BIBLIOGRAPHY
Aro, E. M., Virgin, I., & Andersson, B. (1993). Photoinhibition of
Photosystem II. Inactivation, protein damage and turnover.Biochimica et Biophysica Acta , 1143 (2), 113–134.
doi:10.1016/0005-2728(93)90134-2
Asada, K. (2000). The water-water cycle as alternative photon and
electron sinks. Philosophical Transactions of the Royal Society of
London. Series B, Biological Sciences , 355 (1402), 1419–1431.
doi:10.1098/rstb.2000.0703
Avenson, T J, Kanazawa, A., Cruz, J. A., Takizawa, K., Ettinger, W. E.,
& Kramer, D. M. (2005). Integrating the proton circuit into
photosynthesis: progress and challenges. Plant, Cell &
Environment , 28 (1), 97–109.
doi:10.1111/j.1365-3040.2005.01294.x
Avenson, Thomas J, Cruz, J. A., Kanazawa, A., & Kramer, D. M. (2005).
Regulating the proton budget of higher plant photosynthesis.Proceedings of the National Academy of Sciences of the United
States of America , 102 (27), 9709–9713.
doi:10.1073/pnas.0503952102
Avenson, Thomas J, Cruz, J. A., & Kramer, D. M. (2004). Modulation of
energy-dependent quenching of excitons in antennae of higher plants.Proceedings of the National Academy of Sciences of the United
States of America , 101 (15), 5530–5535.
doi:10.1073/pnas.0401269101
Baker, N. R., Harbinson, J., & Kramer, D. M. (2007). Determining the
limitations and regulation of photosynthetic energy transduction in
leaves. Plant, Cell & Environment , 30 (9), 1107–1125.
doi:10.1111/j.1365-3040.2007.01680.x
Bauwe, H., Hagemann, M., & Fernie, A. R. (2010). Photorespiration:
players, partners and origin. Trends in Plant Science ,15 (6), 330–336. doi:10.1016/j.tplants.2010.03.006
Bernacchi, C J, Singsaas, E. L., Pimentel, C., Portis Jr, A. R., &
Long, S. P. (2001). Improved temperature response functions for models
of Rubisco-limited photosynthesis. Plant, Cell & Environment ,24 (2), 253–259. doi:10.1111/j.1365-3040.2001.00668.x
Bernacchi, Carl J, Portis, A. R., Nakano, H., von Caemmerer, S., &
Long, S. P. (2002). Temperature response of mesophyll conductance.
Implications for the determination of Rubisco enzyme kinetics and for
limitations to photosynthesis in vivo. Plant Physiology ,130 (4), 1992–1998. doi:10.1104/pp.008250
Bloom, A. J., Caldwell, R. M., Finazzo, J., Warner, R. L., & Weissbart,
J. (1989). Oxygen and Carbon Dioxide Fluxes from Barley Shoots Depend on
Nitrate Assimilation. Plant Physiology , 91 , 352–356.
Brooks, A., & Farquhar, G. D. (1985). Effect of temperature on the
CO2/O2 specificity of ribulose- 1,5-bisphosphate carboxylase/0xygenase
and the rate of respiration in the light. Planta , 165 ,
397–406.
Buchner, O., Stoll, M., Karadar, M., Kranner, I., & Neuner, G. (2015).
Application of heat stress in situ demonstrates a protective role of
irradiation on photosynthetic performance in alpine plants. Plant,
Cell & Environment , 38 (4), 812–826. doi:10.1111/pce.12455
Busch, F. A. (2013). Current methods for estimating the rate of
photorespiration in leaves. Plant Biology , 15 (4),
648–655. doi:10.1111/j.1438-8677.2012.00694.x
Busch, F. A., Sage, R. F., Farquhar, G. D. (2018). Plants increase
CO2 uptake by assimilating nitrogen via the
photorespiratory pathway. Nature Plants 4: 46-54
Butler, W. L. (1978). Energy distribution in the photochemical apparatus
of photosynthesis. Annual Review of Plant Physiology ,29 (1), 345–378. doi:10.1146/annurev.pp.29.060178.002021
Chen, Y.-E., Zhang, C.-M., Su, Y.-Q., Ma, J., Zhang, Z.-W., Yuan, M.,
… Yuan, S. (2017). Responses of photosystem II and antioxidative
systems to high light and high temperature co-stress in wheat.Environmental and experimental botany , 135 , 45–55.
doi:10.1016/j.envexpbot.2016.12.001
Crafts-Brandner, S J, & Salvucci, M. E. (2000). Rubisco activase
constrains the photosynthetic potential of leaves at high temperature
and CO2. Proceedings of the National Academy of Sciences of the
United States of America , 97 (24), 13430–13435.
doi:10.1073/pnas.230451497
Crafts-Brandner, Steven J, & Salvucci, M. E. (2002). Sensitivity of
photosynthesis in a C4 plant, maize, to heat stress. Plant
Physiology , 129 (4), 1773–1780. doi:10.1104/pp.002170
Cruz, J. A., Savage, L. J., Zegarac, R., Hall, C. C., Satoh-Cruz, M.,
Davis, G. A., … Kramer, D. M. (2016). Dynamic environmental
photosynthetic imaging reveals emergent phenotypes. Cell Systems ,2 (6), 365–377. doi:10.1016/j.cels.2016.06.001
Cui, L., Li, J., Fan, Y., Xu, S., & Zhang, Z. (2006). High temperature
effects on photosynthesis, PSII functionality and antioxidant activity
of two Festuca arundinacea cultivars with different heat susceptibility.Botanical Studies , 47 (1), 61–69.
Davis, G. A., Kanazawa, A., Schöttler, M. A., Kohzuma, K., Froehlich, J.
E., Rutherford, A. W., … Kramer, D. M. (2016). Limitations to
photosynthesis by proton motive force-induced photosystem II
photodamage. eLife , 5 . doi:10.7554/eLife.16921
Ehlers, J. D., & Hall, A. E. (1996). Genotypic classification of cowpea
based on responses to heat and photoperiod. Crop science ,36 (3), 673. doi:10.2135/cropsci1996.0011183X003600030026x
Ehlers, J. D., & Hall, A. E. (1998). Heat tolerance of contrasting
cowpea lines in short and long days. Field crops research ,55 (1-2), 11–21. doi:10.1016/S0378-4290(97)00055-5
Essemine, J., Qu, M., Mi, H., & Zhu, X.-G. (2016). Response of
Chloroplast NAD(P)H Dehydrogenase-Mediated Cyclic Electron Flow to a
Shortage or Lack in Ferredoxin-Quinone Oxidoreductase-Dependent Pathway
in Rice Following Short-Term Heat Stress. Frontiers in plant
science , 7 , 383. doi:10.3389/fpls.2016.00383
Galmés, J., Hermida-Carrera, C., Laanisto, L., & Niinemets, Ü. (2016).
A compendium of temperature responses of Rubisco kinetic traits:
variability among and within photosynthetic groups and impacts on
photosynthesis modeling. Journal of Experimental Botany ,67 (17), 5067–5091. doi:10.1093/jxb/erw267
Gamon, J. A., & Pearcy, R. W. (1989). Leaf movement, stress avoidance
and photosynthesis in Vitis californica. Oecologia , 79 (4),
475–481. doi:10.1007/BF00378664
Gerganova, M., Popova, A. V., Stanoeva, D., & Velitchkova, M. (2016).
Tomato plants acclimate better to elevated temperature and high light
than to treatment with each factor separately. Plant Physiology
and Biochemistry , 104 , 234–241.
doi:10.1016/j.plaphy.2016.03.030
Harley, P. C., & Sharkey, T. D. (1991). An improved model of C 3
photosynthesis at high CO2: Reversed sensitivity explained by lack of
glycerate reentry into the chloroplast 02. Photosynthesis
Research , 27 , 169–178.
Hasanuzzaman, M., Nahar, K., Alam, M. M., Roychowdhury, R., & Fujita,
M. (2013). Physiological, biochemical, and molecular mechanisms of heat
stress tolerance in plants. International Journal of Molecular
Sciences , 14 (5), 9643–9684. doi:10.3390/ijms14059643
Havaux, M. (1992). Stress tolerance of photosystem II in vivo:
antagonistic effects of water, heat, and photoinhibition stresses.Plant Physiology , 100 (1), 424–432.
doi:10.1104/pp.100.1.424
Havaux, M., Greppin, H., & Strasser, R. J. (1991). Functioning of
photosystems I and II in pea leaves exposed to heat stress in the
presence or absence of light : Analysis using in-vivo fluorescence,
absorbance, oxygen and photoacoustic measurements. Planta ,186 (1), 88–98. doi:10.1007/BF00201502
Hemming, S. (2011). Use of Natural and Artificial Light in Horticulture
- Interaction of Plant and Technology. Acta horticulturae ,907 , 26–35.
Huang, W., Hu, H., & Zhang, S.-B. (2015). Photorespiration plays an
important role in the regulation of photosynthetic electron flow under
fluctuating light in tobacco plants grown under full sunlight.Frontiers in plant science , 6 , 621.
doi:10.3389/fpls.2015.00621
Joly, D., & Carpentier, R. (2007). Regulation of energy dissipation in
photosystem I by the redox state of the plastoquinone pool.Biochemistry , 46 (18), 5534–5541. doi:10.1021/bi602627d
Kalituho, L. N., Pshybytko, N. L., Kabashnikova, L. F., & Jahns, P.
(2003). Photosynthetic apparatus and high temperature: role of light.Bulgarian Journal of Plant Physiology , 281–289.
Kanazawa, A., & Kramer, D. M. (2002). In vivo modulation of
nonphotochemical exciton quenching (NPQ) by regulation of the
chloroplast ATP synthase. Proceedings of the National Academy of
Sciences of the United States of America , 99 (20), 12789–12794.
doi:10.1073/pnas.182427499
Kanazawa, A., Ostendorf, E., Kohzuma, K., Hoh, D., Strand, D. D.,
Sato-Cruz, M., … Kramer, D. M. (2017). Chloroplast ATP synthase
modulation of the thylakoid proton motive force: implications for
photosystem I and photosystem II photoprotection. Frontiers in
plant science , 8 , 719. doi:10.3389/fpls.2017.00719
Kramer, D. M., Avenson, T. J., & Edwards, G. E. (2004). Dynamic
flexibility in the light reactions of photosynthesis governed by both
electron and proton transfer reactions. Trends in Plant Science ,9 (7), 349–357. doi:10.1016/j.tplants.2004.05.001
Kramer, D. M., & Evans, J. R. (2011). The importance of energy balance
in improving photosynthetic productivity. Plant Physiology ,155 (1), 70–78. doi:10.1104/pp.110.166652
Kramer, D. M., Johnson, G., Kiirats, O., & Edwards, G. E. (2004). New
fluorescence parameters for the determination of QA redox state and
excitation energy fluxes. Photosynthesis Research , 79 (2),
209. doi:10.1023/B:PRES.0000015391.99477.0d
Krause, G. H., Somersalo, S., Zumbusch, E., Weyers, B., & Laasch, H.
(1990). On the Mechanism of Photoinhibition in Chloroplasts.
Relationship Between Changes in Fluorescence and Activity of Photosystem
II. Journal of Plant Physiology , 136 , 472–479.
Kuhlgert, S., Austic, G., Zegarac, R., Osei-Bonsu, I., Hoh, D.,
Chilvers, M. I., … Kramer, D. M. (2016). MultispeQ Beta: a tool
for large-scale plant phenotyping connected to the open PhotosynQ
network. Royal Society open science , 3 (10), 160592.
doi:10.1098/rsos.160592
Li, J., Tietz, S., Cruz, J. A., Strand, D. D., Xu, Y., Chen, J.,
… Hu, J. (2019). Photometric screens identified Arabidopsis
peroxisome proteins that impact photosynthesis under dynamic light
conditions. The Plant Journal: for Cell and Molecular Biology ,97 (3), 460–474. doi:10.1111/tpj.14134
Li, X.-P., Gilmore, A. M., Caffarri, S., Bassi, R., Golan, T., Kramer,
D., & Niyogi, K. K. (2004). Regulation of photosynthetic light
harvesting involves intrathylakoid lumen pH sensing by the PsbS protein.The Journal of Biological Chemistry , 279 (22),
22866–22874. doi:10.1074/jbc.M402461200
Li, X.-P., Muller-Moule, P., Gilmore, A. M., & Niyogi, K. K. (2002).
PsbS-dependent enhancement of feedback de-excitation protects
photosystem II from photoinhibition. Proceedings of the National
Academy of Sciences of the United States of America , 99 (23),
15222–15227. doi:10.1073/pnas.232447699
Lin, C. H., McGraw, R. L., George, M. F., & Garret, H. E. (1999). Shade
effects on forage crops with potential in temperate agroforestry
practices. Agroforestry Systems , 44 , 109–119.
Lin, Z., Peng, C., Sun, Z., & Lin, G. (2000). Effect of light intensity
on partitioning of photosynthetic electron transport to photorespiration
in four subtropical forest plants. Science in China. Series C,
Life Sciences , 43 (4), 347–354. doi:10.1007/BF02879298
Livingston, A. K., Kanazawa, A., Cruz, J. A., & Kramer, D. M. (2010).
Regulation of cyclic electron flow in C₃ plants: differential effects of
limiting photosynthesis at ribulose-1,5-bisphosphate
carboxylase/oxygenase and glyceraldehyde-3-phosphate dehydrogenase.Plant, Cell & Environment , 33 (11), 1779–1788.
doi:10.1111/j.1365-3040.2010.02183.x
Long, S. P., Humphries, S., & Falkowski, P. G. (1994). Photoinhibition
of photosynthesis in nature. Annual review of plant physiology and
plant molecular biology , 45 (1), 633–662.
doi:10.1146/annurev.pp.45.060194.003221
Lu, T., Meng, Z., Zhang, G., Qi, M., Sun, Z., Liu, Y., & Li, T. (2017).
Sub-high Temperature and High Light Intensity Induced Irreversible
Inhibition on Photosynthesis System of Tomato Plant (Solanum
lycopersicum L.). Frontiers in plant science , 8 , 365.
doi:10.3389/fpls.2017.00365
Meng, Z., Lu, T., Zhang, G., Qi, M., Tang, W., Li, L., … Li, T.
(2017). Photosystem inhibition and protection in tomato leaves under low
light. Scientia horticulturae , 217 , 145–155.
doi:10.1016/j.scienta.2017.01.039
Miyake, C. (2010). Alternative electron flows (water-water cycle and
cyclic electron flow around PSI) in photosynthesis: molecular mechanisms
and physiological functions. Plant & Cell Physiology ,51 (12), 1951–1963. doi:10.1093/pcp/pcq173
Murata, N., Takahashi, S., Nishiyama, Y., & Allakhverdiev, S. I.
(2007). Photoinhibition of photosystem II under environmental stress.Biochimica et Biophysica Acta , 1767 (6), 414–421.
doi:10.1016/j.bbabio.2006.11.019
Nishiyama, Y., & Murata, N. (2014). Revised scheme for the mechanism of
photoinhibition and its application to enhance the abiotic stress
tolerance of the photosynthetic machinery. Applied Microbiology
and Biotechnology , 98 (21), 8777–8796.
doi:10.1007/s00253-014-6020-0
Panigrahi, S., Pradhan, M. K., Panda, D. K., Panda, S. K., & Joshi, P.
N. (2016). Diminution of photosynthesis in rice (Oryza sativa L.)
seedlings under elevated CO2 concentration and increased temperature.Photosynthetica , 54 (3), 359–366.
doi:10.1007/s11099-016-0190-1
Pastenes, C., Pimentel, P., & Lillo, J. (2005). Leaf movements and
photoinhibition in relation to water stress in field-grown beans.Journal of Experimental Botany , 56 (411), 425–433.
doi:10.1093/jxb/eri061
Paul, M. J., & Foyer, C. H. (2001). Sink regulation of
photosynthesis_Paul 2001.pdf. Journal of Experimental Botany ,52 (360), 1383–1400.
Prins, A., Orr, D. J., Andralojc, P. J., Reynolds, M. P., Carmo-Silva,
E., & Parry, M. A. J. (2016). Rubisco catalytic properties of wild and
domesticated relatives provide scope for improving wheat photosynthesis.Journal of Experimental Botany , 67 (6), 1827–1838.
doi:10.1093/jxb/erv574
R Core Team. (2019). R: A language and environment for statistical
computing (3.6.1). Computer software, Vienna, Austria: R Foundation for
Statistical Computing.
Ruban, A. V. (2016). Nonphotochemical Chlorophyll Fluorescence
Quenching: Mechanism and Effectiveness in Protecting Plants from
Photodamage. Plant Physiology , 170 (4), 1903–1916.
doi:10.1104/pp.15.01935
Ruban, A. V., Johnson, M. P., & Duffy, C. D. P. (2012). The
photoprotective molecular switch in the photosystem II antenna.Biochimica et Biophysica Acta , 1817 (1), 167–181.
doi:10.1016/j.bbabio.2011.04.007
Rumeau, D., Peltier, G., & Cournac, L. (2007). Chlororespiration and
cyclic electron flow around PSI during photosynthesis and plant stress
response. Plant, Cell & Environment , 30 (9), 1041–1051.
doi:10.1111/j.1365-3040.2007.01675.x
Salvucci, M. E., & Crafts-Brandner, S. J. (2004). Inhibition of
photosynthesis by heat stress: the activation state of Rubisco as a
limiting factor in photosynthesis. Physiologia Plantarum ,120 (2), 179–186. doi:10.1111/j.0031-9317.2004.0173.x
Schuster, W. S., & Monson, R. K. (1990). An examination of the
advantages of C3-C4 intermediate photosynthesis in warm environments.Plant, Cell & Environment , 13 (9), 903–912.
doi:10.1111/j.1365-3040.1990.tb01980.x
Sharkey, T. D. (1985a). O2-insensitive photosynthesis in C3 plants: Its
occurrence and a possible explanation. Plant Physiology 78: 71-75
Sharkey, T. D. (1985b). Photosynthesis in intact leaves of C3 plants:
Physics, physiology and rate limitations. The Botanical Review 51:
53-105
Sharkey, T. D. (2005). Effects of moderate heat stress on
photosynthesis: importance of thylakoid reactions, rubisco deactivation,
reactive oxygen species, and thermotolerance provided by isoprene.Plant, Cell & Environment , 28 (3), 269–277.
doi:10.1111/j.1365-3040.2005.01324.x
Sharkey, T. D. (2016). What gas exchange data can tell us about
photosynthesis. Plant, Cell & Environment , 39 (6),
1161–1163. doi:10.1111/pce.12641
Sharkey, T. D., Seemann, J. R., & Berry, J. A. (1986). Regulation of
Ribulose-1,5-Bisphosphate Carboxylase Activity in Response to Changing
Partial Pressure of 02 and Light in Phaseolus vulgaris. Plant
Physiology , 81 , 788–791.
Sharkey, T. D., & Vanderveer, P. J. (1989). Stromal Phosphate
Concentration Is Low during Feedback Limited Photosynthesis. Plant
Physiology , 91 (2), 679–684. doi:10.1104/pp.91.2.679
Sharkey, T. D, Bernacchi, C. J., Farquhar, G. D., & Singsaas, E. L.
(2007). Fitting photosynthetic carbon dioxide response curves for C(3)
leaves. Plant, Cell & Environment , 30 (9), 1035–1040.
doi:10.1111/j.1365-3040.2007.01710.x
Slattery, R. A., Walker, B. J., Weber, A. P. M., & Ort, D. R. (2018).
The impacts of fluctuating light on crop performance. Plant
Physiology , 176 (2), 990–1003. doi:10.1104/pp.17.01234
Stefanov, D., & Terashima, I. (2008). Non-photochemical loss in PSII in
high- and low-light-grown leaves of Vicia faba quantified by several
fluorescence parameters including L(NP), F0/F’m, a novel parameter.Physiologia Plantarum , 133 (2), 327–338.
doi:10.1111/j.1399-3054.2008.01077.x
Strand, D. D., Fisher, N., & Kramer, D. M. (2017). The higher plant
plastid NAD(P)H dehydrogenase-like complex (NDH) is a high efficiency
proton pump that increases ATP production by cyclic electron flow.The Journal of Biological Chemistry , 292 (28),
11850–11860. doi:10.1074/jbc.M116.770792
Strand, D. D., Livingston, A. K., Satoh-Cruz, M., Froehlich, J. E.,
Maurino, V. G., & Kramer, D. M. (2015). Activation of cyclic electron
flow by hydrogen peroxide in vivo. Proceedings of the National
Academy of Sciences of the United States of America , 112 (17),
5539–5544. doi:10.1073/pnas.1418223112
Suetsugu, N., Higa, T., Gotoh, E., & Wada, M. (2016). Light-Induced
Movements of Chloroplasts and Nuclei Are Regulated in Both
Cp-Actin-Filament-Dependent and -Independent Manners in Arabidopsis
thaliana. Plos One , 11 (6), e0157429.
doi:10.1371/journal.pone.0157429
Sun, Y., Geng, Q., Du, Y., Yang, X., & Zhai, H. (2017). Induction of
cyclic electron flow around photosystem I during heat stress in grape
leaves. Plant Science , 256 , 65–71.
doi:10.1016/j.plantsci.2016.12.004
Takizawa, K., Cruz, J. A., Kanazawa, A., & Kramer, D. M. (2007). The
thylakoid proton motive force in vivo. Quantitative, non-invasive
probes, energetics, and regulatory consequences of light-induced pmf.Biochimica et Biophysica Acta , 1767 (10), 1233–1244.
doi:10.1016/j.bbabio.2007.07.006
Tan, W., Meng, Q. wei, Brestic, M., Olsovska, K., & Yang, X. (2011).
Photosynthesis is improved by exogenous calcium in heat-stressed tobacco
plants. Journal of Plant Physiology , 168 (17), 2063–2071.
doi:10.1016/j.jplph.2011.06.009
Tietz, S., Hall, C. C., Cruz, J. A., & Kramer, D. M. (2017). NPQ(T) :
a chlorophyll fluorescence parameter for rapid estimation and imaging of
non-photochemical quenching of excitons in photosystem-II-associated
antenna complexes. Plant, Cell & Environment , 40 (8),
1243–1255. doi:10.1111/pce.12924
Tikhonov, A. N. (2014). The cytochrome b6f complex at the crossroad of
photosynthetic electron transport pathways. Plant Physiology and
Biochemistry , 81 , 163–183. doi:10.1016/j.plaphy.2013.12.011
Tyystjärvi, E., & Aro, E. M. (1996). The rate constant of
photoinhibition, measured in lincomycin-treated leaves, is directly
proportional to light intensity. Proceedings of the National
Academy of Sciences of the United States of America , 93 (5),
2213–2218. doi:10.1073/pnas.93.5.2213
Urban, J., Ingwers, M., McGuire, M. A., & Teskey, R. O. (2017a).
Stomatal conductance increases with rising temperature. Plant
Signaling & Behavior , 12 (8), e1356534.
doi:10.1080/15592324.2017.1356534
Urban, J., Ingwers, M. W., McGuire, M. A., & Teskey, R. O. (2017b).
Increase in leaf temperature opens stomata and decouples net
photosynthesis from stomatal conductance in Pinus taeda and Populus
deltoides x nigra. Journal of Experimental Botany , 68 (7),
1757–1767. doi:10.1093/jxb/erx052
Voss, I., Sunil, B., Scheibe, R., & Raghavendra, A. S. (2013). Emerging
concept for the role of photorespiration as an important part of abiotic
stress response. Plant Biology , 15 (4), 713–722.
doi:10.1111/j.1438-8677.2012.00710.x
Wada, M. (2013). Chloroplast movement. Plant Science , 210 ,
177–182. doi:10.1016/j.plantsci.2013.05.016
Walker, B. J., Kramer, D. M., Fisher, N., & Fu, X. (2020). Flexibility
in the Energy Balancing Network of Photosynthesis Enables Safe Operation
under Changing Environmental Conditions. Plants, 9(3).
doi:10.3390/plants9030301
Walker, B. J.; Orr, D. J.; Carmo-Silva, E.; Parry, M. A. J.; Bernacchi,
C. J.; Ort, D. R., (2017). Uncertainty in measurements of the
photorespiratory CO2 compensation point and its impact on models of leaf
photosynthesis. Photosynthesis Research, 1-11.
Walker, B. J., Strand, D. D., Kramer, D. M., & Cousins, A. B. (2014).
The response of cyclic electron flow around photosystem I to changes in
photorespiration and nitrate assimilation. Plant Physiology, 165(1),
453–462. doi:10.1104/pp.114.238238
Wang, H., Wu, Z., Han, J., Zheng, W., & Yang, C. (2012). Comparison of
ion balance and nitrogen metabolism in old and young leaves of
alkali-stressed rice plants. Plos One , 7 (5), e37817.
doi:10.1371/journal.pone.0037817
Weis, E. (1982). Influence of Light on the Heat Sensitivity of the
Photosynthetic Apparatus in Isolated Spinach Chloroplasts. Plant
Physiology , 70 , 1530–1534.
Weis, E. (1985). Light- and temperature-induced changes in the
distribution of excitation energy between Photosystem I and Photosystem
II in spinach leaves. Biochimica et Biophysica Acta (BBA) -
Bioenergetics , 807 (2), 118–126.
doi:10.1016/0005-2728(85)90114-8
Wise, R. R., Olson, A. J., Schrader, S. M., & Sharkey, T. D. (2004).
Electron transport is the functional limitation of photosynthesis in
field-grown Pima cotton plants at high temperature. Plant, Cell
and Environment , 27 (6), 717–724.
Yang, X., Wen, X., Gong, H., Lu, Q., Yang, Z., Tang, Y., … Lu, C.
(2007). Genetic engineering of the biosynthesis of glycinebetaine
enhances thermotolerance of photosystem II in tobacco plants.Planta , 225 (3), 719–733. doi:10.1007/s00425-006-0380-3
Zhang, R., Cruz, J. A., Kramer, D. M., Magallanes-Lundback, M. E.,
Dellapenna, D., & Sharkey, T. D. (2009). Moderate heat stress reduces
the pH component of the transthylakoid proton motive force in
light-adapted, intact tobacco leaves. Plant, Cell & Environment ,32 (11), 1538–1547. doi:10.1111/j.1365-3040.2009.02018.x
Zhang, R., Kramer, D. M., Cruz, J. A., Struck, K. R., & Sharkey, T. D.
(2011). The effects of moderately high temperature on zeaxanthin
accumulation and decay. Photosynthesis Research , 108 (2-3),
171–181. doi:10.1007/s11120-011-9672-y
Zhang, R., & Sharkey, T. D. (2009). Photosynthetic electron transport
and proton flux under moderate heat stress. Photosynthesis
Research , 100 (1), 29–43. doi:10.1007/s11120-009-9420-8