References
Rawla P. (2019). Epidemiology of prostate cancer. World J Oncol, 10(2): 63-89.
Trewartha D, Carter K. (2013). Advances in prostate cancer treatment. Nat Rev Drug Discov, 12(11): 823-824.
Zong Y, Goldstein AS. 2013. Adaptation or selection–mechanisms of castration-resistant prostate cancer. Nat Rev Urol, 10(2): 90-98.
R S. (2002). A history of prostate cancer treatment. Nat Rev Cancer, 2: 389-396.
Davies A, Conteduca V, Zoubeidi A, Beltran H. (2019). Biological evolution of castration-resistant prostate cancer. Eur Urol Focus, 5(2): 147-154.
Saad F, Chi KN, Finelli A, Hotte SJ, Izawa J, Kapoor A, . . . Fleshner NE. (2015). The 2015 CUA-CUOG guidelines for the management of castration-resistant prostate cancer (CRPC). Can Urol Assoc J, 9(3-4): 90-96.
Cai C, Balk SP. (2011). Intratumoral androgen biosynthesis in prostate cancer pathogenesis and response to therapy. Endocr Relat Cancer, 18(5): R175-182.
Tran C, Ouk S, Clegg NJ, Chen Y, Watson PA, Arora V, . . . Sawyers CL. (2009). Development of a second-generation antiandrogen for treatment of advanced prostate cancer. Science, 324: 787-790.
Nelson WG, Yegnasubramanian S. (2013). Resistance emerges to second-generation antiandrogens in prostate cancer. Cancer Discov, 3(9): 971-974.
Erdogan B. (2018). Enzalutamide and cancer. EJMO, 2(3): 121-129.
Jiang W, Chen J, Gong C, Wang Y. (2020). Intravenous delivery of enzalutamide based on high drug loading multifunctional graphene oxide nanoparticles for castration-resistant prostate cancer therapy. J Nanobiotechnology, 18(1): 50.
Niu Y, Guo C, Wen S, Tian J, Luo J, Wang K, . . . Chang C. (2018). ADT with antiandrogens in prostate cancer induces adverse effect of increasing resistance, neuroendocrine differentiation and tumor metastasis. Cancer Lett, 439: 47-55.
Wong YN, Ferraldeschi R, Attard G, De Bono J. (2014). Evolution of androgen receptor targeted therapy for advanced prostate cancer. Nat Rev Clin Oncol, 11(6): 365-376.
Yuan X, Cai C, Chen S, Chen S, Yu Z, Balk SP. (2014). Androgen receptor functions in castration-resistant prostate cancer and mechanisms of resistance to new agents targeting the androgen axis. Oncogene, 33(22): 2815-2825.
Takeda DY, Spisák S, Seo JH, Bell C, O’connor E, Korthauer K, . . . Freedman ML. (2018). A somatically acquired enhancer of the androgen receptor is a noncoding driver in advanced prostate cancer. Cell, 174(2): 422-432.
Dondoo TO, Fukumori T, Daizumoto K, Fukawa T, Kohzuki M, Kowada M, . . . Kanayama HO. (2017). Galectin-3 is implicated in tumor progression and resistance to anti-androgen drug through regulation of androgen receptor signaling in prostate cancer. Anticancer Res, 37(1): 125-134.
Zhu S, Zhao D, Yan L, Jiang W, Kim JS, Gu B, . . . Cao Q. (2018). BMI1 regulates androgen receptor in prostate cancer independently of the polycomb repressive complex 1. Nat Commun, 9(1): 500.
Hwang JH, Seo JH, Beshiri ML, Wankowicz S, Liu D, Cheung A, . . . Hahn WC. (2019). CREB5 promotes resistance to androgen-receptor antagonists and androgen deprivation in prostate cancer. Cell Rep, 29(8): 2355-2370.
Bai S, Cao S, Jin L, Kobelski M, Schouest B, Wang X, . . . Dong Y. (2019). A positive role of c-Myc in regulating androgen receptor and its splice variants in prostate cancer. Oncogene, 38(25): 4977-4989.
Bainbridge A, Walker S, Smith J, Patterson K, Dutt A, Ng Ym, . . . Coffey K. (2020). IKBKE activity enhances AR levels in advanced prostate cancer via modulation of the Hippo pathway. Nucleic Acids Res, 48(10):5366-5382.
Li C, Lanman NA, Kong Y, He D, Mao F, Farah E, . . . Liu X. (2020). Inhibition of the erythropoietin-producing receptor EPHB4 antagonizes androgen receptor overexpression and reduces enzalutamide resistance. J Biol Chem, 295(16): 5470-5483.
Liu Y, Horn JL, Banda K, Goodman AZ. (2019). The androgen receptor regulates a druggable translational regulon in advanced prostate cancer. Sci Transl Med, 11: 1-12.
Thaper D, Vahid S, Kaur R, Kumar S, Nouruzi S, Bishop JL, . . . Zoubeidi A. (2018). Galiellalactone inhibits the STAT3/AR signaling axis and suppresses Enzalutamide-resistant Prostate Cancer. Sci Rep, 8(1):17307.
Han Y, Huang W, Liu J, Liu D, Cui Y, Huang R, . . . Lei M. (2017). Triptolide inhibits the ar signaling pathway to suppress the proliferation of enzalutamide resistant prostate cancer cells. Theranostics, 7(7): 1914-1927.
Pollock JA, Wardell SE, Parent AA, Stagg DB, Ellison SJ, Alley HM, . . . Norris JD. (2016). Inhibiting androgen receptor nuclear entry in castration-resistant prostate cancer. Nat Chem Biol, 12(10): 795-801.
Toure M, Crews CM. (2016). Small-Molecule PROTACS: New approaches to protein degradation. Angew Chem Int Ed Engl, 55(6): 1966-1973.
Salami J, Alabi S, Willard RR, Vitale NJ, Wang J, Dong H, . . . Crews CM. (2018). Androgen receptor degradation by the proteolysis-targeting chimera ARCC-4 outperforms enzalutamide in cellular models of prostate cancer drug resistance. Commun Biol, 1: 100.
Ponnusamy S, He Y, Hwang DJ, Thiyagarajan T, Houtman R, Bocharova V, . . . Narayanan R. (2019). Orally bioavailable androgen receptor degrader, potential next-generation therapeutic for enzalutamide-resistant prostate cancer. Clin Cancer Res, 25(22): 6764-6780.
Wu H, You L, Li Y, Zhao Z, Shi G, Chen Z, . . . Yang Y. (2020). Loss of a negative feedback loop between IRF8 and AR promotes prostate cancer growth and enzalutamide resistance. Cancer Res, 80(13):2927-2939.
J G, Bubley, Balk SP. 2017. Association between androgen receptor splice variants and prostate cancer resistance to abiraterone and enzalutamide. J Clin Oncol, 35(19): 2103-2105.
Antonarakis ES, Lu C, Wang H, Luber B, Nakazawa M, Roeser JC, . . . Luo J. (2014). AR-V7 and resistance to enzalutamide and abiraterone in prostate cancer. N Engl J Med, 371(11): 1028-1038.
Stone L. (2017). Prostate cancer: Escaping enzalutamide: Malat1 contributes to resistance. Nat Rev Urol, 14(8): 450.
Mahajan K, Malla P, Lawrence HR, Chen Z, Kumar-Sinha C, Malik R, . . . Mahajan NP. (2017). ACK1/TNK2 regulates histone H4 Tyr88-phosphorylation and AR gene expression in castration-resistant prostate cancer. Cancer Cell, 31(6): 790-803
Zhao N, Peacock SO, Lo CH, Heidman LM, Rice MA. (2019). Arginine vasopressin receptor 1a is a therapeutic target for castration-resistant prostate cancer. Sci Transl Med, 11(498):eaaw4636
Lam HM, Nguyen HM, Labrecque MP, Brown LG, Coleman IM, Gulati R, . . . Corey E. (2020). Durable response of enzalutamide-resistant prostate cancer to supraphysiological testosterone is associated with a multifaceted growth suppression and impaired DNA damage response transcriptomic program in patient-derived xenografts. Eur Urol, 77(2): 144-155.
Lin SJ, Chou FJ, Li L, Lin CY, Yeh S, Chang C. (2017). Natural killer cells suppress enzalutamide resistance and cell invasion in the castration resistant prostate cancer via targeting the androgen receptor splicing variant 7 (ARv7). Cancer Lett, 398: 62-69.
Liu C, Lou W, Yang JC, Liu L, Armstrong CM, Lombard AP, . . . Gao AC (2018). Proteostasis by STUB1/HSP70 complex controls sensitivity to androgen receptor targeted therapy in advanced prostate cancer. Nat Commun, 9(1): 4700.
Liu C, Yang JC, Armstrong CM, Lou W, Liu L, Qiu X, . . . Gao AC (2019). AKR1C3 promotes AR-V7 protein stabilization and confers resistance to AR-targeted therapies in advanced prostate cancer. Mol Cancer Ther, 18(10): 1875-1886.
Xu H, Sun Y, Huang CP, You B, Ye D, Chang C. (2020). Preclinical study using ABT263 to increase enzalutamide sensitivity to suppress prostate cancer progression via targeting BCL2/ROS/USP26 axis through altering ARv7 protein degradation. Cancers (Basel), 12(4):831.
Zadra G, Ribeiro CF, Chetta P, Ho Y, Cacciatore S, Gao X, . . . Loda M. (2019). Inhibition of de novo lipogenesis targets androgen receptor signaling in castration-resistant prostate cancer. Proc Natl Acad Sci U S A, 116(2): 631-640.
Naiki-Ito A, Naiki T, Kato H, Iida K, Etani T, Nagayasu Y, . . . Takahashi S. (2019). Recruitment of miR-8080 by luteolin inhibits androgen receptor splice variant 7 expression in castration-resistant prostate cancer. Retrieved from https://doi.org/10.1093/carcin/bgz193.
Khurana N, Chandra PK, Kim H, Abdel-Mageed AB, Mondal D, Sikka SC. (2020). Bardoxolone-methyl (CDDO-Me) suppresses androgen receptor and its splice-variant AR-V7 and enhances efficacy of enzalutamide in prostate cancer cells. Antioxidants (Basel), 9(1):68.
Cucchiara V, Yang JC, Liu C, Adomat HH, Tomlinson Guns ES, Gleave ME, . . . Evans CP. (2019). GnRH antagonists have direct inhibitory effects on castration-resistant prostate cancer via intracrine androgen and AR-V7 expression. Mol Cancer Ther, 18(10): 1811-1821.
Monga J, Subramani D, Bharathan A, Ghosh J. (2020). Pharmacological and genetic targeting of 5-lipoxygenase interrupts c-Myc oncogenic signaling and kills enzalutamide-resistant prostate cancer cells via apoptosis. Sci Rep, 10(1): 6649.
Chaytor L, Simcock M, Nakjang S, Heath R, Walker L, Robson C, . . . Gaughan L. (2019). The pioneering role of GATA2 in androgen receptor variant regulation is controlled by bromodomain and extraterminal proteins in castrate-resistant prostate cancer. Mol Cancer Res, 17(6): 1264-1278.
He B, Lanz RB, Fiskus W, Geng C, Yi P, Hartig SM, . . . Mitsiades N. (2014). GATA2 facilitates steroid receptor coactivator recruitment to the androgen receptor complex. Proc Natl Acad Sci U S A, 111(51): 18261-18266.
Asangani IA, Dommeti VL, Wang X, Malik R, Cieslik M, Yang R, . . . Chinnaiyan AM. (2014). Therapeutic targeting of BET bromodomain proteins in castration-resistant prostate cancer. Nature, 510(7504): 278-282.
Chan SC, Selth LA, Li Y, Nyquist MD, Miao L, Bradner JE, . . . Dehm SM. (2015). Targeting chromatin binding regulation of constitutively active AR variants to overcome prostate cancer resistance to endocrine-based therapies. Nucleic Acids Res, 43(12): 5880-5897.
Cai L, Tsai YH, Wang P, Wang J, Li D, Fan H, . . . Wang GG. (2018). ZFX Mediates non-canonical oncogenic functions of the androgen receptor splice variant 7 in castrate-resistant prostate cancer. Mol Cell, 72(2): 341-354
Kounatidou E, Nakjang S, Mccracken SR C, Dehm SM, Robson CN, Jones D, Gaughan L. (2019). A novel CRISPR-engineered prostate cancer cell line defines the AR-V transcriptome and identifies PARP inhibitor sensitivities. Nucleic Acids Res, 47(11): 5634-5647.
Snow O, Lallous N, Singh K, Lack N, Rennie P, Cherkasov A. (2019). Androgen receptor plasticity and its implications for prostate cancer therapy. Cancer Treat Rev, 81: 101871.
Liu H, Wang L, Tian J, Li J, Liu H. (2017). Molecular dynamics studies on the enzalutamide resistance mechanisms induced by androgen receptor mutations. J Cell Biochem, 118(9): 2792-2801.
Korpal M, Korn JM, Gao X, Rakiec DP, Ruddy DA, Doshi S, . . . Zhu P. (2013). An F876L mutation in androgen receptor confers genetic and phenotypic resistance to MDV3100 (enzalutamide). Cancer Discov, 3(9): 1030-1043.
Wang R, Lin W, Lin C, Li L, Sun Y, Chang C. (2016). ASC-J9® suppresses castration resistant prostate cancer progression via degrading the enzalutamide-induced androgen receptor mutant AR-F876L. Cancer Lett, 379(1): 154-160.
Wu Z, Wang K, Yang Z, Pascal LE, Nelson Jb, Takubo K, . . . Wang Z. (2020). A novel androgen receptor antagonist JJ-450 inhibits enzalutamide-resistant mutant AR(F876L) nuclear import and function. Prostate, 80(4): 319-328.
Prekovic S, Van Royen ME, Voet AR, Geverts B, Houtman R, Melchers D, . . . Helsen C. (2016). The effect of F877L and T878A mutations on androgen receptor response to enzalutamide. Mol Cancer Ther, 15(7): 1702-1712.
Borgmann H, Lallous N, Ozistanbullu D, Beraldi E, Paul N, Dalal K, . . . Gleave ME. (2018). Moving towards precision urologic oncology: targeting enzalutamide-resistant prostate cancer and mutated forms of the androgen receptor using the novel inhibitor darolutamide (ODM-201). Eur Urol, 73(1): 4-8.
Lallous N, Volik SV, Awrey S, Leblanc E, Tse R, Murillo J, . . . Cherkasov A. (2016). Functional analysis of androgen receptor mutations that confer anti-androgen resistance identified in circulating cell-free DNA from prostate cancer patients. Genome Biol, 17: 10.
Arora VK, Schenkein E, Murali R, Subudhi SK, Wongvipat J, Balbas MD, . . . Sawyers CL. (2013). Glucocorticoid receptor confers resistance to antiandrogens by bypassing androgen receptor blockade. Cell, 155(6): 1309-1322.
Li J, Alyamani M, Zhang A, Chang KH, Berk M, Li Z, . . . Sharifi N. (2017). Aberrant corticosteroid metabolism in tumor cells enables GR takeover in enzalutamide resistant prostate cancer. Elife, 6:e20183.
Palit SA, Vis D, Stelloo S, Lieftink C, Prekovic S, Bekers E, . . . Van Der Heijden MS. (2019). TLE3 loss confers AR inhibitor resistance by facilitating GR-mediated human prostate cancer cell growth. Elife, 8:e47430.
Adelaiye-Ogala RM, Gryder B, Nguyen YTM, Alilin An, Grayson A, Jansson KH, . . . Vanderweele DJ. (2020). Targeting the PI3K/AKT pathway overcomes enzalutamide resistance by inhibiting induction of the glucocorticoid receptor. Mol Cancer Ther, 19(7):1436-1447.
Shah N, Wang P, Wongvipat J, Karthaus WR, Abida W, Armenia J, . . . Sawyers CL. (2017). Regulation of the glucocorticoid receptor via a BET-dependent enhancer drives antiandrogen resistance in prostate cancer. Elife, 6: 1-19.
Kurmis AA, Yang F, Welch TR, Nickols NG, Dervan PB. (2017). A Pyrrole-Imidazole Polyamide is active against enzalutamide-resistant prostate cancer. Cancer Res, 77(9): 2207-2212.
Kach J, Long TM, Selman P, Tonsing-Carter EY, Bacalao MA, Lastra RR, . . . Szmulewitz RZ. (2017). Selective glucocorticoid receptor modulators (SGRMs) delay castrate-resistant prostate cancer growth. Mol Cancer Ther, 16(8): 1680-1692.
Wu M, Xie Y, Cui X, Huang C, Zhang R, He Y, . . . Zhou J. (2019). Rational drug design for androgen receptor and glucocorticoids receptor dual antagonist. Eur J Med Chem, 166: 232-242.
Tummala R, Lou W, Gao AC, Nadiminty N. (2017). Quercetin targets hnRNPA1 to overcome enzalutamide resistance in prostate cancer cells. Mol Cancer Ther, 16(12):2770-2779.
Zhao M, Wang S, Li Q, Ji Q, Guo P, Liu X. (2018). MALAT1: A long non-coding RNA highly associated with human cancers. Oncol Lett, 16(1):19-26.
Joseph JD, Lu N, Qian J, Sensintaffar J, Shao G, Brigham D, . . . Hager JH. (2013). A clinically relevant androgen receptor mutation confers resistance to second-generation antiandrogens enzalutamide and ARN-509. Cancer Discov, 3(9):1020-1029
Murillo-Garzon V, Kypta R. (2017). WNT signalling in prostate cancer. Nat Rev Urol, 14(11): 683-696.
Zhang Z, Cheng L, Li J, Farah E, Atallah NM, Pascuzzi PE, . . . Liu X. (2018). Inhibition of the Wnt/beta-catenin pathway overcomes resistance to enzalutamide in castration-resistant prostate cancer. Cancer Res, 78(12): 3147-3162.
Khurana N, Sikka SC. (2019). Interplay Between SOX9, Wnt/beta-catenin and androgen receptor signaling in castration-resistant prostate cancer. Int J Mol Sci, 20(9):2066.
Sha J, Han Q, Chi C, Zhu Y, Pan J, Dong B, . . . Xue W. (2018). PRKAR2B promotes prostate cancer metastasis by activating Wnt/beta-catenin and inducing epithelial-mesenchymal transition. J Cell Biochem, 119(9): 7319-7327.
Xia L, Han Q, Chi C, Zhu Y, Pan J, Dong B, . . . Sha J. (2020). Transcriptional regulation of PRKAR2B by miR-200b-3p/200c-3p and XBP1 in human prostate cancer. Biomed Pharmacother, 124: 109863.
Pak S, Park S, Kim Y, Park JH, Park CH, Lee KJ, . . . Ahn H. (2019). The small molecule Wnt/β-catenin inhibitor CWP232291 blocks the growth of castration-resistant prostate cancer by activating the endoplasmic reticulum stress pathway. J Exp Clin Cancer Res, 38(1): 342.
Miyamoto DT, Zheng Y, Wittner BS, Lee RJ. (2015). RNA-Seq of single prostate CTCs implicates noncanonical Wnt signaling in antiandrogen resistance. Science, 349(6254): 1351–1356.
Chen X, Liu J, Cheng L, Li C, Zhang Z, Bai Y, . . . Liu X. (2020). Inhibition of noncanonical Wnt pathway overcomes enzalutamide resistance in castration-resistant prostate cancer. Prostate, 80(3): 256-266.
Isaacsson Velho P, Fu W, Wang H, Mirkheshti N, Qazi F, Lima FAS, . . . Antonarakis ES. (2020). Wnt-pathway activating mutations are associated with resistance to first-line abiraterone and enzalutamide in castration-resistant prostate cancer. Eur Urol, 77(1): 14-21.
Lombard AP, Liu C, Armstrong CM, D’Abronzo LS. (2019). Wntless promotes cellular viability and resistance to enzalutamide in castration resistant prostate cancer cells. Am J Clin Exp Urol, 7(4): 203-214.
Heiden MGV, Cantley LC, Thompson CB. (2009). Understanding the warburg effect:The Metabolic requirements of cell proliferation. Science, 324: 1029-1033.
Gonzalez-Menendez P, Hevia D, Mayo JC, Sainz RM. (2018). The dark side of glucose transporters in prostate cancer: Are they a new feature to characterize carcinomas? Int J Cancer, 142(12): 2414-2424.
Wang J, Xu W, Wang B, Lin G, Wei Y, Abudurexiti M, . . . Ye D. (2020). GLUT1 is an AR target contributing to tumor growth and glycolysis in castration-resistant and enzalutamide-resistant prostate cancers. Cancer Lett, 485:45-55.
Cui Y, Nadiminty N, Liu C, Lou W, Schwartz CT, Gao AC. (2014). Upregulation of glucose metabolism by NF-kappaB2/p52 mediates enzalutamide resistance in castration-resistant prostate cancer cells. Endocr Relat Cancer, 21(3): 435-442.
Bharti SK, Kakkad S, Danhier P, Wildes F, Penet MF, Krishnamachary B, Bhujwalla ZM. (2019). Hypoxia patterns in primary and metastatic prostate cancer environments. Neoplasia, 21(2): 239-246.
Geng H, Xue C, Mendonca J, Sun XX, Liu Q, Reardon PN, . . . Qian DZ. (2018). Interplay between hypoxia and androgen controls a metabolic switch conferring resistance to androgen/AR-targeted therapy. Nat Commun, 9(1): 4972.
Farrow JM, Yang JC, Evans CP. (2014). Autophagy as a modulator and target in prostate cancer. Nat Rev Urol, 11(9): 508-516.
Smith AG, Macleod KF. (2019). Autophagy, cancer stem cells and drug resistance. J Pathol, 247(5): 708-718.
Nguyen HG, Yang JC, Kung HJ, Shi XB, Tilki D, Lara PN, JR., . . . Evans CP. (2014). Targeting autophagy overcomes Enzalutamide resistance in castration-resistant prostate cancer cells and improves therapeutic response in a xenograft model. Oncogene, 33(36): 4521-4530.
Pistritto G, Trisciuoglio D, Ceci C, Garufi A. (2016). Apoptosis as anticancer mechanism: function and dysfunction of its modulators and targeted therapeutic strategies. Aging, 8(4): 603-619.
Siddiqui WA, Ahad A, Ahsan H. (2015). The mystery of BCL2 family: Bcl-2 proteins and apoptosis: an update. Arch Toxicol, 89(3): 289-317.
Pilling AB, Hwang C. (2019). Targeting prosurvival BCL2 signaling through Akt blockade sensitizes castration-resistant prostate cancer cells to enzalutamide. Prostate, 79(11): 1347-1359.
Li Q, Deng Q, Chao HP, Liu X, Lu Y, Lin K, . . . Tang DG. (2018). Linking prostate cancer cell AR heterogeneity to distinct castration and enzalutamide responses. Nat Commun, 9(1): 3600.
Cheng J, Moore S, Gomez-Galeno J, Lee DH, Okolotowicz KJ, Cashman JR. (2019). A novel small molecule inhibits tumor growth and synergizes effects of enzalutamide on prostate cancer. J Pharmacol Exp Ther, 371(3): 703-712.
Krajewska M, Krajewski S, Banares S, Huang X. (2003). Elevated expression of inhibitor of apoptosis proteins in prostate cancer. Clin Cancer Res, 9(13): 4914–4925.
Luk ISU, Shresth R, Xue H, Wang Y. 2016. BIRC6-targeting as potential therapy for advanced, enzalutamide-resistant prostate cancer. Clin Cancer Res, 23(6): 1542-1551.
Pilling AB, Hwang O, Boudreault A, Laurent A, Hwang C. (2017). IAP antagonists enhance apoptotic response to enzalutamide in castration-resistant prostate cancer cells via autocrine TNF-α signaling. Prostate, 77(8): 866-877.
Davie AH, Beltran H, Zoubeid A. (2018). Cellular plasticity and the neuroendocrine phenotype in prostate cancer. Nat Rev Urol, 15: 271–286.
Miao L, Yang L, Li R, Rodrigues DN, Crespo M, Hsieh JT, . . . Raj GV. (2017). Disrupting androgen receptor signaling induces snail-mediated epithelial-mesenchymal plasticity in prostate cancer. Cancer Res, 77(11): 3101-3112.
Quintanal-Villalonga Á, Chan JM, Yu HA, Pe’Er D, Sawyers CL, Sen T, Rudin CM. (2020). Lineage plasticity in cancer: a shared pathway of therapeutic resistance. Nat Rev Clin Oncol, 17(6):360-371.
Pal SK, Patel J, He M, Foulk B, Kraft K, Smirnov DA, . . . Jones JO. (2018). Identification of mechanisms of resistance to treatment with abiraterone acetate or enzalutamide in patients with castration-resistant prostate cancer (CRPC). Cancer, 124(6):1216-1224.
Song B, Park SH, Zhao JC, Fong KW, Li S, Lee Y, . . . Yu J. (2019). Targeting FOXA1-mediated repression of TGF-β signaling suppresses castration-resistant prostate cancer progression. J Clin Investig, 129(2): 569-582.
Paller C, Pu H, Begemann DE, Wade CA, Hensley PJ, Kyprianou N. (2019). TGF-β receptor I inhibitor enhances response to enzalutamide in a pre-clinical model of advanced prostate cancer. Prostate, 79(1): 31-43.
Liu Q, Tong D, Liu G, Xu J, Do K, Geary K, . . . Jiang J. (2017). Metformin reverses prostate cancer resistance to enzalutamide by targeting TGF-β1/STAT3 axis-regulated EMT. Cell Death Dis, 8(8): e3007.
Hensley PJ, Cao Z, Pu H, Dicke H. (2019). Predictive and targeting value of IGFBP-3 in therapeutically resistant prostate cancer. Am J Clin Exp Urol, 7(3): 188-202.
Ku SY, Rosario S, Wang Y, Mu P, Seshadri M. (2017). Rb1 and Trp53 cooperate to suppress prostate cancer lineage plasticity, metastasis, and antiandrogen resistance. Science, 355(6320): 78-83.
Ge R, Wang Z, Montironi R, Jiang Z, Cheng M, Santoni M, . . . Cheng L. (2020). Epigenetic modulations and lineage plasticity in advanced prostate cancer. Ann Oncol, 31(4): 470-479.
Xiao L, Tien JC, Vo J, Tan M, Parolia A, Zhang Y, . . . Chinnaiyan AM. (2018). Epigenetic reprogramming with antisense oligonucleotides enhances the effectiveness of androgen receptor inhibition in castration-resistant prostate cancer. Cancer Res, 78(20):5731-5740.
Carceles-Cordon M, Kelly WK, Gomella L, Knudsen KE, Rodriguez-Bravo V, Domingo-Domenech J. (2020). Cellular rewiring in lethal prostate cancer: the architect of drug resistance. Nat Rev Urol, 17(5): 292-307.
Zhang Y, Zheng D, Zhou T, Song H, Hulsurkar M, Su N, . . . Li W. (2018). Androgen deprivation promotes neuroendocrine differentiation and angiogenesis through CREB-EZH2-TSP1 pathway in prostate cancers. Nat Commun, 9(1): 4080.
Luo J, Wang K, Yeh S, Sun Y, Liang L, Xiao Y, . . . Chang C. (2019). LncRNA-p21 alters the antiandrogen enzalutamide-induced prostate cancer neuroendocrine differentiation via modulating the EZH2/STAT3 signaling. Nat Commun, 10(1): 2571.
Mu P, Zhang Z, Benelli M, Karthaus WR, Hoove E. (2017). SOX2 promotes lineage plasticity and antiandrogen resistance in TP53and RB1-deficient prostate cance. Science, 355: 84–88.
Metz EP, Wilder PJ, Dong J, Datta K, Rizzino A. (2020). Elevating SOX2 in prostate tumor cells upregulates expression of neuroendocrine genes, but does not reduce the inhibitory effects of enzalutamide. J Cell Physiol, 235(4): 3731-3740.
Nouri M, Massah S, Caradec J, Lubik AA, Li N, Truong S, . . . Buttyan R. (2020). Transient Sox9 Expression Facilitates Resistance to Androgen-Targeted Therapy in Prostate Cancer. Clin Cancer Res, 26(7): 1678-1689.
Flores-Morales A, Bergmann TB, Lavallee C, Batth TS, Lin D, Lerdrup M, . . . Iglesias-Gato D. (2019). Proteogenomic characterization of patient-derived xenografts highlights the role of REST in neuroendocrine differentiation of castration-resistant prostate cancer. Clin Cancer Res, 25(2): 595-608.
Li Y, Donmez N, Sahinalp C, Xie N, Wang Y, Xue H, . . . Dong X. (2017). SRRM4 drives neuroendocrine transdifferentiation of prostate adenocarcinoma under androgen receptor pathway inhibition. Eur Urol, 71(1): 68-78.
Tiwari R, Manzar N, Bhatia V, Yadav A, Nengroo MA, Datta D, . . . Ateeq B. (2020). Androgen deprivation upregulates SPINK1 expression and potentiates cellular plasticity in prostate cancer. Nat Commun, 11(1): 384.
Dardenne E, Beltran H, Benelli M, Gayvert K, Berger A, Puca L, . . . Rickman DS. (2016). N-Myc induces an EZH2-mediated transcriptional program driving neuroendocrine prostate cancer. Cancer Cell, 30(4): 563-577.
Berger A, Brady NJ, Bareja R, Robinson B, Conteduca V, Augello MA, . . . Rickman DS. (2019). N-Myc-mediated epigenetic reprogramming drives lineage plasticity in advanced prostate cancer. J Clin Invest, 130: 3924-3940.
Nerlakanti N, Yao J, Nguyen DT, Patel AK, Eroshkin AM, Lawrence HR, . . . Mahajan K. (2018). Targeting the BRD4-HOXB13 coregulated transcriptional networks with bromodomain-kinase inhibitors to suppress metastatic castration-resistant prostate cancer. Mol Cancer Ther, 17(12): 2796-2810.
Bishop JL, Thaper D, Vahid S, Davies A, Ketola K, Kuruma H, . . . Zoubeidi A. (2017). The master neural transcription factor BRN2 is an androgen receptor-suppressed driver of neuroendocrine differentiation in prostate cancer. Cancer Discov, 7(1): 54-71.
Yasumizu Y, Rajabi H, Jin C, Hata T, Pitroda S, Long MD, . . . Kufe D. (2020). MUC1-C regulates lineage plasticity driving progression to neuroendocrine prostate cancer. Nat Commun, 11(1): 338.
Bhagirath D, Yang TL, Tabatabai ZL, Majid S, Dahiya R, Tanaka Y, Saini S. (2019). BRN4 is a novel driver of neuroendocrine differentiation in castration-resistant prostate cancer and is selectively released in extracellular vesicles with BRN2. Clin Cancer Res, 25(21): 6532-6545.
Reina-Campos M, Linares JF, Duran A, Cordes T, L’hermitte A, Badur MG, . . . Diaz-Meco MT. (2019). Increased serine and one-carbon pathway metabolism by PKCλ/ι deficiency promotes neuroendocrine prostate cancer. Cancer Cell, 35(3): 385-400.
Zhang Z, Zhou C, Li X, Barnes SD, Deng S, Hoover E, . . . Mu P. (2020). Loss of CHD1 promotes heterogeneous mechanisms of resistance to AR-targeted therapy via chromatin dysregulation. Cancer Cell, 37(4): 584-598.
Faugeroux V, Pailler E, Oulhen M, Deas O, Brulle-Soumare L, Hervieu C, . . . Farace F. (2020). Genetic characterization of a unique neuroendocrine transdifferentiation prostate circulating tumor cell-derived eXplant model. Nat Commun, 11(1): 1884.
Jones VS, Huang RY, Chen LP, Chen ZS, Fu L, Huang RP. (2016). Cytokines in cancer drug resistance: Cues to new therapeutic strategies. Biochim Biophys Acta, 1865(2): 255-265.
Culig Z, Puhr M. (2018). Interleukin-6 and prostate cancer: Current developments and unsolved questions. Mol Cell Endocrinol, 462(Pt A): 25-30.
Canesin G, Krzyzanowska A, Hellsten R, Bjartell A. (2020). Cytokines and Janus kinase/signal transducer and activator of transcription signaling in prostate cancer: overview and therapeutic opportunities. Curr Opin Endocr Metab Res, 10(6): 36-42.
Liu C, Zhu Y, Lou W, Cui Y, Evans CP, Gao AC. (2014). Inhibition of constitutively active Stat3 reverses enzalutamide resistance in LNCaP derivative prostate cancer cells. Prostate, 74(2): 201-209.
Wang C, Peng G, Huang H, Liu F, Kong DP, Dong KQ, . . . Sun YH. (2018). Blocking the Feedback loop between neuroendocrine differentiation and macrophages improves the therapeutic effects of enzalutamide (MDV3100) on prostate cancer. Clin Cancer Res, 24(3): 708-723.
Calcinotto A, Spataro C, Zagato E, Di Mitri D, Gil V, Crespo M, . . . Alimonti A. (2018). IL-23 secreted by myeloid cells drives castration-resistant prostate cancer. Nature, 559(7714): 363-369.
Jung Y, Cackowski FC, Yumoto K, Decker AM, Wang J, Kim JK, . . . Taichman RS. (2018). CXCL12 γ promotes metastatic castration-resistant prostate cancer by inducing cancer stem cell and neuroendocrine phenotypes. Cancer Res, 78(8): 2026-2039.
Li S, Fong KW, Gritsina G, Zhang A, Zhao JC, Kim J, . . . Yu J. (2019). Activation of MAPK signaling by CXCR7 leads to enzalutamide resistance in prostate cancer. Cancer Res, 79(10): 2580-2592.
Rafiei S, Gui B, Wu J, Liu XS, Kibel AS, Jia L. (2019). Targeting the MIF/CXCR7/AKT Signaling pathway in castration-resistant prostate cancer. Mol Cancer Res, 17(1): 263-276.
Luo Y, Azad AK, Karanika S, Basourakos SP, Zuo X, Wang J, . . . Thompson TC. (2018). Enzalutamide and CXCR7 inhibitor combination treatment suppresses cell growth and angiogenic signaling in castration-resistant prostate cancer models. Int J Cancer, 142(10): 2163-2174.
Pal SK, Moreira D, Won H, White SW, Duttagupta P, Lucia M, . . . Kortylewski M. (2019). Reduced T-cell numbers and elevated levels of immunomodulatory cytokines in metastatic prostate cancer patients de novo resistant to abiraterone and/or enzalutamide therapy. Int J Mol Sci, 20(8):1831.
Si W, Shen J, Zheng H, Fan W. (2019). The role and mechanisms of action of microRNAs in cancer drug resistance. Clin Epigenetics, 11(1):25.
Fletcher CE, Sulpice E, Combe S, Shibakawa A, Leach DA, Hamilton MP, . . . Bevan CL. (2019). Androgen receptor-modulatory microRNAs provide insight into therapy resistance and therapeutic targets in advanced prostate cancer. Oncogene, 38(28): 5700-5724.
Fernandes RC, Toubia J, Townley S, Hanson AR, Dredge BK, Pillman KA, . . . Selth LA. (2019). MicroRNA-194 promotes lineage plasticity in advanced prostate cancer. Retrieved from https://doi.org/10.1101/752709.
Lin SC, Kao CY, Lee HJ, Creighton CJ, Ittmann MM, Tsai SJ, . . . Tsai MJ. (2016). Dysregulation of miRNAs-COUP-TFII-FOXM1-CENPF axis contributes to the metastasis of prostate cancer. Nat Commun, 7: 11418.
Chen W, Yao G, Zhou K. (2019). miR-103a-2-5p/miR-30c-1-3p inhibits the progression of prostate cancer resistance to androgen ablation therapy via targeting androgen receptor variant 7. J Cell Biochem, 120(8): 14055-14064.
Ebron JS, Shankar E, Singh J, Sikand K, Weyman CM, Gupta S, . . . Shukla GC. (2019). MiR-644a disrupts oncogenic transformation and warburg effect by direct modulation of multiple genes of tumor-promoting pathways. Cancer Res, 79(8): 1844-1856.
Aragon IM, Cendon Y, Lorente D, Mejorada RL. (2019). Implications of single nucleotide polymorphisms (SNPs) in androgen related-genes in outcome of metastatic castration-resistant prostate cancer (mCRPC) patients treated with abiraterone (Abi) and enzalutamide (Enza). Annals of Oncology, 30: 346.
Shiota M, Fujimoto N, Imada K, Yokomizo A, Itsumi M, Takeuchi A, . . . Naito S. (2016). Potential role for YB-1 in castration-resistant prostate cancer and resistance to enzalutamide through the androgen receptor V7. J Natl Cancer Inst, 108(7):10.
Shiota M, Fujimoto N, Itsumi M, Takeuchi A, Inokuchi J, Tatsugami K, . . . Eto M. (2017). Gene polymorphisms in antioxidant enzymes correlate with the efficacy of androgen-deprivation therapy for prostate cancer with implications of oxidative stress. Ann Oncol, 28(3): 569-575.
Fujimoto N, Shiota M, Tomisaki I, Minato A. (2017). Gene polymorphism-related individual and interracial differences in the outcomes of androgen deprivation therapy for prostate cancer. Clin Genitourin Cancer , 15(3):337-342.
Alizadeh M, Sazegar H, Zia N, Farsani FM. (2018). Study of the effects of rs137852595 single-nucleotide polymorphism on drug resistance of androgen receptor against Enzalutamide treatments in patients with prostate. Retrieved from https://www.researchgate.net/publication/332544381.
Kaviani B, Sazgar H, Zia Jahromi N, Mohamadi Farsani F. (2018). Investigation of drug resistance against treatment with Enzalutamide medicine in individuals diagnosed with prostate cancer and studying the effect of rs137852574 single-nucleotide polymorphism in drug resistance in the human population of Isfahan province. N Cell Mol Biotechnol J, 2018, 8(29): 69-78.
Farah E, Li C, Cheng L, Kong Y, Lanman NA, Pascuzzi P, . . . Liu X. (2019). NOTCH signaling is activated in and contributes to resistance in enzalutamide-resistant prostate cancer cells. J Biol Chem, 294(21): 8543-8554.
Kohrt SE, Awadallah WN, Phillips RA, Case TC, Jin R, Nanda JS, . . . Grabowska MM. (2020). Identification of genes required for enzalutamide resistance in castration-resistant prostate cancer cells. Retrieved from https://doi.org/10.1101/2020.03.27.011825.
Yuan M, Gao Y, Li L, Sun W, Cheng H, Li T, . . . Wu X. (2019). Phospholipase C (PLC)epsilon promotes androgen receptor antagonist resistance via the bone morphogenetic protein (BMP)-6/SMAD axis in a castration-resistant prostate cancer cell line. Med Sci Monit, 25: 4438-4449.
Kong Y, Cheng L, Mao F, Zhang Z, Zhang Y, Farah E, . . . Liu X. (2018). Inhibition of cholesterol biosynthesis overcomes enzalutamide resistance in castration-resistant prostate cancer (CRPC). J Biol Chem, 293(37): 14328-14341.
Neuwirt H, Bouchal J, Kharaishvili G, Ploner C, Jöhrer K, Pitterl F, . . . Eder IE. (2020). Cancer-associated fibroblasts promote prostate tumor growth and progression through upregulation of cholesterol and steroid biosynthesis. Cell Commun Signal, 18(1):11.
Buttigliero C, Tucci M, Bertaglia V, Vignani F, Bironzo P, Di Maio M, Scagliotti GV. (2015). Understanding and overcoming the mechanisms of primary and acquired resistance to abiraterone and enzalutamide in castration resistant prostate cancer. Cancer Treat Rev, 41(10): 884-892.
Xu L, Chen J, Liu W, Liang C, Hu H, Huang J. (2019). Targeting androgen receptor-independent pathways in therapy-resistant prostate cancer. Asian J Urol, 6(1): 91-98.
Lawrence MG, Obinata D, Sandhu S, Selth LA, Wong SQ, Porter LH, . . . Risbridger GP. (2018). Patient-derived models of abiraterone- and enzalutamide-resistant prostate cancer reveal sensitivity to ribosome-directed therapy. Eur Urol, 74(5): 562-572.
Gui B, Gui F, Takai T, Feng C, Bai X, Fazli L, . . . Jia L. (2019). Selective targeting of PARP-2 inhibits androgen receptor signaling and prostate cancer growth through disruption of FOXA1 function. Proc Natl Acad Sci U S A, 116(29): 14573-14582.