References
Alout, H., Krajacich, B. J., Meyers, J. I., Grubaugh, N. D., Brackney, D. E., Kobylinski, K. C., . . . Foy, B. D. (2014). Evaluation of ivermectin mass drug administration for malaria transmission control across different West African environments. Malar J, 13 , 417. doi:10.1186/1475-2875-13-417
Caly, L., Druce, J. D., Catton, M. G., Jans, D. A., & Wagstaff, K. M. (2020). The FDA-approved Drug Ivermectin inhibits the replication of SARS-CoV-2 in vitro. Antiviral Res , 104787. doi:10.1016/j.antiviral.2020.104787
Campbell, W. C. (1985). Ivermectin: an update. Parasitol Today, 1 (1), 10-16. doi:10.1016/0169-4758(85)90100-0
Campbell, W. C. (1989). Ivermectin and Abamectin (1 ed.). New York: Springer-Verlag
Chaccour, C. J., Kobylinski, K. C., Bassat, Q., Bousema, T., Drakeley, C., Alonso, P., & Foy, B. D. (2013). Ivermectin to reduce malaria transmission: a research agenda for a promising new tool for elimination. Malar J, 12 , 153. doi:10.1186/1475-2875-12-153
Chiu, S. H., Carlin, J. R., Taub, R., Sestokas, E., Zweig, J., Vandenheuvel, W. J., & Jacob, T. A. (1988). Comparative metabolic disposition of ivermectin in fat tissues of cattle, sheep, and rats.Drug Metab Dispos, 16 (5), 728-736. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/2906598
Chiu, S. H., Sestokas, E., Taub, R., Buhs, R. P., Green, M., Sestokas, R., . . . Jacob, T. A. (1986). Metabolic disposition of ivermectin in tissues of cattle, sheep, and rats. Drug Metab Dispos, 14 (5), 590-600. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/2876867
Chiu, S. H., Sestokas, E., Taub, R., Smith, J. L., Arison, B., & Lu, A. Y. (1984). The metabolism of avermectin-H2B1a and -H2B1b by pig liver microsomes. Drug Metab Dispos, 12 (4), 464-469. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/6148214
Chiu, S. H., Taub, R., Sestokas, E., Lu, A. Y., & Jacob, T. A. (1987). Comparative in vivo and in vitro metabolism of ivermectin in steers, sheep, swine, and rat. Drug Metab Rev, 18 (2-3), 289-302. doi:10.3109/03602538708998309
Churchwell, M. I., Twaddle, N. C., Meeker, L. R., & Doerge, D. R. (2005). Improving LC-MS sensitivity through increases in chromatographic performance: comparisons of UPLC-ES/MS/MS to HPLC-ES/MS/MS. J Chromatogr B Analyt Technol Biomed Life Sci, 825 (2), 134-143. doi:10.1016/j.jchromb.2005.05.037
Foy, B. D., Alout, H., Seaman, J. A., Rao, S., Magalhaes, T., Wade, M., . . . Dabire, R. K. (2019). Efficacy and risk of harms of repeat ivermectin mass drug administrations for control of malaria (RIMDAMAL): a cluster-randomised trial. Lancet, 393 (10180), 1517-1526. doi:10.1016/S0140-6736(18)32321-3
Gonzalez, P., Gonzalez, F. A., & Ueno, K. (2012). Ivermectin in human medicine, an overview of the current status of its clinical applications. Curr Pharm Biotechnol, 13 (6), 1103-1109. doi:10.2174/138920112800399248
Kobylinski, K. C., Foy, B. D., & Richardson, J. H. (2012). Ivermectin inhibits the sporogony of Plasmodium falciparum in Anopheles gambiae.Malar J, 11 , 381. doi:10.1186/1475-2875-11-381
Kobylinski, K. C., Jittamala, P., Hanboonkunupakarn, B., Pukrittayakamee, S., Pantuwatana, K., Phasomkusolsil, S., . . . Tarning, J. (2020). Safety, Pharmacokinetics, and Mosquito-Lethal Effects of Ivermectin in Combination With Dihydroartemisinin-Piperaquine and Primaquine in Healthy Adult Thai Subjects. Clin Pharmacol Ther, 107 (5), 1221-1230. doi:10.1002/cpt.1716
Kobylinski, K. C., Ubalee, R., Ponlawat, A., Nitatsukprasert, C., Phasomkulsolsil, S., Wattanakul, T., . . . Richardson, J. H. (2017). Ivermectin susceptibility and sporontocidal effect in Greater Mekong Subregion Anopheles. Malar J, 16 (1), 280. doi:10.1186/s12936-017-1923-8
Meyer, M. R., & Maurer, H. H. (2012). Current applications of high-resolution mass spectrometry in drug metabolism studies. Anal Bioanal Chem, 403 (5), 1221-1231. doi:10.1007/s00216-012-5807-z
Miwa, G. T., Walsh, J. S., VandenHeuvel, W. J., Arison, B., Sestokas, E., Buhs, R., . . . Jacob, T. A. (1982). The metabolism of avermectins B1a, H2B1a, and H2B1b by liver microsomes. Drug Metab Dispos, 10 (3), 268-274. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/6125361
Pinilla, Y. T., S, C. P. L., V, S. S., Andrade, F. S., Melo, G. C., Orfano, A. S., . . . Monteiro, W. M. (2018). Promising approach to reducing Malaria transmission by ivermectin: Sporontocidal effect against Plasmodium vivax in the South American vectors Anopheles aquasalis and Anopheles darlingi. PLoS Negl Trop Dis, 12 (2), e0006221. doi:10.1371/journal.pntd.0006221
Ramanathan, R., Jemal, M., Ramagiri, S., Xia, Y. Q., Humpreys, W. G., Olah, T., & Korfmacher, W. A. (2011). It is time for a paradigm shift in drug discovery bioanalysis: from SRM to HRMS. J Mass Spectrom, 46 (6), 595-601. doi:10.1002/jms.1921
Sleno, L. (2012). The use of mass defect in modern mass spectrometry.J Mass Spectrom, 47 (2), 226-236. doi:10.1002/jms.2953
Smit, M. R., Ochomo, E. O., Aljayyoussi, G., Kwambai, T. K., Abong’o, B. O., Chen, T., . . . Ter Kuile, F. O. (2018). Safety and mosquitocidal efficacy of high-dose ivermectin when co-administered with dihydroartemisinin-piperaquine in Kenyan adults with uncomplicated malaria (IVERMAL): a randomised, double-blind, placebo-controlled trial.Lancet Infect Dis, 18 (6), 615-626. doi:10.1016/S1473-3099(18)30163-4
Theodoridis, G. A., Gika, H. G., Want, E. J., & Wilson, I. D. (2012). Liquid chromatography-mass spectrometry based global metabolite profiling: a review. Anal Chim Acta, 711 , 7-16. doi:10.1016/j.aca.2011.09.042
Zeng, Z., Andrew, N. W., Arison, B. H., Luffer-Atlas, D., & Wang, R. W. (1998). Identification of cytochrome P4503A4 as the major enzyme responsible for the metabolism of ivermectin by human liver microsomes.Xenobiotica, 28 (3), 313-321. doi:10.1080/004982598239597
Zhang, H., Zhang, D., Ray, K., & Zhu, M. (2009). Mass defect filter technique and its applications to drug metabolite identification by high-resolution mass spectrometry. J Mass Spectrom, 44 (7), 999-1016. doi:10.1002/jms.1610