REFERENCES
Aßmann, M., Stobener, A., Gaßmeyer, S.K., Hilterhaus, L., Kourist, R.,
Liese, A., & Kara, S. (2017). Reaction engineering of biocatalytic
(S)-naproxen synthesis integrating in-line process monitoring by Raman
spectroscopy, Reaction Chemistry & Engineering , 2, 531-540.https://doi.org/10.1039/C7RE00043J.
Aurell, C.J., Karlsson, S., Ponten, F., & Andersen, S.M. (2014). Lipase
catalyzed regioselective lactamization as a key step in the synthesis of
N-Boc (2R)-1,4-oxazepane-2-carboxylic acid, Organic Process
Research & Development , 18, 1116-1119.https://doi.org/10.1021/op5001644.
Bernal, C., Illanes, A., & Wilson, L., (2014). Heterofunctional
Hydrophilic-Hydrophobic Porous Silica Support for Multipoint Covalent
Immobilization of Lipases: Application to Lactulose Palmitate Synthesis,Langmuir , 30, 3557-3566.https://doi.org/10.1021/la4047512.
Ciemięga, A., Maresz, K., & Mrowiec-Białoń, J. (2018).
Meervein-Ponndorf-Vereley reduction of carbonyl compounds in monolithic
siliceous microreactors doped with Lewis acid centres, Applied
Catalysis A: General , 560, 111-118.https://doi.org/10.1016/j.apcata.2018.04.037.
Dwivedee, B.P., Bhaumik, J., Rai, S.K., Laha, J.K., & Banerjee, U.C.
(2017). Development of nanobiocatalysts through the immobilization of
Pseudomonas fluorescenslipase for applications in efficient kinetic
resolution of racemic compounds, Bioresource Technology , 239,
464-471.https://doi.org/10.1016/j.biortech.2017.05.050.
Eta, V., Anugwom, I., Virtanen, P., Maki-Arvela, P., & Mikkola J.P.,
(2014). Enhanced mass transfer upon switchable ionic liquid mediated
wood fractionation, Industrial Crops and Products , 55, 109-115.https://doi.org/10.1016/j.indcrop.2014.02.001.
Eta, V., & Mikkola, J.P., (2016). Deconstruction of Nordic hardwood in
switchable ionic liquids and acylation of the dissolved cellulose,Carbohydrate Polymers , 136, 459-465.https://doi.org/10.1016/j.carbpol.2015.09.058.
Foukis, A., Gkini, O.A., Stergiou, P.Y., Sakkas, V.A., Dima, A., Boura,
K., Koutinas, A., & Papamicheael, E.M., (2017). Sustainable production
of a new generation biofuel by lipase-catalyzed esterification of fatty
acids from liquid industrial waste biomass, Bioresource
Technology , 238, 122–128. doi: 10.1016/j.biortech.2017.04.028.
Garmroodi, M., Mohammadi, M., Ramazani, A., Ashjari, M., Mohammadi, J.,
Sabour, B., & Yousefi, M. (2016). Covalent binding of hyper-activated
Rhizomucor miehei lipase (RML) on hetero-functionalized siliceous
supports, International Journal of Biological Macromolecules , 86,
208–215.https://doi.org/10.1016/j.ijbiomac.2016.01.076.
Goundoju, N.R., Bokam, R., Yalavarthi, N., Shaik, K., & Ponnapalli,
M.G. (2019). Asymmetric total synthesis of
16-methyleicos-(4E)-en-1-yn-3-ol from the marine sponge Cribrochalina
vasculum: Establishment of absolute configuration of chiral centers,ChemistrySelect , 4, 399-402.https://doi.org/10.1002/slct.201803646.
Guajardo, N., Bernal, C., Wilson, L. & Cabrera, Z. (2015). Selectivity
of R-α-monobenzoate glycerol synthesis catalyzed by Candida antarctica
lipase B immobilized on heterofunctional supports, Process
Biochemistry , 50, 1870–1877.https://doi.org/10.1016/j.procbio.2015.06.025.
Gustafsson, H., Thorn, C., & Holmberg, K. (2011). A comparison of
lipase and trypsin encapsulated in mesoporous materials with varying
pore sizes and pH conditions, Colloids and Surface B:
Biointerfaces , 87, 464-471.https://doi.org/10.1016/j.colsurfb.2011.06.012.
Hirata, D.B., Albuquerque, T.L., Rueda, N., Virgen-Ortíz, J.J.,
Tacias-Pascacio, V.G., & Fernandez-Lafuente, R., (2016). Evaluation of
different immobilized lipases in transesterification reactions using
tributyrin: Advantages of the heterofunctional octyl agarose beads,Journal of Molecular Catalysis B: Enzymatic , 133, 117–123.https://doi.org/10.1016/j.molcatb.2016.08.008.
Hou, C., Ghéczy, N., Messmer, D., Szymańska, K., Adamcik, J., Mezzenga,
R., Jarzębski, A.B., & Walde, P. (2019). Stable immobilization of
enzymes in a macro- and mesoporous silica monolith, ACS Omega , 4,
7795-7806.https://doi.org/10.1021/acsomega.9b00286.
Huang, W., Zhu, N., Liu, Y., Wang, J., Zhoung, J., Sun, Q., Sun, T., Hu,
X., Fang, Z. & Guo, K. (2019). A novel microfluidic
enzyme-organocatalysis combination strategy for ring-opening
copolymerizations of lactone, lactide and cyclic carbonate,Chemical Engineering Journal , 365, 592-597.https://doi.org/10.1016/j.cej.2018.09.033.
Hudson, S., Cooney, J., & Magner, E. (2008). Proteins in mesoporous
silicates, Angewandte Chemie - International Edition 47,
8582-8594.http://dx.doi.org/10.1002/anie.200705238.Immobilized
Jiang, Y.J., Zheng, P.J., Zhou, L.Y., Kong, W., Gao, J., Wang, J., Gu,
J., Zhang, X., & Wang, X. (2016). Immobilization of lipase in
hierarchically ordered macroporous/mesoporous silica with improved
catalytic performance, Journal of Molecular Catalysis B:
Enzymatic, 130, 96–103.https://doi.org/10.1016/j.molcatb.2016.05.009.
Jose, C., & Briand, L. E. (2010). Deactivation of Novozym® 435 during
the esterification of ibuprofen with ethanol: Evidences of the
detrimental effect of the alcohol, Reaction Kinetics, Mechanism
and Catalysis , 99, 17–22.https://doi.org/10.1007/s11144-009-0103-4.
Jose, C., Bonetto, R. D., Gambaro, L. A., Torres, M. P., Foresti M. L.,
Ferreira, M. L., & Briand, L.E. (2011). Investigation of the causes of
deactivation-degradation of the commercial biocatalyst Novozym 435 in
ethanol and ethanol-aqueous media, Journal of Molecular Catalysis
B: Enzymatic , 71, 95–107.https://doi.org/10.1016/j.molcatb.2011.04.004.
Karbowiak, T., Saada, M.A., Rigolet, S., Ballandras, A., Weber, G.,
Bezverkhyy, I., Soulard, M., Patarin, J., & Bellat, J.P. (2010). New
insights in the formation of silanol defects in silicalite-1 by water
intrusion under high pressure, Physical Chemistry Chemical
Physics , 12, 11454–11466.https://doi.org/10.1039/c000931h.
Lima, L.N., Oliveira, G.C., Rojas, M.J., Castro, H.F., Da Ros, P.C.M.,
Mendes, A.A., Giordano, R.L.C., & Tardioli, P.W. (2015). Immobilization
of Pseudomonas fluorescens lipase on hydrophobic supports and
application in biodiesel synthesis by transesterification of vegetable
oils in solvent-free systems, Journal of Industrial Microbiology
& Biotechnology , 42, 523-535.https://doi.org/10.1007/s10295-015-1586-9.
Mallin, M., Muschiol, J., Byström. E., & Bornscheuer, U. T. (2013).
Efficient biocatalysis with immobilized enzymes or encapsulated whole
cell microorganism by using the SpinChem reactor system,ChemCatChem , 5, 3529–3532.https://doi.org/10.1002/cctc.201300599.
Odrozek, K., Szymańska, K., Lewanczuk, M., Dzido, G., Pudło, W., Bryjak,
J., & Jarzębski, A.B. (2017). Aerobic enzymatic oxidation of benzoic
acid derivatives in a rotating bed reactor with hierarchically
structured packing, Przemysł Chemiczny , 96, 2446-2449.https://doi.org/10.15199/62.2017.12.7.
Ortiz, C., Ferreira, M.L., Barbosa, O., dos Santos, J.C.S., Rodrigues,
R.C., Berenguer-Murcia, Á., Briand, L.E., & Fernendez-Lafuente, R.
(2019). Novozyme 435: the “perfect” immobilized biocatalyst?,Catalysis Science & Technology , 9, 2380-2420.https://doi.org/10.1039/C9CY00415G.
Pham, T.N., Samikannu, A., Rautio, A.R., Juhasz, K.L., Konya, Z., Warna,
J., Kordas, & K., Mikkola, J.P. (2016). Catalytic hydrogenation of
D-xylose over Ru decorated carbon foam catalyst in a SpinChem® rotating
bed reactor, Topics in Catalysis , 59, 1165-1177.https://doi.org/10.1007/s11244-016-0637-4 .
Stauch, B., Fisher, S.J., & Cianci, M. (2015). Open and closed states
of Candida Antarctica lipase B: protonation and the mechanism of
interfacial activation, Journal of Lipid Research , 56(12)
2348-2358. doi: 10.1194/jlr.M063388
Strub, D. J., Szymańska, K., Hrydziuszko, Z., Bryjak, J., & Jarzębski,
A.B. (2019) Continuous flow kinetic resolution of a non-equimolar
mixture of diastereoisomeric alcohol using a structured monolithic
enzymatic microreactor, Reaction Chemistry & Engineering , 4,
587-594. https://doi.org/10.1039/C8RE00177D .
Szymańska, K., Bryjak, J., Mrowiec-Białon, J., & Jarzębski, A.B.
(2007). Application and properties of siliceous mesostructured cellular
foams as enzymes carriers to obtain efficient biocatalysts,Microporous and Mesoporous Materials, 99, 167–175.https://doi.org/10.1016/j.micromeso.2006.08.035 .
Szymańska, K., Pudło, W., Mrowiec-Białoń, J., Czardybon, A., Kocurek,
J., & Jarzębski, A.B. (2013). Immobilization of invertase on silica
monoliths with hierarchical pore structure to obtain continuous flow
enzymatic microreactors of high performance, Microporous and
Mesoporous Materials, 170, 75-82.https://doi.org/10.1016/j.micromeso.2012.11.037 .
aSzymańska, K., Odrozek, K. Zniszczoł, A., Torrelo,
G., Resch, V., Hanefeld, U., & Jarzębski, A.B. (2016). MsAcT in
siliceous monolithic microreactor enables quantitative ester synthesis
in water, Catalysis Science & Technology , 6, 4882–4888.https://doi.org/10.1039/C5CY02067K .
bSzymańska, K., Pietrowska, M., Kocurek, J., Maresz,
K., Koreniuk, A., Mrowiec-Białoń, J., Widlak, P., Magner, E., &
Jarzębski, A. (2016). Low back-pressure hierarchically structured
multichannel microfluidic bioreactors for rapid protein digestion –
Proof of concept, Chemical Engineering Journal , 287, 148–154.https://doi.org/10.1016/j.cej.2015.10.120 .
Szymańska, K., Odrozek, K., Zniszczoł, A., Pudło, W., & Jarzębski, A.B.
(2017). A novel hierarchically structured siliceous packing to boost the
performance of rotating bed enzymatic reactor, Chemical
Engineering Journal, 315, 18-24.https://doi.org/10.1016/j.cej.2016.12.131 .
Tang, W., Wang, X., Huang, J., Jin, Q., & Wang, X. (2015). A novel
method for the synthesis of symmetrical triacylglycerols by enzymatic
transesterification, Bioresource Technology ,. 196, 559–565.https://doi.org/10.1016/j.biortech.2015 .
Thomas, J.C., Burich, M.D., Bandeira, P.T., Marques de Oliveira, A.R.,
& Piovan, L. (2017). Biocatalysis in continuous-flow mode: A case study
in the enzymatic kinetic resolution of secondary alcohols via acylation
and deacylation reactions mediated by Novozym 435®, Biocatalysis ,
3, 27–36. https://doi.org/10.1515/boca-2017-0003 .
van der Helm, M.P., Bracco, P., Busch, H., Szymańska, K., Jarzębski,
A.B., & Hanefeld, U. (2019). Hydroxynitrile lyases covalently
immobilized in continuous flow microreactors, Catalysis Science &
Technology , 9, 1189–1200. https://doi.org/10.1039/C8CY02192A .
Vescovi, V., Kopp, W., Guisan, J.M., Giordano, R.L.C., Mendes, A.A., &
Tardioli, P.W. (2016). Improved catalytic properties of Candida
antartica lipase B multi-attached on tailor-made hydrophobic silica
containing octyl and multifunctional amino-aldehyde spacer arms,Process Biochemistry , 51, 2055-2066.https://doi.org/10.1016/j.procbio.2016.09.016 .
Wang, J., Gu, S.S., Cui, H.S., Wu, X.Y., & Wu, F.A. (2014). A novel
continuous flow biosynthesis of caffeic acid phenethyl ester from alkyl
caffeate and phenethanol in a packed bed microreactor, Bioresource
Technology , 158, 39–47.https://doi.org/10.1016/j.biortech.2014.01.145 .
Wang, J., Liu, X., Wang, X.D., Dong, T., Zhao, X.Y., Zhu, D., Mei, Y.Y.,
& Wu, G.H. (2016). Selective synthesis of human milk fat-style
structured triglycerides from microalgal oil in a microfluidic reactor
packed with immobilized lipase, Bioresource Technology , 220,
132–141. https://doi.org/10.1016/j.biortech.2016.08.023 .
Wang, Y., Zhang, X., Han, N., Wu, Y., & Wei, D. (2018). Oriented
covalent immobilizatation of recombinant protein on the glutaraldehyde
activated agarose support, International Journal of Biological
Macromolecules , 120, 100-108.https://doi.org/10.1016/j.ijbiomac.2018.08.074 .
Xu, J., Liu, C., Wang, M., Shao, L., Deng, L., Nie, K., & Wang, F.
(2017). Rotating packed bed reactor for enzymatic synthesis of
biodiesel, Bioresource Technology , 224 (2017) 292–297.https://doi.org/10.1016/j.biortech.2016.10.045 .
Zare, M., Golmakani, M.T., & Niakousari, M. (2019). Lipase synthesis of
isoamyl acetate using different acyl donors: Comparison of novel
esterification techniques, LWT- Food Science and Technology , 101,
214-219. https://doi.org/10.1016/j.lwt.2018.10.098 .
Zhao, H., & Song, Z. (2010). Migration of reactive trace compounds from
Novozym® 435 into organic solvents and ionic liquids, Biochemical
Engineering Journal , 49 (2010) 113-118.https://doi.org/10.1016/j.bej.2009.12.004 .
Zhou, L., He, Y., Ma, L., Jiang, Y., Huang, Z., Yin, L., & Gao, J.
(2018). Conversion of levulinic acid into alkyl levulinates: Using
lipase immobilized on meso-molding three-dimensional macroporous
organosilica as catalyst, Bioresour. Technol. 247, 568–575.
https://doi.org/10.1016/j.biortech.2017.08.134.
of interfacial activation, Journal of Lipid Research , 56,
2348-2358. https://doi.org/10.1194/jlr.M063388 .
Table 1. Properties of the siliceous-enzyme carriers and the
biocatalysts obtained.
Table 2. Pore structure parameters of N435 and relative
activity of N435 and MH catalysts after 24 h incubation in organic
solvents.
Fig. 1. Hg porosimetry plots and SEM images of the applied
silica pellets (MH) and Novozym 435.
Fig. 2. Activity (A) and specific activity (B) of MH-catalysts
and Novozym 435 (N435) in hydrolysis of p-nitrophenyl acetate.
Fig. 3. Stability of MH-catalysts and Novozym 435 (N435) in
hydrolysis of p-nitrophenyl acetate in four runs.
Fig. 4. Activity (A) and specific activity (B) of MH-catalysts
and Novozym 435 (N435) in esterification of levulinic acid with
n-butanol.
Fig. 5. Stability of MH-catalysts and Novozym 435 (N435) in
esterification of levulinic acid with n-butanol.
Table 1. Properties of the siliceous-enzyme carriers and the
biocatalysts obtained.