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Key Points:39

• Reduced complexity climate models (RCMs) are key for making probabilistic cli-40

mate projections because of their computational efficiency41

• We evaluate how well RCMs’ probabilistic setups can simultaneously reflect and42

emulate Earth system knowledge from multiple specialist research domains43

• No model is able to capture all forcing, warming, heat uptake and carbon cycle44

metrics we evaluate, however some come very close, with deviations greater than45

10% in only four metrics46
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Abstract47

Over the last decades, climate science has branched out into many smaller expert48

communities across the carbon cycle, radiative forcings, climate feedbacks or ocean heat49

uptake domains. Our best tools to capture state-of-the-art knowledge are the increas-50

ingly complex fully coupled Earth System Models (ESMs). However, computational lim-51

itations and the structural rigidity of ESMs mean that the full range of uncertainties across52

multiple domains are difficult to capture with multi-model ESM ensembles and perturbed53

parameter single ESM ensembles alone. The tools of choice are hence more computa-54

tionally efficient reduced complexity models (RCMs), which are structurally flexible and55

can span the response dynamics across a range of domain-specific models and/or ESM56

experiments. Here, we provide the first comprehensive intercomparison of multiple RCMs57

that are probabilistically calibrated to key benchmark ranges from specialised research58

communities. This exercise constitutes Phase 2 of the Reduced Complexity Model In-59

tercomparison Project (RCMIP Phase 2). We find that even if RCMs perform similarly60

against historical benchmarks, their future projections can still diverge. Under the low-61

emissions SSP1-1.9 scenario, across the RCMs, median 2081-2100 warming projections62

range from 1.1 to 1.4°C while median peak warming projections range from 1.3 to 1.7°C63

(relative to 1850-1900, using an observationally-based historical warming estimate of 0.8°C64

between 1850-1900 and 1995-2014). Our findings suggest that users of RCMs should care-65

fully evaluate the RCM they are using, specifically its skill against key benchmarks and66

consider the need to include future projections benchmarks either from ESM results or67

other assessments to reduce such divergence.68

Plain Language Summary69

Our best tools to capture state-of-the-art knowledge are complex, fully coupled Earth70

System Models (ESMs). However, ESMs are expensive to run and no single ESM can71

easily produce responses which represent the full range of uncertainties. Instead, for some72

applications, computationally efficient reduced complexity climate models (RCMs) are73

used in a probabilistic setup. An example of these applications is estimating the likeli-74

hood that an emissions scenario will stay below a certain global-mean temperature change75

(e.g. 2°C). Here we present a study (referred to as the Reduced Complexity Model In-76

tercomparison Project (RCMIP) Phase 2) which investigates the extent to which differ-77

ent RCMs can be probabilistically calibrated to reproduce key benchmark ranges from78

specialised research communities. We find that the agreement between each RCM and79

the benchmarks varies, although the best performing models show good agreement with80

both the best-estimate and uncertainty ranges over the majority of benchmarks. Even81

though the models all used the same target benchmark ranges, their future projections82

still diverge. Under the low-emissions SSP1-1.9 scenario, across the RCMs, median peak83

warming projections range from 1.3 to 1.7°C (relative to 1850-1900, using an observationally-84

based historical warming estimate of 0.8°C between 1850-1900 and 1995-2014).85

1 Introduction86

Coupled Earth System Models (ESMs) have evolved for decades as primary climate87

research tools (Edwards, 2000). They represent the state of the art of complex Earth sys-88

tem modelling. Nonetheless, they are not the tool of choice to assess the full breadth of89

scenario and Earth system response uncertainty that has been identified in the scientific90

literature. It is infeasible to assess the climate implications of hundreds to thousands of91

emissions scenarios with the world’s most comprehensive ESMs, such as those partici-92

pating in the Sixth Phase of the Couple Model Intercomparison Project (CMIP6) (Eyring93

et al., 2016), because of ESMs’ computational cost, the complexity in setting up input94

data and the sheer volume of output data generated. Yet, such assessments are vital for95
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understanding the consequences of various policy choices and their residual climate haz-96

ards.97

Similarly, while some ESMs perform large, perturbed physics experiments (e.g., Stain-98

forth et al., 2005) that aim to explore the full range of potential Earth system long-term99

annual-average responses, the ability to capture full uncertainty ranges is limited. The100

ability to capture full uncertainty ranges is limited because these ESMs are relatively101

rigid in their structure - lacking a representation of uncertainties in vital components like102

the carbon cycle or effective radiative forcings.103

An answer to both of these challenges, i.e. (a) limited computational resources and104

(b) structural scope and flexibility to represent long-term uncertainties in key metrics105

like global-mean surface air temperatures, are Reduced Complexity Models (RCMs), of-106

ten also referred to as simple climate models (SCMs). RCMs can play the vital role of107

extending the knowledge and uncertainties from multiple domains, particularly a mul-108

titude of ESM experiments, to probabilistic long-term climate projections of key vari-109

ables over a wide range of scenarios (see Section 2 in (Meinshausen et al., 2011) for other110

uses of RCMs).111

Typically, RCMs achieve this computational efficiency and structural flexibility by112

limiting their spatial and temporal domains to global-mean, annual-mean quantities i.e113

the domains of relevance to long-term, global climate change. Rather than aiming to rep-114

resent the physics of the climate system at the process level and high-resolution, RCMs115

use parameterisations of the system which capture its large-scale behaviour at a greatly116

reduced computational cost. This allows them to perform 350-year long simulations in117

a fraction of a second on a single CPU, multiple orders of magnitude faster than our most118

comprehensive ESMs which would take weeks to months on the world’s most advanced119

supercomputers.120

A key example of large-scale emissions scenario assessment, and the one we focus121

on in this paper, is the climate assessment of socioeconomic scenarios by the Intergov-122

ernmental Panel on Climate Change (IPCC) Working Group 3 (WG3). Hundreds of emis-123

sion scenarios were assessed in the IPCC’s Fifth Assessment Report (AR5, see Clarke124

et al. (2014)) as well as its more recent Special Report on Global Warming of 1.5°C (SR1.5,125

see Rogelj et al. (2018); Huppmann et al. (2018)). (Scenario data is available at https://126

secure.iiasa.ac.at/web-apps/ene/AR5DB and https://data.ene.iiasa.ac.at/iamc127

-1.5c-explorer/ for AR5 and SR1.5 respectively, both databases are hosted by the IIASA128

Energy Program). For the IPCC’s forthcoming Sixth Assessment (AR6), it is anticipated129

that the number of scenarios will be in the several hundreds to a thousand (an initial130

snapshot of scenarios based on the SSPs is available at https://tntcat.iiasa.ac.at/131

SspDb).132

One further reason that the world’s most comprehensive ESMs would have diffi-133

culty running WG3-type scenarios is because greenhouse gas cycles, atmospheric chem-134

istry and dynamic vegetation modules would be required to run the WG3 emission sce-135

narios. While some ESMs have the required components, they are rarely used for long-136

term experiments for reasons of computational cost. The most comprehensive RCMs in-137

clude parameterised representations of the required components, enabling the exploration138

of interacting uncertainties from multiple parts of the climate system in an internally con-139

sistent setup.140

In general, RCMs do not include the detail of ESMs across the emissions-climate141

change cause-effect chain, but they do tend to include uncertainty representations for142

more steps in the chain (i.e. RCMs tradeoff depth for breadth compared to ESMs). For143

example, many RCMs include the relationship between methane emissions and concen-144

trations (including temperature and other feedbacks) whereas few ESMs do in their long-145

term experiments. On the other hand, few RCMs directly use land-cover information within146
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their carbon cycles, and none consider it in the detailed way which ESMs do. In addi-147

tion, there are clearly applications where RCMs are not a feasible tool. For example, near-148

term attribution studies, such as the World Weather Attribution project (Uhe et al., 2016).149

For this latter application, large-ensemble ESM runs are vital - as only they can reflect150

natural variability and weather patterns. Overall, there is no question that ESMs are151

by far the most important research tool to project future climate change. RCMs com-152

plement the ESM efforts. Within this paper, we focus on a very specific niche of this com-153

plementing role, i.e. synthesising multiple lines of evidence across the emissions-climate154

change cause-effect chain.155

Within the IPCC, RCMs’ synthesising niche facilitates the transfer of knowledge156

from Working Group I (WG1), which assesses the physical science of the climate sys-157

tem, to WG3, which assesses the socioeconomics of climate change mitigation. The knowl-158

edge transfer ensures that WG3’s scenario classification is consistent with the physical159

science assessment of WG1 - a key precondition to have confidence that WG3’s conclu-160

sions about the socioeconomic transformation required to mitigate anthropogenic climate161

change to specific levels are based on our latest scientific understanding. Here, we de-162

scribe RCMs as ‘integrators of knowledge’ because they integrate (a relevant sub-section163

of) the assessment from WG1, providing WG3 with a tool that can be used for assess-164

ing the climate implications, particularly global-mean temperature changes, of a wide165

range of emissions scenarios.166

Typically, RCMs perform this knowledge integration using probabilistic distribu-167

tions, which are distinct from the emulator mode in which RCMs can also be run (see168

Nicholls et al. (2020) for a discussion of emulation with RCMs). These probabilistic dis-169

tributions are derived by running an RCM with a parameter ensemble which captures170

the assessed ranges of specific Earth system quantities, e.g. historical global mean tem-171

perature increase, effective radiative forcing due to different anthropogenic emissions, ocean172

heat uptake, or cumulative land and ocean carbon uptake. The resulting distributions173

are designed to facilitate WG3’s scenario classification e.g. to capture the likelihood that174

different warming levels are reached under a specific emissions scenario (e.g. 50% and175

66%) based on the combined available evidence (in this case the WG1 assessment). As176

a result of their probabilistic nature, the ensembles resulting from RCMs are conceptu-177

ally different from an ensemble of multiple model outputs (such as those from CMIP6)178

taken without constraining or any other sort of post-processing.179

Due to their role in the IPCC assessment (and for analysing mitigation options in180

line with temperature targets more generally), understanding the degree to which RCMs181

can reflect a range of radiative forcing, warming, heat uptake and concentration assess-182

ments simultaneously is of vital importance. If RCMs are inherently biased in some way,183

this will affect the WG3 climate assessment and interpretation of the RCMs’ outputs should184

be adjusted accordingly.185

This study’s scope, in terms of number of climate dimensions considered and num-186

ber of climate models evaluated, is unique. There have been studies with single mod-187

els which choose parameter sets that match various assessments of ECS and TCR (Meinshausen188

et al., 2009; Rogelj et al., 2012). Smith, Forster, et al. (2018) compared two models’ prob-189

abilistic outputs.190

Here, in the second phase of RCMIP, we evaluate the degree to which multiple RCMs191

are able to synthesise Earth system knowledge within a probabilistic distribution. We192

then examine the implications of differences in these probabilistic distributions for cli-193

mate projections. We extend previous probabilistic evaluation work and build on the progress194

made in the first phase (Nicholls et al., 2020) and other RCM intercomparison studies195

(van Vuuren et al., 2011; Harmsen et al., 2015; Schwarber et al., 2019). We widen the196

first phase’s scope both in terms of number of climate dimensions considered and the num-197

ber of models evaluated. To our knowledge, this is the most comprehensive evaluation198
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performed to date of the ability of RCMs to capture a broad range of climate metrics199

and key indicators, such as those assessed in by IPCC WG1.200

2 Participating models201

Nine models have participated in RCMIP Phase 2 (Table 1 and Supplementary Text202

S1). These models and their components range from simpler, regression-based approaches203

to more complex representations with detailed processes and regions. The models have204

been constrained in a number of different ways, using statistical techniques ranging in205

complexity from Monte Carlo Markov Chains to using pass/fail criteria to determine valid206

parameter values. As a result, they cover a wide range of the techniques in the litera-207

ture and their results allow us to evaluate the implications of different choices.208

3 Methods209

In this study, the RCMs are run in a probabilistic setup. As discussed in the in-210

troduction, a probabilistic setup means that each RCM is run with an ensemble of pa-211

rameters. Specifically, for a given experiment, each RCM is run multiple times, each time212

with slightly different parameter values. All of these different runs are then combined213

to form a probabilistic set of outputs. With these probabilistic sets, we can then calcu-214

late ranges of each output variable of interest (e.g. global-mean surface temperatures).215

Modelling groups use a range of techniques to derive their parameter ensembles i.e.216

to constrain their models (Table 1). Typically, modelling groups will also use different217

data to derive their parameter ensemble. This can lead to differences in model projec-218

tions which are simply based on choices made by the modelling groups and are not re-219

lated to model structure or constraining technique at all. We remove the choice of data220

as a point of difference by ensuring that all modelling groups agree on a common set of221

target assessed ranges i.e. benchmarks.222

In this study, our target assessment is a ‘proxy assessment’, which uses assessed223

climate system characteristics in line with IPCC AR5 as its starting point and updates224

key values using more recent literature (see Table 2). We explicitly use the name ‘proxy225

assessment’ throughout to make clear that we are not constraining to any ranges com-226

ing from the formal IPCC assessment, rather an approximation thereof.227

We use surface air ocean blended temperatures from the HadCRUT.4.6.0.0 dataset228

(Morice et al., 2012). HadCRUT4.6.0.0 is a widely used observational data product and229

is representative of other observations of changes in surface air and ocean temperatures230

(Simmons et al., 2017). Our key metric for evaluating RCM temperature projections is231

the warming between the 1961-1990 and 2000-2019 periods (using the SSP2-4.5 scenario232

to extend the CMIP6 historical experiment to 2019). We choose a relatively recent pe-233

riod to match the increase in global observations since the 1960s.234

For ocean heat content, we use the recent work of von Schuckmann et al. (2020).235

We focus on the change in ocean heat content between 1971 and 2018, when the largest236

set of observations are available.237

We use the recent assessment of Sherwood et al. (2020) for equilibrium climate sen-238

sitivity (ECS). ECS is defined as the equilibrium warming which occurs under a dou-239

bling of atmospheric CO2 concentrations relative to pre-industrial concentrations. The240

ECS assessment is combined with the constrained transient climate response (TCR) as-241

sessment of Tokarska et al. (2020). TCR is defined as the surface air temperature change242

which occurs at the time at which atmospheric CO2 concentrations double in an exper-243

iment in which atmospheric CO2 concentrations rise at one percent per year (a 1pctCO2244

experiment). Carbon cycle behaviour is considered via the transient climate response245

to emissions (TCRE). TCRE is defined as the ratio of surface air temperature change246
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Table 1. Overview of the models and constraining approaches used in this paper. Detailed

descriptions of each model are available in Supplementary Text S1.

Model Constraining technique Key references

Cicero-SCM 550 members sub-sampled from a posterior
of 30 040 members to form a set that match
the proxy assessment ECS distribution while
reproducing surface air temperature change
from 1850-1900 to 1985-2014

Schlesinger et al. (1992);
Joos et al. (1996); Etmi-
nan et al. (2016); Skeie et
al. (2017, 2018); Nicholls
et al. (2020)

EMGC 160 000 sample members, retaining the 1 000
that minimize reduced-chi-squared between
modeled and observed GMST and OHC
from 1850-1999

Canty et al. (2013);
Hope et al. (2017, 2020);
McBride et al. (2020)

FaIRv1.6.1 3 000 sample members retaining the 501
that minimise RMSE between modelled and
observed 1850-2014 GMST

Millar et al. (2017); Smith,
Forster, et al. (2018)

FaIRv2.0.0-alpha 1 million member raw ensemble, constrained
with 90% credible range of current level and
rate of attributable warming (Haustein et
al., 2017). 5000 members randomly drawn
from the constrained ensemble for use here.

Millar et al. (2017);
Haustein et al. (2017);
Smith, Forster, et al.
(2018); Leach et al. (2020)

Hectorv2.5.0 10 000 sampled ensemble from Markov chain
Monte Carlo chains constrained with global
surface temperature and ocean heat content

Vega-Westhoff et al. (2019)

MAGICCv7.4.1 ∼ 20 million member Monte Carlo Markov
Chain, 600 member sub-sample selected to
match proxy assessed ranges

Meinshausen et al. (2009,
2011, 2020)

MCE v1.2 600 members sampled with a Metropolis-
Hastings algorithm through Bayesian updat-
ing to reflect an ensemble of complex climate
models constrained with the proxy assessed
ranges

Tsutsui (2017, 2020) (see
also Joos et al. (1996);
Hooss et al. (2001))

OSCARv3.1 10 000 Monte Carlo members, weighted us-
ing their agreement with a set of assessed
ranges (Supplementary Text S1)

Gasser et al. (2017, 2018,
2020)

SCM4OPT v2.0 For each emission scenario, 2 000 sample
members are used to reflect uncertainties
resulting from carbon cycle, aerosol forcings
and temperature change, while constrained
by the historical mean surface temperature
of HadCRUT.4.6.0.0 (Morice et al., 2012).

Su et al. (2017, 2018,
2020)
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Table 2. The proxy assessed ranges used in this study. The assessed ranges are labelled as

‘vll’ (very-likely lower i.e. 5th percentile), ‘ll’ (likely lower, 17th percentile), ‘c’ (central, 50th per-

centile), ‘lu’ (likely upper, 83th percentile) and ‘vlu’ (very-likely upper, 95th percentile). Sources

are described in Section 3.

Assessed range vll ll c lu vlu
Metric Unit

2000-2019 GMST rel. to 1961-1990 K 0.50 0.52 0.54 0.56 0.58
Equilibrium Climate Sensitivity K 2.30 2.60 3.10 3.90 4.70
Transient Climate Response K 0.98 1.26 1.64 2.02 2.29
Transient Climate Response to Emissions K / TtC 1.03 1.40 1.77 2.14 2.51
2014 CO2 Effective Radiative Forcing W / m2 1.69 1.80 1.91
2014 Aerosol Effective Radiative Forcing W / m2 -1.37 -1.01 -0.63
2018 Ocean Heat Content rel. to 1971 ZJ 303 320 337
2011 CH4 Effective Radiative Forcing W / m2 0.47 0.60 0.73
2011 N2O Effective Radiative Forcing W / m2 0.14 0.17 0.20
2011 F-Gases Effective Radiative Forcing W / m2 0.03 0.03 0.03

to cumulative CO2 emissions at the time when atmospheric CO2 concentrations double247

in a 1pctCO2 experiment. We use the TCRE assessment from Arora et al. (2020), which248

is based on the latest generation of Earth System Models which have participated in CMIP6249

(Eyring et al., 2016). There is a potential inconsistency between our ECS, TCR and TCRE250

ranges, which arises because the TCR assessment is based on a constrained set of CMIP6251

models, the TCRE assessment is based on unconstrained CMIP6 Earth System Mod-252

els and the ECS assessment comes from a study which uses multiple lines of evidence.253

We discuss the importance of this inconsistency and its consequences in 4.254

The other key metrics are related to effective radiative forcing (ERF, Forster et al.,255

2016). These values generally follow the AR5 assessment, except for aerosol, CO2 and256

CH4 ERF. For aerosol and CO2 ERF, we use the more recent work of Smith et al. (2020).257

For CH4 ERF, we increase the AR5 assessment following Etminan et al. (2016) although258

we note that this increase may be offset by an updated understanding of the impact of259

rapid adjustments following Smith, Kramer, et al. (2018).260

At this point, we stress that our proxy assessed ranges are only one of a range of261

possible choices. Assessing all the available literature is a demanding task that is well262

undertaken by the IPCC. We do not attempt to reproduce this task here. Instead, the263

key is that our proxy assessed ranges are a) reasonable and b) available now so all mod-264

elling groups can use consistent benchmarks to constrain their models.265

Following this intercomparison consortium’s choice of proxy assessed ranges, mod-266

elling groups then had the opportunity to develop parameter ensembles which best re-267

flected these assessed ranges. As a result, we have, for the first time, a set of models, all268

of which used the same ‘constraining benchmarks’ (with a number of different techniques269

being employed to consider the constraining benchmarks, see Table 1). We gain unique270

insights into the impact of differences in model structure and constraining techniques271

when RCMs are used as integrators of knowledge, free from a typical source of disagree-272

ment between the models, namely that they were constrained to reproduce different un-273

derstandings of the climate.274

The modelling groups submitted a range of concentration-driven, emission-driven275

and idealized scenarios for their chosen parameter subsets (see scenario specifics below).276

Subsequently, several metrics were calculated, such as TCR from the idealised CO2-only277
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1pctCO2 experiment (in which atmospheric CO2 concentrations rise at 1% per year from278

pre-industrial levels). Calculating derived metrics on each individual ensemble member279

ensures that all metrics are calculated from internally self-consistent model runs, which280

is of particular importance when the metric is based on more than one output variable281

from the model (e.g. TCRE, which relies on both surface air temperature change and282

inverse emissions of CO2). If we instead calculated results based on percentiles of dif-283

ferent variables, we would not be using an internally self-consistent set. Where modelling284

groups felt it was more appropriate (e.g. OSCAR), they performed their own weight-285

ing of ensemble members before submitting.286

The one metric which is not easily calculated from model results is ECS because287

it is defined at equilibrium. Accordingly, modelling groups reported their own diagnosed288

ECS for each ensemble member, rather than performing experiments which would al-289

low it to be calculated after submission had taken place.290

When evaluating model performance, we are interested not only in how well a model291

can reproduce the best estimate, but also the range of a given quantity. A key part of292

any climate assessment is the uncertainty and it is critical that RCMs reflect the assessed293

likely and very likely ranges if they are to be used as integrators of knowledge. We as-294

sess the relative difference between the model and the assessed ranges at the very likely295

lower (5th percentile, also referred to as ‘vll’), likely lower (17th percentile, ll), central296

(50th percentile, c), likely upper (83th percentile, lu) and very likely upper (95th percentile,297

vlu). Assessing deviations using relative differences allows us to quickly evaluate how mod-298

els perform over a range of metrics on the same scale.299

The set of scenarios that each modelling group was asked to run follow the exper-300

imental protocols of CMIP6’s ScenarioMIP (O’Neill et al., 2016). The SSPX-Y.Y exper-301

iments (e.g. SSP1-1.9, SSP2-4.5, SSP5-8.5) are defined in terms of concentrations of well-302

mixed greenhouse gases i.e. CO2, CH4, N2O, hydrofluorocarbons (HFCs), perfluorocar-303

bons (PFCs) and hydrochlorofluorocarbons (HCFCs), emissions of ‘aerosol precursor species304

emissions’ i.e. sulfur, nitrates, black carbon, organic carbon and ammonia and natural305

effective radiative forcing variations. As described in Nicholls et al. (2020), where required,306

models may use prescribed effective radiative forcing where they do not include the re-307

quired gas cycles or radiative forcing parameterisations.308

The esm-SSPX-Y.Y experiments are identical to the SSPX-Y.Y experiments, ex-309

cept CO2 emissions are prescribed instead of CO2 concentrations, following the CMIP6310

C4MIP protocol (Jones et al., 2016). Finally, we also perform esm-SSPX-Y.Y-allGHG311

experiments. These are identical to the esm-SSPX-Y.Y experiments, except they are de-312

fined in terms of emissions of all well-mixed greenhouse gases, not only CO2, rather than313

concentrations. There is no equivalent of these esm-SSPX-Y.Y-allGHG experiments in314

the CMIP6 protocol, however it is these experiments which are of most interest to WG3,315

given that WG3 focusses on scenarios defined in terms of emissions alone. We use the316

data sources described in Nicholls et al. (2020) to specify the inputs for each of these sce-317

narios. The input dataset compilations, comprising emission, scenario and forcing data,318

as well as the protocols are available at rcmip.org (last accessed 28 October 2020) - and319

can contribute to scientific studies beyond this intercomparison as they largely reflect320

the CMIP6 experimental designs.321

The protocol designed for this study requires that each RCM modelling group runs322

every probabilistic ensemble member once for each scenario and then submits their out-323

put for further analysis. With nine modelling groups participating, this intercompari-324

son project compiled a database of results containing thousands of runs for each RCM,325

from which we can calculate different warming, effective radiative forcing or ocean heat326

uptake percentiles for a wide range of scenarios.327
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4 Results and discussion328

4.1 Fit to assessed ranges329

The ability of RCMs to match the assessed ranges varies (Table 3, Supplementary330

Table S1 and Supplementary Figures S1 - S10). In general, the RCMs capture the cen-331

tral assessed values better than the likely and very likely ranges. Historical warming and332

the TCRE are notable exceptions to this. For both these metrics, the very likely lower333

and likely lower assessed values are better captured by the RCMs than the central val-334

ues.335

Considering the variation between metrics, we see that the proxy assessment of the336

ECS and effective radiative forcing metrics is better captured by the RCMs than the other337

metrics (see multi-model median in Table 3). For ECS and all the effective radiative forc-338

ing metrics, the median multi-model difference is less than or equal to 10% for the cen-339

tral proxy assessed range. However, there is less close agreement with the very likely and340

likely proxy assessed ranges for the ECS and effective radiative forcing metrics, with me-341

dian multi-model differences being up to 18% (CH4 effective radiative forcing).342

For the other metrics (historical warming, TCR, TCRE and historical ocean heat343

content changes), the median multi-model difference is greater than 20% for at least one344

of the assessed ranges. However, there is significant variation across the likelihood lev-345

els. For example, the multi-model median matches the very likely lower and likely lower346

historical warming (rows labelled ‘2000-2019 GMST rel. to 1961-1990’ in Table 3) to within347

2% and 6% respectively. However, the multi-model median differs from the central, likely348

upper and very likely upper historical warming by 11%, 25% and 44% respectively, in-349

dicating that the models are having greater difficulty capturing the upper-end warming350

estimates.351

There is also significant spread in performance across the models. Two models per-352

form better than the multi-model median across all metrics and assessed ranges (very353

likely lower, likely lower, central, likely upper, very likely upper) except for three met-354

rics. Those models are MAGICC7 (worse than multi-model median for all assessed ranges355

of TCR, likely lower 2011 CH4 effective radiative forcing and very likely lower TCRE)356

and MCE-v1-2 (worse than multi-model median for all assessed ranges of ECS, very likely357

lower and very likely upper TCR and likely lower, central, likely upper and very likely358

upper TCRE). However, all RCMs had at least one strength where they matched the proxy359

assessment at all likelihood levels to within 20%.360

4.2 Projections361

For each probabilistic setup, the RCMs also submitted projections of global-mean362

surface temperature, effective radiative forcing (split into total, aerosols and CO2) and363

atmospheric CO2 concentrations for the SSPX-Y.Y, ESM-SSPX-Y.Y and ESM-SSPX-364

Y.Y-allGHG experiments. Despite all being constrained with the same target distribu-365

tions, there are considerable differences between the projections from various models.366

4.2.1 Global-mean Surface Air Temperature367

Under SSP1-1.9, median end of century (2081-2100) projections relative to 1995-368

2014 vary by 0.3°C across the models (from Cicero-SCM, EMGC and Hector with 0.3°C369

of warming to MAGICC7, FaIR1.6 and FaIRv2.0.0-alpha with 0.6°C, Figure 1 a)-c)). Vari-370

ations in 5th percentile warming show a similar range, from -0.1°C to 0.2°C. In contrast,371

upper-end, 95th percentile warming shows far greater variation, from 0.4°C for OSCARv3.1372

to 1.9°C for EMGC. For the SSP1-1.9 scenario, the spread in RCMs’ probabilistic pro-373

jections is similar to the spread in the CMIP6 multi-model ensemble. Nonetheless, the374

most extreme CMIP6 model projections are outside the range of most RCMs’ 5-95th per-375
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centiles, suggesting that such projections are incompatible with current observations of376

historical warming and ocean heat content as well as effective radiative forcing under-377

standing (a similar conclusion to Tokarska et al. (2020)).378

A similar spread is seen in peak temperature (Figure 1 f)-g)). Across the RCM en-379

semble, SSP1-1.9 median peak warming ranges from 0.6°C to 0.75°C while the 5th and380

95th percentiles range from 0.2°C to 0.5°C and 0.7°C to 2.0°C, respectively. In contrast,381

the year of peak warming shows much more variation, particularly at the upper end (Fig-382

ure 1 d)-e)). While the median peak year is fairly consistent across the RCMs’ ensem-383

bles, around 2045, and the 5th percentile peak year varies from 2030 to 2040, the 95th384

percentile varies from 2050 to beyond the end of this century. In SCM4OPTv2.0, EMGC,385

FaIR1.6 and FaIRv2.0.0-alpha, there is a significant area of parameter space which re-386

sults in ongoing warming even after CO2 emissions have reached net zero. However, the387

warming rate is quite slow in these simulations because there is not an equivalently large388

spread in end of century temperature projections (see the relatively consistent 95th per-389

centile end of century projections in Figure 1 f)-g)).390

In the SSP1-2.6 scenario, median warming is 0.3-0.5°C higher than in SSP1-1.9 (Sup-391

plementary Figure S11). Median end of century warming (relative to 1995-2014) ranges392

from 0.6°C to 1.0°C. End of century 5th percentile warming ranges from 0.1°C to 0.5°C393

and 95th percentile warming ranges from 1.2°C to 1.9°C. A number of CMIP6 model pro-394

jections lie above the upper end of the constrained RCMs for this SSP1-2.6 scenario.395

Under SSP1-2.6, the RCMs diverge more in their peak temperature projections,396

both compared to end of century warming and compared to SSP1-1.9. Once again, the397

5th percentile and median are fairly consistent (ranging from 0.3°C to 0.8°C and 0.7°C398

to 1.1°C respectively). However, 95th projections vary from 1.2°C to 2.8°C. The upper-399

end is driven by FaIR1.6, and appears to be the result of persistent warming after CO2400

emissions reach net zero given that its 83rd percentile peak warming year is after 2100.401

Across the models, peak warming year shows a similar range to SSP1-1.9, albeit occur-402

ring 25-30 years later in the median (ranging from 2065 to 2075). Once again, the 5th403

percentile (ranging from 2050 to 2060) shows a much smaller spread across the models404

than the 95th percentile (ranging from 2075 to beyond the end of the 21st Century).405

The warmest RCMs in mitigation scenarios are also the warmest under the high-406

emissions, SSP5-8.5, scenario (Supplementary Figure S12). The exception is MAGICC7,407

which is about 0.5°C warmer by the end of the century than all other models in the me-408

dian under SSP5-8.5, in contrast to the mitigation scenarios where it showed similar warm-409

ing levels to both FaIR1.6 and FaIRv2.0.0-alpha. Under SSP5-8.5, median end of cen-410

tury warming ranges from 2.4°C to 4.0°C across the RCMs. Unlike the mitigation sce-411

narios, there is a similar level of disagreement in 5th and 95th percentile warming, with412

the 5th percentile ranging from 1.8°C to 3.1°C and the 95th percentile ranging from 3.8°C413

to 5.5°C. MAGICC7 is the model closest to the CMIP6 projections, with most other RCMs414

showing warming projections well below the CMIP6 multi-model ensemble. Such a dif-415

ference suggests a structural difference between CMIP6 models and RCMs, which most416

clearly emerges under high warming scenarios.417

The difference between MAGICC7 and the other RCMs becomes even clearer if we418

consider long-term (2250-2300) warming under the SSP5-8.5 scenario (Figure 2, see Sup-419

plementary Figure S13 and Supplementary Figure S14 for long-term warming under SSP1-420

1.9 and SSP1-2.6 respectively). MAGICC7’s median 2250-2300 warming relative to 1995-421

2014 of 9.5°C is only just below the 83rd percentile of FaIRv2.0.0-alpha and above this422

percentile for all other models (despite having quite similar long-term effective radiative423

forcing, see Supplementary Figure S15). There is a significant spread in such long-term424

projections across the models, with the median ranging from 4.5°C to 9.5°C, 5th percentile425

from 3°C to 7°C (excluding SCM4OPTv.20 which is a clear outlier) and 95th from 8°C426

to 14°C. Even these upper end projections are below the highest CMIP6 projections, which427
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Figure 1. Surface air temperature (also referred to as global-mean surface air temperature,

GSAT) change under the very low-emissions SSP1-1.9 scenario. a) GSAT projections from 1995

to 2100. We show the median RCM projections (coloured lines), GMST observations from Had-

CRUT4.6.0.0 (Morice et al., 2012) up to 2019 (dashed black line) and CMIP6 model projections

(thin blue lines, we show the average of all available ensemble members for each CMIP6 model);

b) distribution of 2081-2100 mean GSAT from each RCM; c) very likely (whiskers), likely (box)

and central (white line) 2081-2100 mean GSAT estimate from each RCM; d) as in b) except for

the year in which GSAT peaks; e) as in c) except for the year in which GSAT peaks; f) as in b)

except for the peak GSAT; g) as in c) except for the peak GSAT. All results are shown relative

to the 1995-2014 reference period.
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Figure 2. Long-term surface air temperature (also referred to as global-mean surface air

temperature, GSAT) change under the high-emissions SSP5-8.5 scenario. a) GSAT projections

from 1995 to 2300. We show the median RCM projections (coloured lines), GMST observations

from (Morice et al., 2012) up to 2019 (dashed black line) and available CMIP6 model projections

(thin blue lines, we show the average of all available ensemble members for each CMIP6 model);

b) distribution of 2250-2300 mean GSAT from each RCM; c) very likely (whiskers), likely (box)

and central (white line) 2250-2300 mean GSAT estimate from each RCM. All results are shown

relative to the 1995-2014 reference period.

reach up to 17°C of global-mean warming. Across all the RCMs, only Cicero-SCM shows428

any sign of temperatures peaking by 2300 under such a high-emissions scenario.429

4.2.2 Effective Radiative Forcing430

Compared to temperatures, there is relatively less variance in end of century to-431

tal effective radiative forcing projections (Figure 3, Supplementary Figure S16 and Sup-432

plementary Figure S17), with SCM4OPTv2.0 being a clear outlier. This finding reinforces433

the understanding that the parameterisation of the climate response to effective radia-434

tive forcing is a key driver of climate projection uncertainty.435

In SSP1-1.9, 2081-2100 mean total effective radiative forcing varies from 2.2 W /436

m2 to 2.6 W / m2, with SCM4OPTv2.0 being a an outlier with only 1.7 W / m2. The437

spread is larger for the upper, 95th, percentile and lower for the lower, 5th percentile. The438

95th percentile ranges from 2.5 W / m2 to 3.2 W / m2 while the 5th percentile ranges439

from 1.9 W / m2 to 2.1 W / m2 across the models (excluding SCM4OPTv2.0 and Cicero-440

SCM which has an extremely narrow range). This trend, of uncertainty being higher for441

upper percentiles than lower percentiles, is seen across other key scenarios and highlights442

that the high effective radiative forcing risks are much more uncertain than the best case443

low effective radiative forcing projections.444
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In SSP1-2.6 (Supplementary Figure S16, once again excluding SCM4OPTv2.0 as445

an outlier and Cicero-SCM because of its narrow range) median 2081-2100 total effec-446

tive radiative forcing ranges from 2.9 W / m2 to 3.4 W / m2 while the 5th percentile only447

ranges from 2.5 W / m2 to 2.7 W / m2 and the 95th percentile has a much wider range448

of 3.2 W / m2 to 4.1 W / m2. Under SSP5-8.5 (Supplementary Figure S17, excluding449

EMGC and Cicero-SCM as outliers), median 2081-2100 total effective radiative forcing450

ranges from 7.9 W / m2 to 9.0 W / m2 while the 5th percentile only ranges from 7.4 W451

/ m2 to 7.7 W / m2 and the 95th percentile has a much wider range of 9.0 W / m2 to452

10.8 W / m2.453

The general agreement in total effective radiative forcing is reflected in the agree-454

ment of each of the key contributors to this total, namely CO2 and aerosol effective ra-455

diative forcing (Figure 4 and Supplementary Figures S18 - S22). The key exceptions to456

this relate to aerosol effective radiative forcing, particularly in SCM4OPTv2.0 and OS-457

CARv3.1. SCM4OPTv2.0’s low effective radiative forcing is driven by its strong nega-458

tive aerosol effective radiative forcing. This negative aerosol forcing is driven by SCM4OPTv2.0’s459

inclusion of a climate feedback on aerosol effective radiative forcing, which makes their460

end of century aerosol effective radiative forcing 0.3 - 0.4 W / m2 more negative the across461

the scenarios. This effect is absent in all other models except OSCARv3.1. However, the462

strong aerosol forcing is somewhat cancelled out by other factors in OSCARv3.1, for ex-463

ample its relatively large tropospheric ozone forcing (Supplementary Figure S23). As a464

result, OSCARv3.1’s total effective radiative forcing is more in line with the other mod-465

els.466

4.2.3 Carbon Cycle467

Moving beyond effective radiative forcing and its temperature response, we con-468

sider the behaviour of the carbon cycle in the different RCMs. For these comparisons,469

we use the emissions-driven ESM-SSPX-Y.Y set of scenarios, in which emissions of CO2470

are prescribed and atmospheric CO2 concentrations are allowed to freely evolve (in con-471

trast to the SSP experiments in which CO2 concentrations are prescribed). There are472

considerable variations between the RCMs which submitted relevant results. However,473

these variations mainly occur in the width of the projections (i.e. the upper and lower474

percentiles) and the medians are surprisingly consistent across the RCMs which submit-475

ted data (Supplementary Figure S24, Supplementary Figure S25 and Figure 5).476

In esm-SSP1-1.9 (Supplementary Figure S24, excluding Cicero-SCM because of its477

narrow range), the spread in median peak atmospheric CO2 concentrations (430 ppm478

to 445 ppm) is smaller than the spread in 2081-2100 median concentrations (385 ppm479

to 405 ppm). In contrast, in esm-SSP1-2.6 (Supplementary Figure S25, again excluding480

Cicero-SCM), the spread in median peak atmospheric CO2 concentrations (455 ppm to481

480 ppm) is the same width as the spread in 2081-2100 median concentrations (25ppm,482

430 ppm to 455 ppm). Under both scenarios, there are wide variances in percentile ranges483

across the models, with MAGICC7 showing largest uncertainty in 2081-2100 atmospheric484

CO2 concentrations and FaIRv1.6 showing the least.485

Next, we consider esm-SSP5-8.5, the only scenario with available CMIP6 Earth Sys-486

tem Model results (Figure 5). Median atmospheric CO2 concentrations range from 920487

ppm to 1 000 ppm while 5th percentile and 95th percentile concentrations range from 800488

ppm to 920 ppm and 1 020 ppm to 1 130 ppm respectively. MAGICC7 once again shows489

the largest uncertainties, but is more similar to the other RCMs than in the other sce-490

narios. These comparisons highlight differences in the dynamics of the carbon cycle (and491

its feedbacks) in the various RCMs: uncertainties scale more quickly with temperature492

in MCE, FaIR1.6 and OSCARv3.1 than they do in MAGICC7.493

Median atmospheric CO2 projections from all of the RCMs lie within the plume494

of available CMIP6 results (Figure 5). FaIR1.6 lies at the top end of the CMIP6 plume,495
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Figure 3. Effective radiative forcing under the very low-emissions SSP1-1.9 scenario. a) Me-

dian effective radiative forcing projections from 1995 to 2100 for each RCM; b) distribution of

2081-2100 mean effective radiative forcing from each RCM; c) very likely (whiskers), likely (box)

and central (white line) 2081-2100 mean effective radiative forcing estimate from each RCM; d)

as in b) except for the year in which effective radiative forcing peaks; e) as in c) except for the

year in which effective radiative forcing peaks; f) as in b) except for the peak effective radiative

forcing; g) as in c) except for the peak effective radiative forcing.
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Figure 4. As in panels a), b) and c) of Figure 3, except for effective radiative forcing due to

aerosols.
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Figure 5. Atmospheric CO2 concentration projections in the esm-SSP5-8.5 experiment. a)

Atmospheric CO2 concentration projections from 1995 to 2100. We show the median RCM pro-

jections (coloured lines), prescribed CMIP6 ScenarioMIP input concentrations from the SSP5-8.5

concentration-driven experiment (dashed black line) and available CMIP6 model projections

(thin blue lines, we show the average of all available ensemble members for each CMIP6 model);

b) distribution of 2081-2100 mean atmospheric CO2 concentration projections from each RCM;

c) very likely (whiskers), likely (box) and central (white line) 2081-2100 mean atmospheric CO2

concentration projections estimate from each RCM. Note that FaIR1.6 data is taken from the

esm-SSP5-8.5-allGHG simulations because esm-SSP5-8.5 simulations are not available. [TODO

fix panel labels]
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and its 5-95th range does not include low end CMIP6 results. In contrast, OSCARv3.1496

lies at the bottom end of the CMIP6 plume, and its 5-95th range does not include high497

end CMIP6 results. MAGICC7 and MCE span the CMIP6 range, with MCE’s range be-498

ing almost exactly in line with the CMIP6 range whilst MAGICC7’s projections are slightly499

wider than the CMIP6 range. Cicero-SCM does not include uncertainty in the carbon500

cycle, nor temperature feedbacks on the carbon cycle, hence produces only a single best-501

estimate projection.502

4.2.4 All greenhouse gas emissions-driven runs503

The final set of experiments we present are the experiments which are most rele-504

vant to WG3: all greenhouse gas emissions-driven runs. As discussed in Section 1, WG3505

describes scenarios in terms of their emissions hence needs models which can run in a506

fully-emissions driven setup. The cost of running Earth System Models in such a setup507

is computationally prohibitive, hence there is a paucity of data against which to eval-508

uate the projections of RCMs in such experiments. Nonetheless, here we present the re-509

sults of such experiments in the hope that they will inspire further thinking into how to510

validate RCMs in this fully-coupled, all greenhouse gas emissions driven setup.511

Only three models (Cicero-SCM, MAGICC7 and FaIR1.6) have submitted results512

for the all greenhouse gas emissions-driven scenarios. The MAGICC7 and FaIR1.6 mod-513

els suggest that there is little difference between the concentration-driven and all green-514

house gas emissions-driven runs (Figure 6, Supplementary Figure S26 and Supplemen-515

tary Figure S27). For both these models, the emissions-driven results have slightly lower516

temperature projections (both long-term and peak) and slightly earlier warming peaks,517

with slightly wider uncertainties. These differences are consistent with: a) their slightly518

lower median CO2 concentrations in emissions-driven runs and b) the fact that emissions-519

driven runs introduce carbon cycle uncertainties into temperature projections, an un-520

certainty which is missing in concentration-driven runs. The Cicero-SCM results sug-521

gest a larger discrepancy between all greenhouse gas emissions-driven runs and the concentration-522

driven runs. In general, Cicero-SCM’s warming projections are notably lower in emissions-523

driven runs, with the same uncertainty (Cicero-SCM does not include carbon cycle un-524

certainties or temperature feedbacks), reflecting their lower CO2 concentration projec-525

tions in emissions-driven runs.526

4.3 Further Discussion527

The results presented previously prompt consideration of a number of further points.528

Firstly, the assessment performed here provides a way to easily identify differences be-529

tween an RCM’s behaviour and the assessed range of a particular metric. Such differ-530

ences are important to quantify, as they often point to a bias in the model’s behaviour531

or setup. The quantification makes it possible for the users of these models to consider532

the impact of these biases on their own conclusions.533

There are, however, cases where the issue lies in the combination of the proxy as-534

sessed ranges taken together, rather than in the models. In this study, we used a com-535

bination of ECS from the literature (based on multiple lines of evidence), TCR from con-536

strained CMIP6 models and TCRE from unconstrained CMIP6 Earth System Models.537

This combination has likely resulted in slight inconsistencies between these metrics as538

the metrics are sourced from various lines of evidence, yet are strongly interdependent.539

This potential inconsistency could in part explain our finding that the RCMs’ TCR ranges540

are generally too high, while their TCRE ranges are generally too low. The inconsistency541

is further demonstrated by the fact that a) the realised warming fraction implied by our542

TCR and ECS distributions, i.e. the ratio between TCR and ECS, is around 0.5, at the543

low end of the assessment by Millar et al. (2015) and b) the airborne fraction implied544

by our TCR and TCRE assessment is around 0.65, at the high-end of the CMIP5 and545
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Figure 6. Surface air temperature (also referred to as global-mean surface air temperature,

GSAT) change in the concentration-driven SSP1-1.9 experiment and the all greenhouse gas

emissions driven esm-SSP1-1.9-allGHG experiment. a) GSAT projections from 1995 to 2100.

We show the median RCM projections (coloured lines) for the concentration-driven experiment

(solid) and all greenhouse gas emissions driven experiment (dashed) as well as observations up to

2019 (dashed black line); b) distribution of 2081-2100 mean GSAT for each scenario from each

RCM; c) very likely (whiskers), likely (box) and central (white line) 2081-2100 mean GSAT esti-

mate for each scenario from each RCM; d) as in b) except for the year in which GSAT peaks; e)

as in c) except for the year in which GSAT peaks; f) as in b) except for the peak GSAT; g) as in

c) except for the peak GSAT. All results are shown relative to the 1995-2014 reference period.
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CMIP6 range quantified by Arora et al. (2020). Identifying such inconsistencies is a use-546

ful secondary benefit of exercises such as the one performed here.547

Next, while they are a useful way of quickly visualising a model’s agreement with548

the (here proxy) assessed ranges, summary tables of the form of Table 3 hide the full story.549

Specifically, for timeseries based variables, assessed ranges can only consider the trend550

or change between specific timepoints and don’t consider the entire timeseries as a whole.551

Not considering the entire timeseries can lead to problematic interpretations of the552

agreement between a model and the assessment. A clear example here is historical sur-553

face air ocean blended temperature change. In our proxy assessment, we focussed on 2000-554

2019 warming relative to the 1961-1990 reference period. On this measure, many of the555

RCMs showed poor agreement with the observations. However, the level of agreement556

is clearly reference period dependent (Figures 7a) and 7b)). In Figure 7a), which uses557

a 1961-1990 reference period, MAGICC7, MCE and OSCARv3.1 show the best agree-558

ment with observations (as also seen in Table 3). However, if we use a different refer-559

ence period, e.g. 1850-1900 (Figures 7b)), that impression changes with Hector, MAG-560

ICC7, and OSCARv3.1 being the closest to observations in the recent period.561

Considering the entire timeseries provides a more robust check on model behaviour.562

Fitting only to one evaluation and reference period can be achieved by slightly adjust-563

ing different model behaviour e.g. aerosol effective radiative forcing. However, if the en-564

tire timeseries are considered with multiple reference periods, such tuning quickly be-565

comes impossible and the check provides detail into how well a model’s dynamics are con-566

sistent with observations.567

Moving away from evaluating the models, it is clear that historical performance alone568

does not determine a model’s projections. For example, MAGICC7 and MCE have very569

similar fits to historical temperatures and historical effective radiative forcing yet have570

vastly different ECS and TCR distributions and make notably different projections about571

the magnitude, peak and timing of future warming. Investigating the extent to which572

the difference in ECS and TCR distributions could be rectified, without degrading the573

historical temperature simulations, is an area for future work. More generally, we find574

that higher ECS and TCR values lead to higher warming projections. Hector provides575

an exception to this trend, with relatively low temperature projections, especially in SSP1-576

1.9, despite its relatively high TCR. There is clear uncertainty in RCM projections, and577

it does not disappear even if the reduced complexity modelling groups all start with the578

same target ranges. In the strong mitigation scenarios (SSP1-1.9 and SSP1-2.6), the range579

in median warming across the RCMs is around 0.3°C and is much higher for the upper-580

end (95th percentile) of the range, being at least 1.0°C. In the context of international581

climate policy, even the relatively small deviations in median temperature projections582

presented here are not trivial. For a 1.5°C target, deviations of 0.3°C are roughly 60%583

of our remaining warming.584

While historical performance alone does not determine a model’s projections, the585

constraining process does have an impact on projections. This is most obvious when com-586

paring the constrained RCM-based projections with the CMIP6-based projections (Fig-587

ure 2, Supplementary Figure S13 and Supplementary Figure S14). Clearly, constrain-588

ing the RCMs to match our proxy assessment across a range of metrics causes projec-589

tions to be lower than the CMIP6 multi-model ensemble, perhaps because the high ECS590

seen in many CMIP6 models (Zelinka et al., 2020) is hard to reconcile with historical ob-591

servations without a compensating strong negative aerosol forcing. This study lays the592

foundation for examining why this is the case in detail, using the comprehensive set of593

experiments (and possibly more) and data handling infrastructure implemented here.594

There is another corollary from our finding that future warming diverges, even among595

a set of RCMs that share the same historical benchmarks: to extrapolate assessed warm-596
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Figure 7. Historical surface air ocean blended temperature change (also referred to as

global-mean surface temperature, GMST) from each RCM. We compare observations from Had-

CRUT4.6.0.0 (Morice et al., 2012) (solid black line) to the distribution from each RCM (coloured

lines). All panels use 1961-1990 as the reference period, the same reference period as is used

in our proxy assessed ranges, except b) which uses 1850-1900. a), b) median GMST from 1950

to 2019; c) median GMST from 2000 to 2019 (the proxy assessment period); d) distribution of

2000-2019 mean GMST from each RCM and the proxy assessed range; e) Very likely (whiskers),

likely (box) and central (white line) estimate of 2000-2019 mean GMST from each RCM and the

proxy assessed range. The historical simulation has been extended with SSP2-4.5 for the period

2015-2019.
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ing ranges from one set of scenarios (e.g. the RCP or SSP-based scenarios) to a wider597

set of scenarios, it may be beneficial to include a benchmark of assessed future warm-598

ing under the benchmark scenarios. Adding such a benchmark (to the historical obser-599

vations, present-day assessments and idealised metrics used in this study) would high-600

light where future warming significantly diverges from wider understanding. Such quan-601

tifications could be key when assessing future projections under large sets of scenarios,602

like the WG3 scenario database climate assessment.603

Nonetheless, deciding which projections are most sensible will never be an exact604

science. It is possible to make judgements about what is more reasonable based on the605

evaluation performed here, and to rule out clearly incorrect projections, but a definitive606

answer is impossible: we will not know which projections are correct until we get there,607

by which time it is too late for climate policy. Hence while it is important to continue608

to evaluate and improve our models to remove as many sources of error as possible, it609

is also important that research into decision making under uncertainty (e.g. Weaver et610

al., 2013; Dittrich et al., 2016) continues to develop and be used because the uncertainty611

in projections will not disappear anytime soon, never in fact.612

Beyond the implications for policy, there are other scientific outcomes to consider.613

The first is the difference between these RCMs and the more comprehensive CMIP6 mod-614

els. Here, the most obvious difference is the behaviour in high-warming scenarios. In such615

scenarios, MAGICC7 is a clear outlier from the rest of the RCMs, yet it appears to be616

the most ‘CMIP6-like’, showing sustained warming out to 2300 in SSP5-8.5 (Figure 2).617

This ‘more CMIP6-like’ impression is reinforced by the similarity between MAGICC7618

and the CMIP6 models’ relatively strong recovery in SSP1-2.6, something which is not619

as prominent in the other RCMs except for Cicero-SCM. In SSP1-2.6, MAGICC7 shows620

a similar peak median warming to FaIR1.6 and FaiRv2.0.0-alpha before exhibiting a stronger621

cooling trend than the other RCMs (with the exception of Cicero-SCM, Supplementary622

Figure S14). A likely explanation for the MAGICC7 ‘outlier’ behaviour, particularly for623

the sustained warming seen in SSP5-8.5, is MAGICC7’s state-dependent climate sensi-624

tivity, which arises from its calibration to CMIP6 models (Nicholls et al., 2020) and re-625

flects the finding that CMIP models have state-dependent climate sensitivities (Rugenstein626

et al., 2020). It appears that the state-dependent climate sensitivity is a feature of MAG-627

ICC7 which is either missing or less prominent in the other RCMs.628

We have limited our evaluation of the carbon-cycle behaviour to emissions-driven629

simulations. While this decision limits us to a relatively small set of CMIP6-comparison630

data (given that only few emissions-driven simulations (Jones et al., 2016) have been run631

by CMIP6 models), it provides the cleanest comparison between RCMs and CMIP6 mod-632

els, given that many RCMs do not separate the land and ocean carbon pools. Using the633

concentration-driven simulations would allow us to evaluate the RCMs’ land and ocean634

carbon cycles (for those RCMs which include such a distinction) under more varied sce-635

narios. We reserve such evaluation for future work.636

It is notable that the CMIP6 ScenarioMIP input concentrations are generally higher637

than the RCMs’ medians in emissions-driven runs across all considered scenarios (Fig-638

ure 5, Supplementary Figure S24 and Supplementary Figure S25). Emissions-driven sce-639

nario data from CMIP6 ESMs is almost exclusively related to the esm-SSP5-8.5 exper-640

iment. Hence while the trend appears to be that the prescribed SSP5-8.5 CMIP6 con-641

centrations are at the high-end of the range compared to the esm-SSP5-8.5 CMIP6 ESM642

results, there is little data with which to determine whether the prescribed CO2 concen-643

trations in the low-emissions scenarios would be within the projected concentration change644

by emission-driven ESM models. In hindsight, the input atmospheric CO2 concentra-645

tions used in the concentration-driven runs may turn out to be at the high-end of CMIP6646

ESM results across a range of scenarios. Given that only one set of input concentrations647

can be used in CMIP6, it is not surprising that the CO2 concentrations prescribed for648

CMIP6 experiments do not sit exactly in the middle of later emissions-driven runs (see649
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further discussion in Section 4.3). The opposite was observed in CMIP5: the input CO2650

concentrations (derived with MAGICC6) were found to be in the lower-half of the CMIP5651

emissions-driven runs that later emerged from the CMIP5 emission driven runs (Friedlingstein652

et al., 2014). Choosing a carbon cycle parameterisation more in line with the median of653

CMIP5 models appears to have lead to CO2 concentrations which are now in the upper-654

half of CMIP6 ESM projections (Figure 5). Whenever a single estimate of the relation-655

ship between CO2 emissions and concentrations is used, there is always the risk that it656

will not be the central estimate of the next generation of ESMs as our understanding of657

the carbon cycle improves and the ensembles of participating ESMs changes in each in-658

tercomparison phase. While this does not invalidate the design of concentration-driven659

experiments which are developed in this way, it must be kept in mind when relating emis-660

sions scenarios and the output of concentration-driven CMIP experiments.661

Finally, we find that there is relatively little difference in climate projections be-662

tween the concentration-driven experiments typical of CMIP and the emissions-driven663

experiments required by WG3. This finding provides confidence that validating RCMs664

using concentration-driven experiments covers the most important earth system uncer-665

tainties and features of the RCMs climate projections. However, this confidence is tem-666

pered by the sparsity of available emissions-driven CMIP6 ESM model output, partic-667

ularly for mitigation scenarios. Given that all greenhouse gas emissions driven experi-668

ments should also include uncertainties from each non-CO2 greenhouse gas cycle, it is669

somewhat surprising that the uncertainties in RCMs all greenhouse gas emissions driven670

experiment temperature projections are not wider. We suggest this could be explained671

in two ways: a) the uncertainties in non-CO2 greenhouse gas cycles are relatively small672

hence don’t add much to the uncertainty from the carbon cycle and temperature response673

to effective radiative forcing and/or b) the RCMs are underestimating the uncertainty674

in the relationship between non-CO2 greenhouse gas emissions and changes in atmospheric675

concentrations.676

5 Extensions677

This exercise is a first step towards more comprehensive, routine evaluation of RCMs’678

probabilistic parameter ensembles and their corresponding projections. However, there679

is still much room for future work to improve on this study and the first phase of RCMIP.680

As a first suggestion, repeating this exercise with the assessed ranges from Working Group681

1 of the Intergovernmental Panel on Climate Change’s Sixth Assessment Report (due682

in mid 2021) would provide an evaluation of the extent to which RCMs can capture the683

latest international assessment of the scientific literature.684

This future work could go beyond evaluation and also diagnose the root causes of685

differences between the models. Such an exercise could also provide insights into why686

the constrained RCMs’ probabilistic distributions systematically lead to lower temper-687

ature projections than the CMIP6 multi-model ensemble (as discussed in Section 4.3).688

Finally, given how RCMs are typically used by WG3, it appears that a truly thor-689

ough evaluation would need to consider a larger set of individual steps in the emissions-690

climate change cause-effect chain. While it is not completely clear to us which compo-691

nents would need to be considered (and which could be ignored), a first suggestion of692

important components is: the carbon cycle, other earth system feedbacks e.g. represen-693

tation of permafrost, representation of aerosols, non-CO2 greenhouse gas cycles, trans-694

lation between changes in greenhouse gas concentrations and effective radiative forcing,695

ozone representation, land-use change albedo representation, temperature response to696

effective radiative forcing and all the feedbacks and interactions. To see the full picture,697

a broad range of literature would need to be considered as a validation source and a wide698

range of experiments, spanning historical, scenario-based and idealised experiments, would699

need to be performed. In performing a more thorough evaluation, an updated evalua-700
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tion technique may be required. Specifically, using percentage differences from the as-701

sessed range will lead to problems when the assessed range is close to or spans zero. Hence,702

more sophisticated ways of evaluating the agreement between model results and assessed703

ranges may be required. For reasons of scope, we haven’t achieved such a thorough eval-704

uation here, but we hope that this work provides a basis upon which future work can705

aim for the lofty goal of more complete evaluation of all of the relevant parts of the cli-706

mate system.707

6 Conclusions708

We have found that the best performing RCMs can match our proxy assessment709

across a range of climate metrics. However, no RCM matched the proxy assessment across710

all metrics. At the same time, all RCMs had at least one strength where they matched711

the proxy assessment well.712

Our evaluation of probabilistic projections from RCMs provides a comparison where,713

for the first time, each reduced complexity modelling team knew the target distributions714

before developing and submitting their results. This exercise provides a unique insight715

into RCMs probabilistic parameter ensembles, specifically how they compare with the716

target distributions and their implications for climate projections across a range of cli-717

mate variables and scenarios.718

Notably, we found that agreement with the proxy assessment, i.e. past performance,719

did not determine future performance (i.e. projections) from the RCMs. Given the var-720

ious model structure that the reduced complexity models employ, ranging from linearised721

impulse response functions to 50-layer ocean models, it is not surprising that models may722

diverge in scenarios that go significantly beyond the domain of the validation data. Adding723

constraints on future performance i.e. extending the domain of validation data (for ex-724

ample based on an independent assessment of warming in a limited subset of scenarios)725

would likely reduce the divergence. Deciding which projections are most likely to be cor-726

rect will never be an exact science. While exercises such as the one performed here can727

provide helpful information about where the biases may lie, they cannot provide defini-728

tive answers about what the future holds. Those who use RCMs for climate projections729

should carefully consider how they’re going to use the RCMs and how they’re going to730

validate them before making conclusions about the implications of their projections.731

In addition, we found that many of the RCMs did not reproduce the high, long-732

term warming seen in CMIP6 models under high-emissions scenarios. Given that the ex-733

ception was MAGICC7, it appears that its state-dependent climate sensitivity is a key734

feature for replicating CMIP6-style high-warming responses. Beyond the question of tem-735

perature projections, we found that the prescribed CO2 concentrations used in the CMIP6736

SSP-based experiments are at the high-end of projections made with historically con-737

strained carbon cycles. Finally, we observed that a change in reference period significantly738

altered how well some models agreed with observations, reinforcing the need to consider739

more than one reference period when evaluating models.740

With sufficient validations, RCMs provide a unique synthesis tool to integrate the741

latest scientific understanding, including its uncertainties, along the complex cause-effect742

chain from emissions to global-mean temperatures. Integrating this understanding in an743

internally consistent RCM framework, with all the implicit cross-correlations, is our best744

method to inform decision-making and other scientific domains, for example the likeli-745

hood of exceeding a given global-mean temperature threshold under a specific emissions746

scenario. Further developing these tools opens vast opportunities to go beyond global-747

mean variables and temperature changes, and to robustly represent the complex science748

beneath.749
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