References

Adebusuyi, A. A., & Foght, J. M. (2011). An alternative physiological role for the EmhABC efflux pump in Pseudomonas fluorescens cLP6a.BMC Microbiology , 11 , 252. https://doi.org/https://doi.org/10.1186/1471-2180-11-252
Albertsen, M., Bellahn, I., Krämer, R., & Waffenschmidt, S. (2003). Localization and function of the yeast multidrug transporter Tpo1p.Journal of Biological Chemistry , 278 (15), 12820–12825. https://doi.org/10.1074/jbc.M210715200
Allen, J. L., Ten-hage, L., & Leflaive, J. (2018). Regulation of Fatty Acid Production and Release in Benthic Algae : Could Parallel Allelopathy Be Explained with Plant Defence Theories ? Microbial Ecology , 75 , 609–621.
Alnaseri, H., Kuiack, R. C., Ferguson, K. A., Schneider, J. E. T., Heinrichs, D. E., & McGavin, M. J. (2019). DNA binding and sensor specificity of FarR, a novel tetr family regulator required for induction of the fatty acid efflux pump FarE in staphylococcus aureus.Journal of Bacteriology , 201 (3), 1–16. https://doi.org/10.1128/JB.00602-18
Alvarez, H. M., Herrero, O. M., Silva, R. A., Hernández, M. A., Lanfranconi, M. P., & Villalba, M. S. (2019). Insights into the metabolism of oleaginous Rhodococcus spp. Applied and Environmental Microbiology , 85 (18), 1–12. https://doi.org/10.1128/AEM.00498-19
Amorim Franco, T. M., & Blanchard, J. S. (2017). Bacterial Branched-Chain Amino Acid Biosynthesis: Structures, Mechanisms, and Drugability. Biochemistry , 56 (44), 5849–5865. https://doi.org/10.1021/acs.biochem.7b00849
Arhar, S., & Natter, K. (2019). Common aspects in the engineering of yeasts for fatty acid- and isoprene-based products. Biochimica et Biophysica Acta - Molecular and Cell Biology of Lipids ,1864 (12), 158513. https://doi.org/10.1016/j.bbalip.2019.08.009
Azizan, A., & Black, P. N. (1994). Use of transposon TnphoA to identify genes for cell envelope proteins of Escherichia coli required for long-chain fatty acid transport: The periplasmic protein Tsp potentiates long-chain fatty acid transport. Journal of Bacteriology ,176 (21), 6653–6662. https://doi.org/10.1128/jb.176.21.6653-6662.1994
Azizan, Azliyati, Sherin, D., DiRusso, C. C., & Black, P. N. (1999). Energetics underlying the process of long-chain fatty acid transport.Archives of Biochemistry and Biophysics , 365 (2), 299–306. https://doi.org/10.1006/abbi.1999.1171
Bae, J. H., Park, B. G., Jung, E., Lee, P. G., & Kim, B. G. (2014). fadD deletion and fadL overexpression in Escherichia coli increase hydroxy long-chain fatty acid productivity. Applied Microbiology and Biotechnology , 98 (21), 8917–8925. https://doi.org/10.1007/s00253-014-5974-2
Banchio, C., & Gramajo, H. C. (1997). Medium- and long-chain fatty acid uptake and utilization by Streptomyces coelicolor A3(2): First characterization of a Gram-positive bacterial system.Microbiology , 143 (7), 2439–2447. https://doi.org/10.1099/00221287-143-7-2439
Bellefleur, M. P. A., Wanda, S. Y., & Curtiss, R. (2019). Characterizing active transportation mechanisms for free fatty acids and antibiotics in Synechocystis sp. PCC 6803. BMC Biotechnology ,19 (1), 1–17. https://doi.org/10.1186/s12896-019-0500-3
Black, P. N., & Dirusso, C. C. (2003). Transmembrane Movement of Exogenous Long-Chain Fatty Acids: Proteins, Enzymes, and Vectorial Esterification. Microbiology and Molecular Biology Reviews ,67 (3), 1–11. https://doi.org/10.1128/MMBR.67.3.454
Borodina, I. (2019). Understanding metabolite transport gives an upper hand in strain development. Microbial Biotechnology ,12 (1), 69–70. https://doi.org/10.1111/1751-7915.13347
Brouwer, K. L. R., Keppler, D., Hoffmaster, K. A., Bow, D. A. J., Cheng, Y., Lai, Y., … Evers, R. (2013). In vitro methods to support transporter evaluation in drug discovery and development. Clinical Pharmacology and Therapeutics , 94 (1), 95–112. https://doi.org/10.1038/clpt.2013.81
Calmes, R., & Deal, S. J. (1976). Fatty acid transport by the lipophilic bacterium Nocardia asteroides. Journal of Bacteriology , 126 (2), 751–757. https://doi.org/10.1128/jb.126.2.751-757.1976
Chen, B., Ling, H., & Chang, M. W. (2013). Transporter engineering for improved tolerance against alkane biofuels in Saccharomyces cerevisiae.Biotechnology for Biofuels , 6 (1), 1–10. https://doi.org/10.1186/1754-6834-6-21
Choi, J., Park, N., Hwang, S., Sohn, J. H., Kwak, I., Cho, K. K., & Choi, I. S. (2013). The antibacterial activity of various saturated and unsaturated fatty acids against several oral pathogens. Journal of Environmental Biology , 34 (July), 673–676.
Claus, S., Jezierska, S., & Bogaert, I. N. A. Van. (2019). Protein-facilitated transport of hydrophobic molecules across the yeast plasma membrane. FEBS Letters , 593 , 1508–1527. https://doi.org/10.1002/1873-3468.13469
Cronan, J. E. (2014). A new pathway of exogenous fatty acid incorporation proceeds by a classical phosphoryl transfer reaction.Molecular Microbiology , 92 (2), 217–221. https://doi.org/10.1111/mmi.12558
Darwiche, R., El Atab, O., Cottier, S., & Schneiter, R. (2018). The function of yeast CAP family proteins in lipid export, mating, and pathogen defense. FEBS Letters , 592 (8), 1304–1311. https://doi.org/10.1002/1873-3468.12909
Darwiche, R., Mène-Saffrané, L., Gfeller, D., Asojo, O. A., & Schneiter, R. (2017). The pathogen-related yeast protein Pry1, a member of the CAP protein superfamily, is a fatty acid-binding protein.Journal of Biological Chemistry , 292 (20), 8304–8314. https://doi.org/10.1074/jbc.M117.781880
Davies, H. M., Anderson, L., Fan, C., & Hawkins, D. J. (1991). Developmental induction, purification, and further characterization of 12:0-ACP thioesterase from immature cotyledons of Umbellularia californica. Archives of Biochemistry and Biophysics ,290 (1), 37–45. https://doi.org/10.1016/0003-9861(91)90588-A
DellaGreca, M., Zarrelli, A., Fergola, P., Cerasuolo, M., Pollio, A., & Pinto, G. (2010). Fatty acids released by Chlorella vulgaris and Their Role in Interference with Pseudokirchneriella subcapitata: Experiments and Modelling. Journal of Chemical Ecology , 36 (3), 339–349. https://doi.org/10.1007/s10886-010-9753-y
Desbois, A. P., & Smith, V. J. (2010). Antibacterial free fatty acids : activities , mechanisms of action and biotechnological potential. Appl Microbiol Biotechnol , 85 , 1629–1642. https://doi.org/10.1007/s00253-009-2355-3
DiRusso, C. C., & Black, P. N. (1999). Long-chain fatty acid transport in bacteria and yeast. Paradigms for defining the mechanism underlying this protein-mediated process. Molecular and Cellular Biochemistry , 192 (1–2), 41–52. https://doi.org/10.1007/978-1-4615-4929-1_5
Dulermo, R., Gamboa-Meléndez, H., Dulermo, T., Thevenieau, F., & Nicaud, J. M. (2014). The fatty acid transport protein Fat1p is involved in the export of fatty acids from lipid bodies in Yarrowia lipolytica.FEMS Yeast Research , 14 (6), 883–896. https://doi.org/10.1111/1567-1364.12177
Dulermo, R., Gamboa-meléndez, H., & Ledesma-amaro, R. (2015). Unraveling fatty acid transport and activation mechanisms in Yarrowia lipolytica. BBA - Molecular and Cell Biology of Lipids ,1851 (9), 1202–1217. https://doi.org/10.1016/j.bbalip.2015.04.004
Dulermo, T., Thevenieau, F., & Nicaud, J. (2014). The fatty acid transport protein Fat1p is involved in the export of fatty acids from lipid bodies in Yarrowia lipolytica. FEMS Yeast Research ,14 , 883–896. https://doi.org/10.1111/1567-1364.12177
Færgeman, Nils J., DiRusso, C. C., Elberger, A., Knudsen, J., & Black, P. N. (1997). Disruption of the Saccharomyces cerevisiae homologue to the murine fatty acid transport protein impairs uptake and growth on long-chain fatty acids. Journal of Biological Chemistry ,272 (13), 8531–8538. https://doi.org/10.1074/jbc.272.13.8531
Færgeman, Nils Joakim, & Knudsen, J. (1997). Role of long-chain fatty acyl-CoA esters in the regulation of metabolism and in cell signalling.Biochemical Journal , 323 (1), 1–12. https://doi.org/10.1042/bj3230001
Fang, F., Dai, B., Zhao, G., Zhao, H., Sun, C., Liu, H., & Xian, M. (2016). In depth understanding the molecular response to the enhanced secretion of fatty acids in Saccharomyces cerevisiae due to one-step gene deletion of acyl-CoA synthetases. Process Biochemistry ,51 (9), 1162–1174. https://doi.org/10.1016/j.procbio.2016.05.017
Feng, Y., & Cronan, J. E. (2009). A New Member of the Escherichia coli fad Regulon : Transcriptional Regulation of fadM ( ybaW ) ᰔ.Journal of Bacteriology , 191 (20), 6320–6328. https://doi.org/10.1128/JB.00835-09
Fisher, M. A., Boyarskiy, S., Yamada, M. R., Kong, N., Bauer, S., & Tullman-Ercek, D. (2014). Enhancing tolerance to short-chain alcohols by engineering the Escherichia coli AcrB efflux pump to secrete the non-native substrate n-butanol. ACS Synthetic Biology ,3 (1), 30–40. https://doi.org/10.1021/sb400065q
Fulda, M., Schnurr, J., Abbadi, A., Heinz, E., & Browse, J. (2004). Peroxisomal Acyl-CoA Synthetase Activity Is Essential for Seedling Development in Arabidopsis thaliana. Plant Cell , 16 (2), 393–405. https://doi.org/10.1105/tpc.019646
Futagi, Y., Kobayashi, M., Narumi, K., Furugen, A., & Iseki, K. (2019). Homology modeling and site-directed mutagenesis identify amino acid residues underlying the substrate selection mechanism of human monocarboxylate transporters 1 (hMCT1) and 4 (hMCT4). Cellular and Molecular Life Sciences , 76 (24), 4905–4921. https://doi.org/10.1007/s00018-019-03151-z
Gerhardt, B. (1992). Fatty acid degradation in plants. Progress in Lipid Research , 31 (4), 417–446.
Glatz, J. F. C. (2015). Lipids and lipid binding proteins: A perfect match. Prostaglandins Leukotrienes and Essential Fatty Acids ,93 , 45–49. https://doi.org/10.1016/j.plefa.2014.07.011
Glatz, J. F. C., Luiken, J. J. F. P., & Bonen, A. (2010). Membrane fatty acid transporters as regulators of lipid metabolism: Implications for metabolic disease. Physiological Reviews , 90 (1), 367–417. https://doi.org/10.1152/physrev.00003.2009
Hearn, E. M., Patel, D. R., Lepore, B. W., Indic, M., & Van Den Berg, B. (2009). Transmembrane passage of hydrophobic compounds through a protein channel wall. Nature , 458 (7236), 367–370. https://doi.org/10.1038/nature07678
Herrero, O. M., Villalba, M. S., Lanfranconi, M. P., & Alvarez, H. M. (2018). Rhodococcus bacteria as a promising source of oils from olive mill wastes. World Journal of Microbiology and Biotechnology ,34 (8), 1–10. https://doi.org/10.1007/s11274-018-2499-3
Hettema, E. H., van Roermund, C. W., Distel, B., van den Berg, M., Vilela, C., Rodrigues-Pousada, C., … Tabak, H. F. (1996). The ABC transporter proteins Pat1 and Pat2 are required for import of long-chain fatty acids into peroxisomes of Saccharomyces cerevisiae. The EMBO Journal , 15 (15), 3813–3822. https://doi.org/10.1002/j.1460-2075.1996.tb00755.x
Hu, Y., Zhu, Z., Nielsen, J., & Siewers, V. (2018). Heterologous transporter expression for improved fatty alcohol secretion in yeast.Metabolic Engineering , 45 (August 2017), 51–58. https://doi.org/10.1016/j.ymben.2017.11.008
Hu, Y., Zhu, Z., Nielsen, J., & Siewers, V. (2019). Engineering Saccharomyces cerevisiae cells for production of fatty acid-derived biofuels and chemicals. Open Biology , 9 (5). https://doi.org/10.1098/rsob.190049
Huang, C. B., Alimova, Y., Myers, T. M., & Ebersole, J. L. (2011). Short- and medium-chain fatty acids exhibit antimicrobial activity for oral microorganisms. Archives of Oral Biology , 56 (7), 650–654. https://doi.org/10.1016/j.archoralbio.2011.01.011
Jacquier, N., & Schneiter, R. (2010). Ypk1, the yeast orthologue of the human serum- and glucocorticoid-induced kinase, is required for efficient uptake of fatty acids. Journal of Cell Science ,123 (13), 2218–2227. https://doi.org/10.1242/jcs.063073
Jeon, E. Y., Song, J. W., Cha, H. J., Lee, S. M., Lee, J., & Park, J. B. (2018). Intracellular transformation rates of fatty acids are influenced by expression of the fatty acid transporter FadL in Escherichia coli cell membrane. Journal of Biotechnology ,281 (April), 161–167. https://doi.org/10.1016/j.jbiotec.2018.07.019
Jezierska, S., & Van Bogaert, I. N. A. (2017). Crossing boundaries: the importance of cellular membranes in industrial biotechnology.Journal of Industrial Microbiology and Biotechnology ,44 (4–5), 721–733. https://doi.org/10.1007/s10295-016-1858-z
Jia, B., Song, Y., Wu, M., Lin, B., Xiao, K., Hu, Z., & Huang, Y. (2016). Characterization of long ‑ chain acyl ‑ CoA synthetases which stimulate secretion of fatty acids in green algae Chlamydomonas reinhardtii. Biotechnology for Biofuels , 1–11. https://doi.org/10.1186/s13068-016-0598-7
Jiang, J. H., Hassan, K. A., Begg, S. L., Rupasinghe, T. W. T., Naidu, V., Pederick, V. G., … Eijkelkamp, B. A. (2019). Identification of Novel Acinetobacter baumannii Host Fatty Acid Stress Adaptation Strategies. MBio , 10 (1), 1–6. https://doi.org/10.1128/mBio.02056-18
Johnson, D. R., Knoll, L. J., Levin, D. E., & Gordon, J. I. (1994). Saccharomyces cerevisiae contains four fatty acid activation (FAA) genes: An assessment of their role in regulating protein N-myristoylation and cellular lipid metabolism. Journal of Cell Biology , 127 (3), 751–762. https://doi.org/10.1083/jcb.127.3.751
Jones, T. H., & Kennedy, E. P. (1969). Characterization of the membrane protein component of the lactose transport system of Escherichia coli.Journal of Biological Chemistry , 244 (21), 5981–5987.
Kang, M. K., & Tullman-Ercek, D. (2018). Engineering expression and function of membrane proteins. Methods , 147 (January), 66–72. https://doi.org/10.1016/j.ymeth.2018.04.014
Kato, A., Takatani, N., Use, K., Uesaka, K., Ikeda, K., Chang, Y., … Omata, T. (2015). Identification of a Cyanobacterial RND-Type Efflux System Involved in Export of Free Fatty Acids. Plant and Cell Physiology , 56 (12), 2467–2477. https://doi.org/10.1093/pcp/pcv150
Kell, D. B., Swainston, N., Pir, P., & Oliver, S. G. (2015). Membrane transporter engineering in industrial biotechnology and whole cell biocatalysis. Trends in Biotechnology , 33 (4), 237–246. https://doi.org/10.1016/j.tibtech.2015.02.001
Kim, D., Choi, K. Y., Yoo, M., Zylstra, G. J., & Kim, E. (2018). Biotechnological potential of rhodococcus biodegradative pathways.Journal of Microbiology and Biotechnology , 28 (7), 1037–1051. https://doi.org/10.4014/jmb.1712.12017
Knoll, L. J., Johnson, D. R., & Gordon, J. I. (1994). Biochemical studies of three Saccharomyces cerevisiae acyl-CoA synthetases, Faa1p, Faa2p, and Faa3p. Journal of Biological Chemistry ,269 (23), 16348–16356.
Kong, F., Liang, Y., Légeret, B., Beyly-Adriano, A., Blangy, S., Haslam, R. P., … Li-Beisson, Y. (2017). Chlamydomonas carries out fatty acid β-oxidation in ancestral peroxisomes using a bona fide acyl-CoA oxidase. Plant Journal , 90 (2), 358–371. https://doi.org/10.1111/tpj.13498
Kong, F., Romero, I. T., Warakanont, J., & Li-Beisson, Y. (2018). Lipid catabolism in microalgae. New Phytologist , 218 (4), 1340–1348. https://doi.org/10.1111/nph.15047
Lancet, D., Zidovetzki, R., & Markovitch, O. (2018). Systems protobiology: Origin of life in lipid catalytic networks. Journal of the Royal Society Interface , 15 (144). https://doi.org/10.1098/rsif.2018.0159
Lau, S. Y., & Zgurskaya, H. I. (2005). Cell Division Defects in Escherichia coli Deficient in the Multidrug Efflux Transporter AcrEF-TolC. Journal of Bacteriology , 187 (22), 7815–7825. https://doi.org/10.1128/JB.187.22.7815
Lee, E. H., & Shafer, W. M. (1999). The farAB-encoded efflux pump mediates resistance of gonococci to long-chained antibacterial fatty acids. Molecular Microbiology , 33 (4), 839–845. https://doi.org/10.1046/j.1365-2958.1999.01530.x
Legras, J. L., Erny, C., Le Jeune, C., Lollier, M., Adolphe, Y., Demuyter, C., … Karst, F. (2010). Activation of two different resistance mechanisms in saccharomyces cerevisiae upon exposure to octanoic and decanoic acids. Applied and Environmental Microbiology , 76 (22), 7526–7535. https://doi.org/10.1128/AEM.01280-10
Lennen, R. M., Kruziki, M. A., Kumar, K., Zinkel, R. A., Burnum, K. E., Lipton, M. S., … Pfleger, B. F. (2011). Membrane stresses induced by overproduction of free fatty acids in Escherichia coli. Applied and Environmental Microbiology , 77 (22), 8114–8128. https://doi.org/10.1128/AEM.05421-11
Lennen, R. M., Politz, M. G., Kruziki, M. A., & Pfleger, B. F. (2013). Identification of transport proteins involved in free fatty acid efflux in Escherichia coli. Journal of Bacteriology , 195 (1), 135–144. https://doi.org/10.1128/JB.01477-12
Lepore, B. W., Indic, M., Pham, H., Hearn, E. M., Patel, D. R., & Van Den Berg, B. (2011). Ligand-gated diffusion across the bacterial outer membrane. Proceedings of the National Academy of Sciences of the United States of America , 108 (25), 10121–10126. https://doi.org/10.1073/pnas.1018532108
Li, D., Balamurugan, S., Yang, Y., Zheng, J., Huang, D., Zou, L., … Li, H. (2019). Transcriptional regulation of microalgae for concurrent lipid overproduction and secretion. Science Advances ,5 (January), eaau3795.
Li, N., Gügel, I. L., Giavalisco, P., Zeisler, V., Schreiber, L., Soll, J., & Philippar, K. (2015). FAX1, a Novel Membrane Protein Mediating Plastid Fatty Acid Export. PLoS Biology , 13 (2), 1–37. https://doi.org/10.1371/journal.pbio.1002053
Li, N., Xu, C., Li-Beisson, Y., & Philippar, K. (2016). Fatty Acid and Lipid Transport in Plant Cells. Trends in Plant Science ,21 (2), 145–158. https://doi.org/10.1016/j.tplants.2015.10.011
Li, N., Zhang, Y., Meng, H., Li, S., Wang, S., Xiao, Z., … Luo, F. (2019). Characterization of Fatty Acid Exporters involved in fatty acid transport for oil accumulation in the green alga Chlamydomonas reinhardtii. Biotechnology for Biofuels , 12 (1), 1–12. https://doi.org/10.1186/s13068-018-1332-4
Li, X., Zhang, R., Patena, W., Gang, S. S., Blum, S. R., Ivanova, N., … Jonikasa, M. C. (2015). An indexed, mapped mutant library enables reverse genetics studies of biological processes in chlamydomonas reinhardtii. Plant Cell , 28 (2), 367–387. https://doi.org/10.1105/tpc.15.00465
Liu, B., Xiang, S., Zhao, G., Wang, B., Ma, Y., Liu, W., & Tao, Y. (2019). Efficient production of 3-hydroxypropionate from fatty acids feedstock in Escherichia coli. Metabolic Engineering ,51 (October 2018), 121–130. https://doi.org/10.1016/j.ymben.2018.10.003
Liu, H., Yu, C., Feng, D., Cheng, T., Meng, X., Liu, W., … Xian, M. (2012). Production of extracellular fatty acid using engineered Escherichia coli. Microbial Cell Factories , 11 , 1–13. https://doi.org/10.1186/1475-2859-11-41
Liu, N., Liu, B., Wang, G., Soong, Y. H. V., Tao, Y., Liu, W., & Xie, D. (2020). Lycopene production from glucose, fatty acid and waste cooking oil by metabolically engineered Escherichia coli.Biochemical Engineering Journal , 155 (September 2019), 107488. https://doi.org/10.1016/j.bej.2020.107488
Liu, X., Sheng, J., & Curtiss, R. (2011). Fatty acid production in genetically modified cyanobacteria. PNAS , 108 (17), 6899–6904. https://doi.org/10.1073/pnas.1103014108
Lovewell, R. R., Sassetti, C. M., & VanderVen, B. C. (2016). Chewing the fat: Lipid metabolism and homeostasis during M. tuberculosis infection. Current Opinion in Microbiology , 29 , 30–36. https://doi.org/10.1016/j.mib.2015.10.002
Magnuson, K., Jackowski, S., Rock, C. O., & Cronan, J. E. (1993). Regulation of fatty acid biosynthesis in Escherichia coli.Microbiological Reviews , 57 (3), 522–542. https://doi.org/10.1128/mmbr.57.3.522-542.1993
Mangroo, D., & Gerber, G. E. (1993). Fatty acid uptake in Escherichia coli: regulation by recruitment of fatty acyl-CoA synthetase to the plasma membrane. Biochemistry and Cell Biology , 71 (1–2), 51–56. https://doi.org/10.1139/o93-008
Mansy, S. S. (2010). Membrane Transport in Primitive Cells. Cold Spring Harb Perspect Biol , 2:a002188. https://doi.org/10.1002/9780470015902.a0021630
Martin, A., & Daniel, J. (2018). The ABC transporter Rv1272c of Mycobacterium tuberculosis enhances the import of long-chain fatty acids in Escherichia coli. Biochemical and Biophysical Research Communications , 496 (2), 667–672. https://doi.org/10.1016/j.bbrc.2018.01.115
Mingardon, F., Clement, C., Hirano, K., Nhan, M., Luning, E. G., Chanal, A., & Mukhopadhyay, A. (2015). Improving Olefin Tolerance and Production in E . coli Using Native and Evolved AcrB.Biotechnology and Bioengineering , 112 (5), 879–888. https://doi.org/10.1002/bit.25511
Nakashima, R., Sakurai, K., Yamasaki, S., Nishino, K., & Yamaguchi, A. (2011). Structures of the multidrug exporter AcrB reveal a proximal multisite drug-binding pocket. Nature , 480 (7378), 565–569. https://doi.org/10.1038/nature10641
Nazarova, E. V., Montague, C. R., Huang, L., La, T., Russell, D., & Vanderven, B. C. (2019). The genetic requirements of fatty acid import by mycobacterium tuberculosis within macrophages. ELife ,8 , 1–12. https://doi.org/10.7554/eLife.43621
Nazarova, E. V., Montague, C. R., La, T., Wilburn, K. M., Sukumar, N., Lee, W., … VanderVen, B. C. (2017). Rv3723/LucA coordinates fatty acid and cholesterol uptake in Mycobacterium tuberculosis. ELife ,6 , 1–22. https://doi.org/10.7554/eLife.26969
Newport, T. D., Sansom, M. S. P., & Stansfeld, P. J. (2019). The MemProtMD database : a resource for membrane-embedded protein structures and their lipid interactions. Nucleic Acids Research ,47 (November 2018), 390–397. https://doi.org/10.1093/nar/gky1047
Nguyen, H. M., Baudet, M., Cuiné, S., Adriano, J. M., Barthe, D., Billon, E., … Li-Beisson, Y. (2011). Proteomic profiling of oil bodies isolated from the unicellular green microalga Chlamydomonas reinhardtii: With focus on proteins involved in lipid metabolism.Proteomics , 11 (21), 4266–4273. https://doi.org/10.1002/pmic.201100114
Nolan, S. J., Fu, M. S., Coppens, I., & Casadevall, A. (2017). Lipids affect the Cryptococcus neoformans-macrophage interaction and promote nonlytic exocytosis. Infection and Immunity , 85 (12), 1–18. https://doi.org/10.1128/IAI.00564-17
Nunn, W. D., & Simons, R. W. (1978). Transport of long-chain fatty acids by Escherichia coli: mapping and characterization of mutants in the fadL gene. Proceedings of the National Academy of Sciences of the United States of America , 75 (7), 3377–3381. https://doi.org/10.1073/pnas.75.7.3377
Obermeyer, T., Fraisl, P., DiRusso, C. C., & Black, P. N. (2007). Topology of the yeast fatty acid transport protein Fat1p: Mechanistic implications for functional domains on the cytosolic surface of the plasma membrane. Journal of Lipid Research , 48 (11), 2354–2364. https://doi.org/10.1194/jlr.M700300-JLR200
Overath, P., Pauli, G., & Schaire, H. U. (1969). Fatty Acid Degradation in Escherichia coli: An Inducible Acyl-CoA Synthetase, the Mapping of old-Mutations, and the Isolation of Regulatory Mutants. European Journal of Biochemistry , 7 , 559–574. https://doi.org/10.1016/0163-7827(92)90004-3
Parsons, J. B., Yao, J., Frank, M. W., Jackson, P., & Rock, C. O. (2012). Membrane Disruption by Antimicrobial Fatty Acids Releases Low- Molecular-Weight Proteins from Staphylococcus aureus. Journal of Bacteriology , 194 (19), 5294–5304. https://doi.org/10.1128/JB.00743-12
Scharnewski, M., Pongdontri, P., Mora, G., Hoppert, M., & Fulda, M. (2008). Mutants of Saccharomyces cerevisiae deficient in acyl-CoA synthetases secrete fatty acids due to interrupted fatty acid recycling.FEBS Journal , 275 (11), 2765–2778. https://doi.org/10.1111/j.1742-4658.2008.06417.x
Schjerling, C. K., Hummel, R., Hansen, J. K., Børsting, C., Mikkelsen, J. M., Kristiansen, K., … Acb, T. (1996). Disruption of the Gene Encoding the Acyl-CoA-binding Protein ( ACB1 ) Perturbs Acyl-CoA Metabolism in Saccharomyces cerevisiae *. The Journal of Biological Chemistry , 271 (37), 22514–22521.
Shani, N., Sapag, A., Watkins, P. A., & Valle, D. (1996). An S. cerevisiae Peroxisomal Transporter, Orthologous to the Human Adrenoleukodystrophy Protein, appears to be a Heterodimer of Two Half ABC Transporters: Pxalp and Pxa2p : Pxalp and Pxa2p. Annals New York Academy of Sciences , 804 (1), 770–772.
Shin, J., Yu, J., Park, M., Kim, C., Kim, H., Park, Y., … Kweon, D. H. (2019). Endocytosing Escherichia coli as a Whole-Cell Biocatalyst of Fatty Acids. ACS Synthetic Biology , 8 (5), 1055–1066. https://doi.org/10.1021/acssynbio.8b00519
Sushchik, N. N., Kalacheva, G. S., Zhila, N. O., Gladyshev, M. I., & Volova, T. G. (2003). A Temperature Dependence of the Intra- and Extracellular Fatty-Acid Composition of Green Algae and Cyanobacterium.Russian Journal of Plant Physiology , 50 (3), 374–380.
Takemura, T., Imamura, S., & Tanaka, K. (2019). Identification of a chloroplast fatty acid exporter protein, CmFAX1, and triacylglycerol accumulation by its overexpression in the unicellular red alga Cyanidioschyzon merolae. Algal Research , 38 (August 2018), 101396. https://doi.org/10.1016/j.algal.2018.101396
Tarling, E. J., Vallim, T. Q. d. A., & Edwards, P. A. (2013). Role of ABC transporters in lipid transport and human disease. Trends in Endocrinology and Metabolism , 24 (7), 342–350. https://doi.org/10.1016/j.tem.2013.01.006
Tejima, K., Ishiai, M., Murayama, S. O., Iwatani, S., & Kajiwara, S. (2018). Candida albicans fatty acyl-CoA synthetase, CaFaa4p, is involved in the uptake of exogenous long-chain fatty acids and cell activity in the biofilm. Current Genetics , 64 (2), 429–441. https://doi.org/10.1007/s00294-017-0751-2
Tomitori, H., Kashiwagi, K., Sakata, K., Kakinuma, Y., & Igarashi, K. (1999). Identification of a gene for a polyamine transport protein in yeast. Journal of Biological Chemistry , 274 (6), 3265–3267. https://doi.org/10.1074/jbc.274.6.3265
Toscano, W. A., & Hartline, R. A. (1973). Transport of octanoate by Pseudomonas oleovorans. Journal of Bacteriology , 116 (2), 541–547. https://doi.org/10.1128/jb.116.2.541-547.1973
Van Den Berg, B. (2005). The FadL family: Unusual transporters for unusual substrates. Current Opinion in Structural Biology ,15 (4), 401–407. https://doi.org/10.1016/j.sbi.2005.06.003
Van Den Berg, B., Black, P. N., Clemons, W. M., & Rapoport, T. A. (2004). Crystal structure of the long-chain fatty acid transporter FadL.Science , 304 (5676), 1506–1509. https://doi.org/10.1126/science.1097524
Van Roermund, C. W. T., Ijlst, L., Majczak, W., Waterham, H. R., Folkerts, H., Wanders, R. J. A., & Hellingwerf, K. J. (2012). Peroxisomal fatty acid uptake mechanism in saccharomyces cerevisiae.Journal of Biological Chemistry , 287 (24), 20144–20153. https://doi.org/10.1074/jbc.M111.332833
Vasconcelos, B., Teixeira, J. C., Dragone, G., & Teixeira, J. A. (2019). Oleaginous yeasts for sustainable lipid production—from biodiesel to surf boards, a wide range of “green” applications.Applied Microbiology and Biotechnology , 3651–3667. https://doi.org/10.1007/s00253-019-09742-x
Villalba, M. S., & Alvarez, H. M. (2014). Identification of a novel ATP-binding cassette transporter involved in long-chain fatty acid import and its role in triacylglycerol accumulation in Rhodococcus jostii RHA1. Microbiology (United Kingdom) , 160 (PART 7), 1523–1532. https://doi.org/10.1099/mic.0.078477-0
Voelker, T. A., & Davies, H. M. (1994). Alteration of the Specificity and Regulation of Fatty Acid Synthesis of Escherichia coli by Expression of a Plant Medium- Chain Acyl-Acyl Carrier Protein Thioesterase.Journal of Bacteriology , 176 (23), 7320–7327.
Wang, Z., Fan, G., Hryc, C. F., Blaza, J. N., Serysheva, I. I., Schmid, M. F., … Du, D. (2017). An allosteric transport mechanism for the AcrAB-TolC multidrug efflux pump. ELife , 6 , 1–19. https://doi.org/10.7554/eLife.24905
Wu, J. T., Chiang, Y. R., Huang, W. Y., & Jane, W. N. (2006). Cytotoxic effects of free fatty acids on phytoplankton algae and cyanobacteria.Aquatic Toxicology , 80 (4), 338–345. https://doi.org/10.1016/j.aquatox.2006.09.011
Wu, J., Wang, Z., Zhang, X., Zhou, P., Xia, X., & Dong, M. (2019). Improving medium chain fatty acid production in Escherichia coli by multiple transporter engineering. Food Chemistry ,272 (March 2018), 628–634. https://doi.org/10.1016/j.foodchem.2018.08.102
Yao, J., & Rock, C. O. (2017). Exogenous fatty acid metabolism in bacteria. Biochimie , 141 , 30–39. https://doi.org/10.1016/j.biochi.2017.06.015
Zalatan, F., & Black, P. (2011). Characterization of long-chain fatty acid uptake in Caulobacter crescentus. Archives of Microbiology ,193 (7), 479–487. https://doi.org/10.1007/s00203-011-0694-9
Zgurskaya, H. I., & Nikaido, H. (1999). Bypassing the periplasm: Reconstitution of the AcrAB multidrug efflux pump of Escherichia coli.Proceedings of the National Academy of Sciences of the United States of America , 96 (13), 7190–7195. https://doi.org/10.1073/pnas.96.13.7190
Zhu, Z., Hu, Y., Teixeira, P. G., Pereira, R., Chen, Y., Siewers, V., & Nielsen, J. (2020). Multidimensional engineering of Saccharomyces cerevisiae for efficient synthesis of medium-chain fatty acids.Nature Catalysis , 3 (1), 64–74. https://doi.org/10.1038/s41929-019-0409-1
Zou, Z., Dirusso, C. C., Ctrnacta, V., & Black, P. N. (2002). Fatty acid transport in Saccharomyces cerevisiae: Directed mutagenesis of FAT1 distinguishes the biochemical activities associated with Fat1p.Journal of Biological Chemistry , 277 (34), 31062–31071. https://doi.org/10.1074/jbc.M205034200
Zou, Z., Tong, F., Færgeman, N. J., Børsting, C., Black, P. N., & Dirusso, C. C. (2003). Vectorial Acylation in Saccharomyces cerevisiae.The Journal of Biological Chemistry , 278 (18), 16414–16422. https://doi.org/10.1074/jbc.M210557200