding
suggests the future biodiversity conservation strategy and policy direction should focus on the
means and strategy of limiting the rate of expansion of invasion and distribution in different
ecosystem types, hence reduce the expected harm in the ecosystem services.
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Introduction

Invasive alien species are plants, animals, pathogens, and other organisms that are non-native to
an ecosystem. They are posing a great threat to global biological diversity and many ecosystems
types  (Mainka  &  Howard,  2010a;  Shiferaw  et  al.,  2018),and  agricultural  productivity  and
economic  growth  (Simberloff  et  al.,  2013).  Human  activities  have  greatly  contributed  to
changing the habitat range of invasive alien species at a faster rate than ever before (Walther et
al.,  2009).  The  rapidly  growing  human  populations,  increased  human  mobility,  tourism,
transport, and technological advancement (Wilson et al., 2009; Wittenberg & Cock, 2001), and
increasing  international  trade  in  agricultural  and  related  products  (Richardson  & Rejmanek,
2011) have greatly facilitated the movement of many invasive alien species from their native
ranges into new areas. Once established in their habitat, invasive species can flourish and extend
quickly into  the new area and tends to harm the ecosystem function and structure (Masters &
Norgrove, 2010; Shiferaw et al., 2019), natural processes, and human activities  (Luizza, et al.,
2016). 

The currently increasing spread and risk of invasive of alien plant species in Africa remain the
most striking problem affecting the biological diversity losses and livelihood (Witt et al., 2018).
This calls for an integrated approach. Over 164 invasive alien plant species were reported in
Africa by Witt et al.(2018), of these, Senna didymobotrya is among the most frequently reported
invasive species. Senna didymobotrya, also named as a bush encroacher. The species is known to
suppresses  the  regeneration  and  growth  of  native  plant  species  by  creating  large  dense
impenetrable  brushes,  and  mono-cropping  stands  (Witt  et  al.,  2018),  and  obstructing  the
movement  of  wild  animals.  It  can  easily  establish  itself  in  diverse  habitats  types,  including
grasslands,  woodlands,  forests, riparian zones,  dumpsite,  disturbed  area,  and  coastal  scrub
(Tamiru, 2017; Witt & Luke, 2017).  High invasion of  S. didymobotrya  was reported in forest
reserves in Uganda (Winterbottom & Eilu 2006); in degraded land, urbanized land, coastline,
Savanna,  and  Grassland  of  southern  Africa  (Nel  et  al.,  2004;  Rambuda  &  Johnson,  2004;
Terzano et al., 2018) and in several parts of Ethiopia (Fessehaie & Tessema, 2014; Fufa et al.,
2017; Shiferaw et al., 2018; Tamiru, 2017). Its further expansion would worsen the problem,
leading to great environmental and socio-economic damage. 

Climate  and land-use change have a profound effect  on the introduction,  establishment,  and
expansion of invasive species (Roura-Pascual et al., 2011). Climate warming could facilitate the
dispersal and performance of invasive alien species, which would allow range expansion and
new invasions  (Thiney et al.,2019; Walther et al., 2009). Climate change is considered as the
main driving factor assisting for the establishment and spread of invasive alien species (Burgiel
& Muir, 2010). Moreover, climate change facilitates the distribution of alien spices into the new
areas  through removing constraints  to  species  dispersal  and survival  such as  temperature  or
moisture (Hellmann,et al.,2008; Mainka & Howard, 2010b). Recent studies showed that cimate
change is one of the factor governing the inavsion of invasive species (Sintayehu et al. 2020a;
Sintayehu  et  al.  2020b).  Similarly,  climate  change  may  create  an  opportunity  for  the
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establishment and invasion of  S. didymobotrya.  Thus,  examining the relationship between the
invasion of invasive species and climate change is crucial to design appropriate strategies, hence
to mitigate their expansion and potential adverse impacts.  Therefore, this study examined the
current and future habitat suitability for S. didymobotrya invasion in Africa under the current and
future climatic scenarios. This study addresses the long-term projected impact of climate change
in the distribution and spatial  extent of alien invasive species at the continent level (Africa).
Moreover, to our knowledge, this is the first-ever study that made use of species distribution
modelling  (ensemble  model)  to  examine  the  current  and  future  habitat  suitability  of  S.
didymobotrya invasion in Africa under changing climate conditions. 

Materials and methods 

Target species

Senna didymobotrya (Fresen) H.S. is flowering plant species in the family fabaceae.  In several
parts of Africa, the species named  “African senna ”, “candelabra tree”, “popcorn senna ”, and
“peanut butter cassia”  (Jaca & Condy, 2017).  It is a hairy, aromatic shrub growing up to nine
meters.  It  has  been  domesticated  in  many  areas  as  an  ornamental  plant,  a  cover  crop,  and
leguminous green manure. The plant commonly grows in the tropical climate on diverse habitats
types and is native to eastern and central Africa  (Orwa et al., 2009). The leaf extracts from S.
didymobotrya are used as traditional medicinal  (Jaca & Condy, 2017; Jeruto et al.,2017). The
species is distributed from Congo east to Ethiopia and south to Namibia, Zimbabwe, Angola,
Mozambique, Comoros, Madagascar, Mauritius ,and South Africa  (Orwa et al.,  2009; Tabuti,
2007). The species is capable of establishing itself  under light frost up to 25 days in a year
(Dlamini, 2016) but usually prefers a warmer climate. Its occurrence is favored by the presence
of other species like Sesbania punicea, Melia azedarach, and Psidium guajava  (Dlamini, 2016).
The species often grow in ruderal areas with a steady water supply such as wetlands, and riparian
areas  (Dlamini,  2016;  Tabuti,  2007),  water  bodies,  damp localities,  grassland and woodland
(Nyaberi et al., 2013), with an altitude range from 900 up to 2500 m above sea level  (Tabuti,
2007). 

Species presence records

Species occurrence data were acquired from the Global Biodiversity Information Facility (GBIF:
105  https://www.gbif.org/), Vegetationmap4africa (597:  https://vegetationmap4africa.org/), and
the South African National Biodiversity Institute (SNABI: 11,  http://ipt.sanbi.org.za/iptsanbi/)
databases (figure 1). . A visual inspection was done using the acquired georeferenced points in
ESRI ArcMap 10.7 software. The data were checked and duplicate records were removed from
the dataset.  Finally, a total of 515 presence points were used as input for species distribution
modeling. Furthermore, to reduce the influence of false absence during modeling, we generated
800 randomly distributed pseudo-absence points over the geographical surface. 

Figure 1. Spatial distribution of species occurrence across an elevation range
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Environmental and climate data

To predict the current and future distribution 19 bioclimatic and one elevation variables were
acquired from WorldClim (www.worldclim.com) database version 2.1. The data has a resolution
of 5arc minutes which is approximately 10 km at the equator. The dataset was interpolated from
the measurement taken in more than 10,000 weather stations across the world  (Hijmans et al.,
2005). Furthermore, the data was downloaded  in  GeoTiff (.tif) format using the getData raster
package (Naimi,2018:https://cran.r-project.org) in R. The downscaling was into the boundary of
Africa was performed by using the clip tool in ArcMap 10.7. Since the collinearity problem
might result in model instability and wrong interpretation (Dormann et al., 2013), hence all the
acquired bioclimatic data were undergone for the collinearity test.   To determine collinearity
between variables, we used  variance inflation factors (VIF) in the sdm R package  (Marquardt,
1970).  A  pearson’s  correlation  coefficients  was  used  to  examine  the  correlation  between
environmental  variables  and  variables  with  the  highest  correlation  coefficient  (r  >0.7)  were
excluded from the model (Dormann et al., 2013) to avoid the effect of multi-collinarirty.  Finally
eight  bioclimatic  variables  (consisting  of  four  temperatures  and four  precipitations)  and one
topographic variable were maintained for modeling (Table 3).  

Global climate models (GCMs) for two representative concentration paths such as RCP4.5 and
RCP8.5 of the periods 2050 (2041-2060) and 2070 (2061-2080) were obtained from WorldClim
open  sources  database  (https://worldclim.org/data/v1.4/cmip5.html)  representing  the  future
climate  projections  (Fick  &  Hijmans,  2017).  According  to van  Vuuren  et  al.  (2011)
Representation  Concentration  Pathways  (RCP)  scenarios  are  developed  to  illustrates  climate
situations in which radioactive forcing can be anticipated to rise by 4.5 and 8.5 in Watts per
square meter (W/m-2) in the year 2100 and are commonly used for historical climate change
modelling(IPCC, 2014). 

Species Distribution Modeling

Species distribution models (SDMs) is a powerful tool, and is used in many disciplines such as
regional conservation planning, climate change impact assessment, and produce invasion risk
mapping, ecology (Naimi, 2015), and phylogeography (Alvarado-Serrano & Knowles, 2014). It
has a robust capability for predicting species probability  of occurrence in geographical  areas
using the presence and absence data  (Srivastava et al., 2019). SDMs model can be run in the
sdm package  in  R  statistical  software  and  through  the  ensemble  approach  which  combines
several  statistical  and machine  learning algorithms  (Marmion et  al.,  2009;  Naimi  & Araújo,
2016).  In  our  study,  we  used  a  total  of  eight  SDM models  using  three  regression  models:
generalized linear model (GLM), generalized additive model (GAM), and multivariate adaptive
regression  splines  (MARS).   Besides,  we  also  used  two  classification  models;  flexible
discriminant analysis (FDA) and mixed discriminant analysis, (MAD).  Lastly, three machine
learning models random forest (RF), boosted regression trees (BRT), and support vector machine
(SVM),  were  also used.  The selected  model  types  are  among the  most  powerful  models  in
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handling presence and absence data, hence predicting the species habitat suitability by generating
a binary map (Naimi & Ara, 2016).

In this study, an ensemble modelling approach which combines the eight modelling results was
used for predicting the current and future suitability map of invasion by S. didymobotrya species.
An ensemble modelling was suggested as among the robust approaches in distribution modeling
(Araújo  & New,  2007;  Gómez  et  al.,  2018;  Hao et  al.,  2020;  Marmion et  al.,  2009).   The
ensemble  modelling  approach has  the potential  in  minimizing the expected  modelling  result
variability which may occur when using a single algorithm(Alfaro et al., 2019; Buisson et al.,
2010; Turner et al., 2019). An ensemble model has been reported as the most efficient model in
predicting different  alien invasive species by  Stohlgren et  al.(2010),  by  Ng, et  al.(  2018). A
proper selection of parameters is critical in the ensemble approach still required to reduce the
possible model uncertainties.

Model performance, current and future suitability area analysis 

The model predicting performance for the future and current area suitability for S. didymobotrya
was evaluated based on the area under the curve (AUC) of receiver operating characteristics
(ROC) (Fielding & Bell, 1997) and true skills statistics (TSS) (Allouche et al., 2006) measure of
the metric. The AUC values range from 0 to 1, and while the TSS measuring metric ranges from
-1 to 1  (Naimi,  2015). The different model AUC and TSS classification index are shown in
Table1 (Thuiller  et al., 2009). The classification index illustrates the model prediction efficacy
from low/fail  to  excellent  ranges.  We calibrated  the  models  using  the  default  setting  which
shares the data into 70% for the training the model and the remaining 30% of the data were used
for assessing the performance of the model (Araújo, et al., 2005). 

Table 1. Index for classifying model prediction accuracy

Accuracy AUC TSS

Excellent /High 0.9 -1 0.8 - 1
Good 0.8 -0.9 0.6- 0.8
Fair 0.7- 0.8 0.4- 0.6
Poor 0.6- 0.7 0.2 -0.4
Fail/null 0.5- 0.6 0 -  0.2

Source (Thuiller  et al., 2009)

In this study, the habitat suitability change analysis of S. didymobotrya was performed based on
the  future  scenarios  (2050 and 2070)  under  the  two Representation  Concentration  Pathways
(RCPs) 4.5 and 8.5. The final map generated from the ensemble model was classified into four
different  suitability  classes,  that  is  not  suitable  (0.0–0.25),  low  suitability  (0.25–0.50),
moderately suitable (0.50–0.75) ,and highly suitable (0.75–1.00) following the method of Hamid

5



et al.( 2019). A total of five maps, consisting of four maps for the two RCPs for the year 2050
and 2070 and one map for the current period (2020) were produced to show the current and
future potential distribution of  S. didymobotrya  species at the continental level of Africa. We
used a weighted averaging method to create the final ensemble maps.  Finally, for each range of
suitability classes, the area percentage was calculated in ArcMap version 10.7 (ESRI, 2011). 

Habitat vulnerability assessment

The potential habitat vulnerability change for the future climatic scenarios was assessed basing
on the approaches by (Dai et al., 2019; Duan et al., 2016; Li et al., 2018; Li et al., 2017; Yan et
al., 2020). The key for vulnerability evaluation criteria are i) unsuitable habitats: these are areas
which  presently  and  in  the  future  (2050 and 2070)  will  remain  unsuitable;  ii)  new suitable
habitats: areas that are currently unsuitable habitats but are predicted to be suitable by the 2050
and 2070; iii) suitable habitats that have not changed: these are areas that are currently suitable
habitats and will remain so in future (2050 and 2070), and iv) vulnerable areas: currently suitable
areas which are projected to become unsuitable by the year 2050 and 2070. 

The following different measure of indicator was used to calculate the effect of climate changes
on the potential  habitat  suitability  of  S. didymobotrya  invasion rate  under current  and future
climatic  conditions:  suitable  habitat  invasion  change  rate  in  percentage  (AC)  equation  1;
percentage of currently suitable habitat invasion area loss (SHc) equation 2; and percentage of
increased suitable habitat invasion rate under the future climate scenario (2050 and 2070) (SH f)
equation 3 (Dai et al., 2019; Duan et al., 2016; Li et al., 2018; Li et al., 2017; Yan et al., 2020). 

Where Af is the area predicted as suitable habitat under 2050  and 2070 climatic conditions; Ac is
the current suitable habitat area predicted; and Acf is the suitable habitat found/overlapping in
both the current and future climatic conditions(2050 and 2070), respectively. 

Results 

Model performance statistics

The overall  models mean value of AUC and TSS were 95% and 81%, respectively,  and are
higher than the expected random value of the model (Table 2). According to model evaluation
results,  the  performance  of  ensemble  model  performance  was  very  good  for  predicting  the
invasion  S.  didymobotrya  in  Africa.  The  highest  model  AUC value  was  attained  from  RF
algorithms  (AUC=99%),  while  the  lowest  performance  was  obtained  from FDA  and  GLM
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algorithm (AUC=92%). The minimum and maximum TSS value from the eight algorithms was
76% (and 92%, respectively. The lowest was recorded from FDA and the highest was obtained
from GLM algorithms. 

Table 2 Mean model performance statistics of the eight models for predicting the current and 
future area suitability of S. didymobotrya  under different climatic scenarios  

Environmental variables relative importance 

The relative contributions of each environmental variable to the model are shown in Table 3.
Elevation  accounted  for  33% of  the  relative  contribution  to  determine  the  distribution  of  S.
didymobotrya,  followed  by  bio3  (27.3%) and  bio1  (20.6%).  The  contribution  of  bio12  was
10.8%.  On the other hand, the environmental factors mean temperature of the wettest quarter
(boi8), mean temperature of the driest quarter (bio9), and precipitation of the warmest quarter
(bio18) were the least explaining factors for this species with the overall contribution of 5.3%,
3.5%, and 3.1%, respectively. 

Table 3 . The relative contribution (%) of the environmental variables for determining the 
distribution of current and future S. didymobotrya 

Current and future distribution of senna didymobotrya 
According  to  our  model,  about  18.22% of  the  continent  of  Africa  is  presently  climatically
suitable for  S. didymobotrya (4.0% highly suitable, 3.8% moderately suitable and 10.3% low
suitabile).  However,  the  largest  portion  of  the  continent  (81.88%)  is  not  suitable  for  S.
didymobotrya. The high suitable  areas were generally  observed in Rwanda, Uganda Western
Kenya,  Burundi,  Tanzania,  and  most  of  Ethiopia.  On the  other  side,   Zambia,  northeastern
Zimbabwe,  Mozambique,  the  central  part  of  Angola,  Lesotho,  Central  Madagascar,  Eastern
broader of South Africa, Malawi, DRC eastern side, south Sudan bordering Kenya and Eritrea
have  low to  moderately  suitable  for  invasion  of  S.  didymobotrya.  Furthermore,  the  species
suitable habitat range is observed in the elevation range between 750m to 3000m a.s.l., however,
a few patches of suitability range at a lower elevation beyond 750 m a. s.l. was also visualized. 

Figure 2 S. didymobotrya invasions under current climatic conditions

Future model projections revealed that the climatically  suitable  for  S. didymobotrya invasion
would increase in the 2050s and the 2070s (figure 3). The total share of habitat categorized as a
low and moderate class in the climatic scenarios of RCP 4.5 and RCP8.5 for the year 2050 was
projected to be 16.98 % and 20 %, respectively.  A similar trend was revealed for 2070, with an
increase in the suitability of 18.62% and 21.98% for the RCP 4.5 and RCP 8.5 (Table4, figure3),
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respectively. The total area of the highly suitable area for S. didymobotrya will decrease by 15 %
and 20.75% under RCP4.5 and RCP8.5, respectively by the year 2050 (table 4). Similarly, highly
suitable area will decrease by 20.5% and 31.75% under RCP4.5 and RCP8.5 climate scenario in
2070, respectively  (table 4).  

Figure 3 S. didymobotrya invasion suitability under the future projected climatic conditions 
under RCP 4.5 and RCP 8.5.

Under  RCP4.5  &  RCP8.5  for  the  two  considered  period  (2050  and  2070),   Angola
(southeastern), Zambia, Zimbabwe, DRC(northeast and central,  partly to west), south African
including Lesotho and Swaziland, Congo Brazzaville,  western Namibia,  southern  Cotdivore,
southern Ghana, and Cameron are among the hotspot areas for S. didymobotrya potential future
invasion(figure  3).  On  the  other  hand,  Mozambique  and  Ethiopia  (northeastern)  show  a
progressive loss in the current suitability of  S.didymobotrya  invasion. Likewise, a progressive
decrease  in  the  total  suitability  is  observed  for  the  eastern  African  countries  which  were
previously considered the main hotspot area for S. didymobotrya (figure3, table4).  However, in
RCP8.5 (2050 and 2070), the percentage of areas invaded by the species is predicted to increase
at a higher rate than that of RCP4.5.  This increase is directed toward southern and slightly into
central  Africa.  Nevertheless,  under  both future  climatic  scenarios  the continent,  except  Sub-
Saharan countries is not suitable for S. didymobotry invasion. 

Table 4. Percentage of total suitable habitat change for the current distribution 

Our model predicted a significant increase in the vulnerability of habitat for the invasion of  S.
didymobotrya  under the future climatic scenarios. Our result demonstrations by the 2050s, an
increase in the new invasion areas by 61.57% and 79.82% was projected under RCP 4.5 and
RCP8.5, respectively (table 5). Similarly, this situation remains a rose in suitability in the 2070s
with 73.12% and 95.62 % under RCP4.5 and RCP8.5, respectively. However, our assessment
suggests a progressive decrease in suitability for S. didymobotrya invasion under future climatic
scenarios for the not suitable and highly suitable class (table5). 

Table 5 the percentage of future suitable habitat increase rate 
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Discussion 

This study estimated current potential and future predicted habitat for S. didymobotrya in Africa
using  Ensemble  Approach. We  applied  both  AUC  and  TSS  values  to  evaluate  the  model
performance and the model predicted the distribution of the distribution of the species very well.
The ensemble model for the first time showed the potential impact of current and future climate
on the  distribution  of  S.  didymobotrya  in  Africa.  Under  the  current  climatic  scenarios  high
habitat suitability of invasion is observed in countries like Rwanda, Burundi, Uganda, Kenya,
Tanzania, and Ethiopia. On the contrary North African countries were projected to be the non-
suitable habitat for S. didymobotrya invasion under current and future climatic conditions.  Our
present result is in agreement with the report made by Witt & Luke,(2017), which put Senna spp.
as among the most occurring alien invasive species in many habitats of east African and southern
African countries. Similarly, our current invasion distribution model result reaches an agreement
with studies conducted in different parts of Africa (Dlamini, 2016; Fessehaie & Tessema, 2014;
Fufa et  al.,  2017; Jaca & Condy, 2017; Nel et  al.,  2004)Given that,  the climate change has
affected the distribution of invasive species causing expansions in climatically suitable habitats
worldwide (Bellard et al., 2013), our study shows that future climate change will cause similar
increase  in  the climatically  suitable  areas  of  S.  didymobotrya in  Africa.  The predicted  maps
provided by this study will be helpful for prevention and early detection of the species in the new
areas. 

Under  future  climate  change  scenarios,  suitability  for  S.  didymobotrya  will  expand  towards
lower elevations. Higher species richness of invasive alien species was reported in the lower
elevation ranges than higher elevation (Averett et al., 2016; Ibanez et al., 2019; Pauchard, 2017).
Similarly, some invasive species are shifting their geographic distribution towards high altitude
as  the  climate  warms  (Bradley,  Blumenthal,  Wilcove,  &  Ziska,  2010;  Shrestha,  Sharma,
Devkota, Siwakoti, & Shrestha, 2018), and new invasive species are adding to those currently
being successfully controlled. This is could be because higher elevation ranges are assumed to be
isolated and distant  from weed populations  subsequently  hindering accessibility  by vehicular
traffic  and less  human disturbance,  lead  to  the  less  propagule  pressure  across  the  landscape
resulting in a low establishment. This means that in the long-run, the inherent characteristic of
the species and lack of native competitors may cause a niche shift in new ranges towards lower
elevations; and it is more possible that climate variability will facilitate the spread of the species
into new areas.

Following  topographic  information,  temperature  variables  (accounting  47.9%)  (bio6:  min
temperature  of  coldest  month  and  bio1:  annual  mean  temperature)  were  among  variables
predicted  to  be important  for S.  didymobotrya  establishment. Similarly,  our ensemble model
predicted  precipitation  variables  which  are  accounting  26.8%  (bio12:  Annual  precipitation;
bio14: precipitation of driest month; and bio17: precipitation of driest quarter) as the third most

9



important  environmental  variables  affecting S.  didymobotrya  distribution.  Ibanez et  al.(2019)
also reported positive effects of mean annual precipitation on alien species coverage. Similarly,
Averett  et  al.  2016 reported in  their  study the influence  of temperature  variables  (minimum
temperature records over 30yr) as the most predictor variables limiting the distribution of non-
native species richness. 

Our future projection model showed a substantial increase in the new invasion areas both for the
considered RCPs (4.5 and 8.5). Nevertheless, it is visualized that areas which are highly suitable
under current climatic condition tend to lose their suitability into moderately and low suitability
ranges  under  the  future  climatic  condition.  The  model  predicted  compared  to  the  current
suitability,  the southern  Africa  countries  are  expected  to  gain more new invaded areas  than
countries located in the eastern African and central Africa in the future climatic scenarios. This
trend indicated a shift in the future hotspot area invasion by S. didymobotrya into these countries
as a result of climate change. Nevertheless, despite the loss in a higher range of suitability, east
African  countries  remain  the  main  hotspot  location  of S.  didymobotrya  future invasion.
According to Witt & Luke (2017) and  Witt et al.(2018) the future alien invasive plants species
distribution including  S. didymobotrya in mots habitat range of East African countries is high
facilitated  by increased  land degradation,  overgrazing,  deforestation  of  native  forest  and the
associated impact of climate change. 

Climate change can cause alien species to migrate into new place from the currently growing
habitats  Walther et al.(2009), similarly, in our study, we found a significant shift in the future
range of niche of S. didymobotrya invasion from the current growing range, which is articulated
as the effect of climate change. Moreover, our result suggests in the long run due to the ongoing
climate changes potential shift in species habitat ranges. Furthermore, the movement of invasive
species into the new areas at the global and local scale is favored by other mechanisms such as
wind (cyclone),  severs weather events,  global circulation air,  and water and climate changes
(Burgiel & Muir, 2010).

Conclusion 

This study confirms for the first time the distribution of S. didymobotrya.  Both the present and
future projections show the presence of S. didymobotrya  in most of the African countries. We
found that eastern Africa countries are more vulnerable to S. didymobotrya invasion in the future,
followed by southern African countries. The current status and future trend of S. didymobotrya
indicate a precautionary note calling for coordinated, inter-country, and large scale interventions.
Additionally, the outputs of this study will support the management of the species through early
detection  of future  potentially  suitable  areas.  Based  on  our  study,  we  urge  that  the  future
conservation strategy and policy direction should target on how to limit the increasing expansion
of invasion mainly by focusing the hotspot areas through designing more feasible management
and control measures through  early identification and eradication actions.  There is a  need  for
more studies to  provide more information on the distribution of  S. didymobotrya at  the  local
scale, by incorporating other variables such as land cover/use, population, proximity to water,
and proximity to roads, and population parameters.
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