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Key Points:

+ Reduced complexity climate models (RCMs) are key for making probabilistic cli-
mate projections because of their computational efficiency
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« No model is able to capture all forcing, warming, heat uptake and carbon cycle
metrics we evaluate, however some come very close, with deviations greater than
10% in only four metrics
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Abstract

Over the last decades, climate science has branched out into many smaller expert
communities across the carbon cycle, radiative forcings, climate feedbacks or ocean heat
uptake domains. Our best tools to capture state-of-the-art knowledge are the increas-
ingly complex fully coupled Earth System Models (ESMs). However, computational lim-
itations and the structural rigidity of ESMs mean that the full range of uncertainties across
multiple domains are difficult to capture with multi-model ESM ensembles and perturbed
parameter single ESM ensembles alone. The tools of choice are hence more computa-
tionally efficient reduced complexity models (RCMs), which are structurally flexible and
can span the response dynamics across a range of domain-specific models and/or ESM
experiments. Here, we provide the first comprehensive intercomparison of multiple RCMs
that are probabilistically calibrated to key benchmark ranges from specialised research
communities. This exercise constitutes Phase 2 of the Reduced Complexity Model In-
tercomparison Project (RCMIP Phase 2). We find that even if RCMs perform similarly
against historical benchmarks, their future projections can still diverge. Under the low-
emissions SSP1-1.9 scenario, across the RCMs, median 2081-2100 warming projections
range from 1.1 to 1.4°C while median peak warming projections range from 1.3 to 1.7°C
(relative to 1850-1900, using an observationally-based historical warming estimate of 0.8°C
between 1850-1900 and 1995-2014). Our findings suggest that users of RCMs should care-
fully evaluate the RCM they are using, specifically its skill against key benchmarks and
consider the need to include future projections benchmarks either from ESM results or
other assessments to reduce such divergence.

Plain Language Summary

Our best tools to capture state-of-the-art knowledge are complex, fully coupled Earth
System Models (ESMs). However, ESMs are expensive to run and no single ESM can
easily produce responses which represent the full range of uncertainties. Instead, for some
applications, computationally efficient reduced complexity climate models (RCMs) are
used in a probabilistic setup. An example of these applications is estimating the likeli-
hood that an emissions scenario will stay below a certain global-mean temperature change
(e.g. 2°C). Here we present a study (referred to as the Reduced Complexity Model In-
tercomparison Project (RCMIP) Phase 2) which investigates the extent to which differ-
ent RCMs can be probabilistically calibrated to reproduce key benchmark ranges from
specialised research communities. We find that the agreement between each RCM and
the benchmarks varies, although the best performing models show good agreement with
both the best-estimate and uncertainty ranges over the majority of benchmarks. Even
though the models all used the same target benchmark ranges, their future projections
still diverge. Under the low-emissions SSP1-1.9 scenario, across the RCMs, median peak
warming projections range from 1.3 to 1.7°C (relative to 1850-1900, using an observationally-
based historical warming estimate of 0.8°C between 1850-1900 and 1995-2014).

1 Introduction

Coupled Earth System Models (ESMs) have evolved for decades as primary climate
research tools (Edwards, 2000). They represent the state of the art of complex Earth sys-
tem modelling. Nonetheless, they are not the tool of choice to assess the full breadth of
scenario and Earth system response uncertainty that has been identified in the scientific
literature. It is infeasible to assess the climate implications of hundreds to thousands of
emissions scenarios with the world’s most comprehensive ESMs, such as those partici-
pating in the Sixth Phase of the Couple Model Intercomparison Project (CMIP6) (Eyring
et al., 2016), because of ESMs’ computational cost, the complexity in setting up input
data and the sheer volume of output data generated. Yet, such assessments are vital for
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understanding the consequences of various policy choices and their residual climate haz-
ards.

Similarly, while some ESMs perform large, perturbed physics experiments (e.g., Stain-
forth et al., 2005) that aim to explore the full range of potential Earth system long-term
annual-average responses, the ability to capture full uncertainty ranges is limited. The
ability to capture full uncertainty ranges is limited because these ESMs are relatively
rigid in their structure - lacking a representation of uncertainties in vital components like
the carbon cycle or effective radiative forcings.

An answer to both of these challenges, i.e. (a) limited computational resources and
(b) structural scope and flexibility to represent long-term uncertainties in key metrics
like global-mean surface air temperatures, are Reduced Complexity Models (RCMs), of-
ten also referred to as simple climate models (SCMs). RCMs can play the vital role of
extending the knowledge and uncertainties from multiple domains, particularly a mul-
titude of ESM experiments, to probabilistic long-term climate projections of key vari-
ables over a wide range of scenarios (see Section 2 in (Meinshausen et al., 2011) for other
uses of RCMs).

Typically, RCMs achieve this computational efficiency and structural flexibility by
limiting their spatial and temporal domains to global-mean, annual-mean quantities i.e
the domains of relevance to long-term, global climate change. Rather than aiming to rep-
resent the physics of the climate system at the process level and high-resolution, RCMs
use parameterisations of the system which capture its large-scale behaviour at a greatly
reduced computational cost. This allows them to perform 350-year long simulations in
a fraction of a second on a single CPU, multiple orders of magnitude faster than our most
comprehensive ESMs which would take weeks to months on the world’s most advanced
supercomputers.

A key example of large-scale emissions scenario assessment, and the one we focus
on in this paper, is the climate assessment of socioeconomic scenarios by the Intergov-
ernmental Panel on Climate Change (IPCC) Working Group 3 (WG3). Hundreds of emis-
sion scenarios were assessed in the IPCC’s Fifth Assessment Report (AR5, see Clarke
et al. (2014)) as well as its more recent Special Report on Global Warming of 1.5°C (SR1.5,
see Rogelj et al. (2018); Huppmann et al. (2018)). (Scenario data is available at https://
secure.iiasa.ac.at/web-apps/ene/AR5DB and https://data.ene.iiasa.ac.at/iamc
-1.5c-explorer/ for AR5 and SR1.5 respectively, both databases are hosted by the ITASA
Energy Program). For the IPCC’s forthcoming Sixth Assessment (ARG), it is anticipated
that the number of scenarios will be in the several hundreds to a thousand (an initial
snapshot of scenarios based on the SSPs is available at https://tntcat.iiasa.ac.at/
SspDb).

One further reason that the world’s most comprehensive ESMs would have diffi-
culty running WG3-type scenarios is because greenhouse gas cycles, atmospheric chem-
istry and dynamic vegetation modules would be required to run the WG3 emission sce-
narios. While some ESMs have the required components, they are rarely used for long-
term experiments for reasons of computational cost. The most comprehensive RCMs in-
clude parameterised representations of the required components, enabling the exploration
of interacting uncertainties from multiple parts of the climate system in an internally con-
sistent setup.

In general, RCMs do not include the detail of ESMs across the emissions-climate
change cause-effect chain, but they do tend to include uncertainty representations for
more steps in the chain (i.e. RCMs tradeoff depth for breadth compared to ESMs). For
example, many RCMs include the relationship between methane emissions and concen-
trations (including temperature and other feedbacks) whereas few ESMs do in their long-
term experiments. On the other hand, few RCMs directly use land-cover information within
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their carbon cycles, and none consider it in the detailed way which ESMs do. In addi-
tion, there are clearly applications where RCMs are not a feasible tool. For example, near-
term attribution studies, such as the World Weather Attribution project (Uhe et al., 2016).
For this latter application, large-ensemble ESM runs are vital - as only they can reflect
natural variability and weather patterns. Overall, there is no question that ESMs are

by far the most important research tool to project future climate change. RCMs com-
plement the ESM efforts. Within this paper, we focus on a very specific niche of this com-
plementing role, i.e. synthesising multiple lines of evidence across the emissions-climate
change cause-effect chain.

Within the IPCC, RCMs’ synthesising niche facilitates the transfer of knowledge
from Working Group I (WG1), which assesses the physical science of the climate sys-
tem, to WG3, which assesses the socioeconomics of climate change mitigation. The knowl-
edge transfer ensures that WG3’s scenario classification is consistent with the physical
science assessment of WG1 - a key precondition to have confidence that WG3’s conclu-
sions about the socioeconomic transformation required to mitigate anthropogenic climate
change to specific levels are based on our latest scientific understanding. Here, we de-
scribe RCMs as ‘integrators of knowledge’ because they integrate (a relevant sub-section
of) the assessment from WG1, providing WG3 with a tool that can be used for assess-
ing the climate implications, particularly global-mean temperature changes, of a wide
range of emissions scenarios.

Typically, RCMs perform this knowledge integration using probabilistic distribu-
tions, which are distinct from the emulator mode in which RCMs can also be run (see
Nicholls et al. (2020) for a discussion of emulation with RCMs). These probabilistic dis-
tributions are derived by running an RCM with a parameter ensemble which captures
the assessed ranges of specific Earth system quantities, e.g. historical global mean tem-
perature increase, effective radiative forcing due to different anthropogenic emissions, ocean
heat uptake, or cumulative land and ocean carbon uptake. The resulting distributions
are designed to facilitate WG3’s scenario classification e.g. to capture the likelihood that
different warming levels are reached under a specific emissions scenario (e.g. 50% and
66%) based on the combined available evidence (in this case the WG1 assessment). As
a result of their probabilistic nature, the ensembles resulting from RCMs are conceptu-
ally different from an ensemble of multiple model outputs (such as those from CMIP6)
taken without constraining or any other sort of post-processing.

Due to their role in the IPCC assessment (and for analysing mitigation options in
line with temperature targets more generally), understanding the degree to which RCMs
can reflect a range of radiative forcing, warming, heat uptake and concentration assess-
ments simultaneously is of vital importance. If RCMs are inherently biased in some way,
this will affect the WG3 climate assessment and interpretation of the RCMs’ outputs should
be adjusted accordingly.

This study’s scope, in terms of number of climate dimensions considered and num-
ber of climate models evaluated, is unique. There have been studies with single mod-
els which choose parameter sets that match various assessments of ECS and TCR (Meinshausen
et al., 2009; Rogelj et al., 2012). Smith, Forster, et al. (2018) compared two models’ prob-
abilistic outputs.

Here, in the second phase of RCMIP, we evaluate the degree to which multiple RCMs
are able to synthesise Earth system knowledge within a probabilistic distribution. We
then examine the implications of differences in these probabilistic distributions for cli-
mate projections. We extend previous probabilistic evaluation work and build on the progress
made in the first phase (Nicholls et al., 2020) and other RCM intercomparison studies
(van Vuuren et al., 2011; Harmsen et al., 2015; Schwarber et al., 2019). We widen the
first phase’s scope both in terms of number of climate dimensions considered and the num-
ber of models evaluated. To our knowledge, this is the most comprehensive evaluation
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performed to date of the ability of RCMs to capture a broad range of climate metrics
and key indicators, such as those assessed in by IPCC WGI.

2 Participating models

Nine models have participated in RCMIP Phase 2 (Table 1 and Supplementary Text
S1). These models and their components range from simpler, regression-based approaches
to more complex representations with detailed processes and regions. The models have
been constrained in a number of different ways, using statistical techniques ranging in
complexity from Monte Carlo Markov Chains to using pass/fail criteria to determine valid
parameter values. As a result, they cover a wide range of the techniques in the litera-
ture and their results allow us to evaluate the implications of different choices.

3 Methods

In this study, the RCMs are run in a probabilistic setup. As discussed in the in-
troduction, a probabilistic setup means that each RCM is run with an ensemble of pa-
rameters. Specifically, for a given experiment, each RCM is run multiple times, each time
with slightly different parameter values. All of these different runs are then combined
to form a probabilistic set of outputs. With these probabilistic sets, we can then calcu-
late ranges of each output variable of interest (e.g. global-mean surface temperatures).

Modelling groups use a range of techniques to derive their parameter ensembles i.e.
to constrain their models (Table 1). Typically, modelling groups will also use different
data to derive their parameter ensemble. This can lead to differences in model projec-
tions which are simply based on choices made by the modelling groups and are not re-
lated to model structure or constraining technique at all. We remove the choice of data
as a point of difference by ensuring that all modelling groups agree on a common set of
target assessed ranges i.e. benchmarks.

In this study, our target assessment is a ‘proxy assessment’, which uses assessed
climate system characteristics in line with IPCC AR5 as its starting point and updates
key values using more recent literature (see Table 2). We explicitly use the name ‘proxy
assessment’ throughout to make clear that we are not constraining to any ranges com-
ing from the formal IPCC assessment, rather an approximation thereof.

We use surface air ocean blended temperatures from the HadCRUT.4.6.0.0 dataset
(Morice et al., 2012). HadCRUT4.6.0.0 is a widely used observational data product and
is representative of other observations of changes in surface air and ocean temperatures
(Simmons et al., 2017). Our key metric for evaluating RCM temperature projections is
the warming between the 1961-1990 and 2000-2019 periods (using the SSP2-4.5 scenario
to extend the CMIP6 historical experiment to 2019). We choose a relatively recent pe-
riod to match the increase in global observations since the 1960s.

For ocean heat content, we use the recent work of von Schuckmann et al. (2020).
We focus on the change in ocean heat content between 1971 and 2018, when the largest
set of observations are available.

We use the recent assessment of Sherwood et al. (2020) for equilibrium climate sen-
sitivity (ECS). ECS is defined as the equilibrium warming which occurs under a dou-
bling of atmospheric CO5 concentrations relative to pre-industrial concentrations. The
ECS assessment is combined with the constrained transient climate response (TCR) as-
sessment of Tokarska et al. (2020). TCR is defined as the surface air temperature change
which occurs at the time at which atmospheric COs concentrations double in an exper-
iment in which atmospheric COy concentrations rise at one percent per year (a 1pctCO2
experiment). Carbon cycle behaviour is considered via the transient climate response
to emissions (TCRE). TCRE is defined as the ratio of surface air temperature change



Table 1.

descriptions of each model are available in Supplementary Text S1.

Overview of the models and constraining approaches used in this paper. Detailed

Model Constraining technique Key references

Cicero-SCM 550 members sub-sampled from a posterior Schlesinger et al. (1992);
of 30 040 members to form a set that match  Joos et al. (1996); Etmi-
the proxy assessment ECS distribution while  nan et al. (2016); Skeie et
reproducing surface air temperature change al. (2017, 2018); Nicholls
from 1850-1900 to 1985-2014 et al. (2020)

EMGC 160 000 sample members, retaining the 1 000  Canty et al. (2013);
that minimize reduced-chi-squared between Hope et al. (2017, 2020);
modeled and observed GMST and OHC McBride et al. (2020)
from 1850-1999

FalRv1.6.1 3 000 sample members retaining the 501 Millar et al. (2017); Smith,

FalRv2.0.0-alpha

Hectorv2.5.0

MAGICCv7.4.1

MCE v1.2

OSCARv3.1

SCM40PT v2.0

that minimise RMSE between modelled and
observed 1850-2014 GMST

1 million member raw ensemble, constrained
with 90% credible range of current level and
rate of attributable warming (Haustein et
al., 2017). 5000 members randomly drawn
from the constrained ensemble for use here.
10 000 sampled ensemble from Markov chain
Monte Carlo chains constrained with global
surface temperature and ocean heat content
~ 20 million member Monte Carlo Markov
Chain, 600 member sub-sample selected to
match proxy assessed ranges

600 members sampled with a Metropolis-
Hastings algorithm through Bayesian updat-
ing to reflect an ensemble of complex climate
models constrained with the proxy assessed
ranges

10 000 Monte Carlo members, weighted us-
ing their agreement with a set of assessed
ranges (Supplementary Text S1)

For each emission scenario, 2 000 sample
members are used to reflect uncertainties
resulting from carbon cycle, aerosol forcings
and temperature change, while constrained
by the historical mean surface temperature
of HadCRUT.4.6.0.0 (Morice et al., 2012).

Forster, et al. (2018)

Millar et al. (2017);
Haustein et al. (2017);
Smith, Forster, et al.
(2018); Leach et al. (2020)

Vega-Westhoff et al. (2019)
Meinshausen et al. (2009,
2011, 2020)

Tsutsui (2017, 2020) (see

also Joos et al. (1996);
Hooss et al. (2001))

Gasser et al. (2017, 2018,
2020)

Su et al. (2017, 2018,
2020)
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Table 2. The proxy assessed ranges used in this study. The assessed ranges are labelled as

)

VI’ (very-likely lower i.e. 5" percentile), ‘1’ (likely lower, 17" percentile), ‘c’ (central, 50" per-
centile), ‘lu’ (likely upper, 83'" percentile) and ‘vlu’ (very-likely upper, 95" percentile). Sources

are described in Section 3.

Assessed range  vll 1 c lu viu
Metric Unit
2000-2019 GMST rel. to 1961-1990 K 0.50 0.52 054 0.56 0.58
Equilibrium Climate Sensitivity K 230 2.60 3.10 390 4.70
Transient Climate Response K 0.98 1.26 1.64 2.02 2.29
Transient Climate Response to Emissions K / TtC 1.03 140 177 214 251
2014 COg Effective Radiative Forcing W / m? 1.69 180 191
2014 Aerosol Effective Radiative Forcing = W / m? -1.37  -1.01 -0.63
2018 Ocean Heat Content rel. to 1971 7J 303 320 337
2011 CH4 Effective Radiative Forcing W / m? 047 0.60 0.73
2011 N3O Effective Radiative Forcing W / m? 0.14 0.17  0.20
2011 F-Gases Effective Radiative Forcing W / m? 0.03 0.03 0.03

to cumulative CO5 emissions at the time when atmospheric COs concentrations double
in a 1pctCO2 experiment. We use the TCRE assessment from Arora et al. (2020), which

is based on the latest generation of Earth System Models which have participated in CMIP6
(Eyring et al., 2016). There is a potential inconsistency between our ECS, TCR and TCRE

ranges, which arises because the TCR assessment is based on a constrained set of CMIP6
models, the TCRE assessment is based on unconstrained CMIP6 Earth System Mod-

els and the ECS assessment comes from a study which uses multiple lines of evidence.
We discuss the importance of this inconsistency and its consequences in 4.

The other key metrics are related to effective radiative forcing (ERF, Forster et al.,
2016). These values generally follow the AR5 assessment, except for aerosol, CO5 and

CH,4 ERF. For aerosol and CO, ERF, we use the more recent work of Smith et al. (2020).

For CH4 ERF, we increase the AR5 assessment following Etminan et al. (2016) although
we note that this increase may be offset by an updated understanding of the impact of
rapid adjustments following Smith, Kramer, et al. (2018).

At this point, we stress that our proxy assessed ranges are only one of a range of
possible choices. Assessing all the available literature is a demanding task that is well
undertaken by the IPCC. We do not attempt to reproduce this task here. Instead, the
key is that our proxy assessed ranges are a) reasonable and b) available now so all mod-
elling groups can use consistent benchmarks to constrain their models.

Following this intercomparison consortium’s choice of proxy assessed ranges, mod-
elling groups then had the opportunity to develop parameter ensembles which best re-
flected these assessed ranges. As a result, we have, for the first time, a set of models, all
of which used the same ‘constraining benchmarks’ (with a number of different techniques
being employed to consider the constraining benchmarks, see Table 1). We gain unique
insights into the impact of differences in model structure and constraining techniques
when RCMs are used as integrators of knowledge, free from a typical source of disagree-
ment between the models, namely that they were constrained to reproduce different un-
derstandings of the climate.

The modelling groups submitted a range of concentration-driven, emission-driven
and idealized scenarios for their chosen parameter subsets (see scenario specifics below).
Subsequently, several metrics were calculated, such as TCR from the idealised COz-only
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1pctCO2 experiment (in which atmospheric CO9 concentrations rise at 1% per year from
pre-industrial levels). Calculating derived metrics on each individual ensemble member
ensures that all metrics are calculated from internally self-consistent model runs, which
is of particular importance when the metric is based on more than one output variable
from the model (e.g. TCRE, which relies on both surface air temperature change and
inverse emissions of CO3). If we instead calculated results based on percentiles of dif-
ferent variables, we would not be using an internally self-consistent set. Where modelling
groups felt it was more appropriate (e.g. OSCAR), they performed their own weight-

ing of ensemble members before submitting.

The one metric which is not easily calculated from model results is ECS because
it is defined at equilibrium. Accordingly, modelling groups reported their own diagnosed
ECS for each ensemble member, rather than performing experiments which would al-
low it to be calculated after submission had taken place.

When evaluating model performance, we are interested not only in how well a model
can reproduce the best estimate, but also the range of a given quantity. A key part of
any climate assessment is the uncertainty and it is critical that RCMs reflect the assessed
likely and very likely ranges if they are to be used as integrators of knowledge. We as-
sess the relative difference between the model and the assessed ranges at the very likely
lower (5" percentile, also referred to as ‘vIl’), likely lower (17" percentile, 11), central
(50" percentile, c), likely upper (83" percentile, lu) and very likely upper (95" percentile,
vlu). Assessing deviations using relative differences allows us to quickly evaluate how mod-
els perform over a range of metrics on the same scale.

The set of scenarios that each modelling group was asked to run follow the exper-
imental protocols of CMIP6’s ScenarioMIP (O’Neill et al., 2016). The SSPX-Y.Y exper-
iments (e.g. SSP1-1.9, SSP2-4.5, SSP5-8.5) are defined in terms of concentrations of well-
mixed greenhouse gases i.e. COq, CHy, N2O, hydrofluorocarbons (HFCs), perfluorocar-
bons (PFCs) and hydrochlorofluorocarbons (HCFCs), emissions of ‘aerosol precursor species
emissions’ i.e. sulfur, nitrates, black carbon, organic carbon and ammonia and natural
effective radiative forcing variations. As described in Nicholls et al. (2020), where required,
models may use prescribed effective radiative forcing where they do not include the re-
quired gas cycles or radiative forcing parameterisations.

The esm-SSPX-Y.Y experiments are identical to the SSPX-Y.Y experiments, ex-
cept CO4 emissions are prescribed instead of COs concentrations, following the CMIP6
C4MIP protocol (Jones et al., 2016). Finally, we also perform esm-SSPX-Y.Y-allGHG
experiments. These are identical to the esm-SSPX-Y.Y experiments, except they are de-
fined in terms of emissions of all well-mixed greenhouse gases, not only COs, rather than
concentrations. There is no equivalent of these esm-SSPX-Y.Y-allGHG experiments in
the CMIP6 protocol, however it is these experiments which are of most interest to WG3,
given that WG3 focusses on scenarios defined in terms of emissions alone. We use the
data sources described in Nicholls et al. (2020) to specify the inputs for each of these sce-
narios. The input dataset compilations, comprising emission, scenario and forcing data,
as well as the protocols are available at remip.org (last accessed 28 October 2020) - and
can contribute to scientific studies beyond this intercomparison as they largely reflect
the CMIP6 experimental designs.

The protocol designed for this study requires that each RCM modelling group runs
every probabilistic ensemble member once for each scenario and then submits their out-
put for further analysis. With nine modelling groups participating, this intercompari-
son project compiled a database of results containing thousands of runs for each RCM,
from which we can calculate different warming, effective radiative forcing or ocean heat
uptake percentiles for a wide range of scenarios.
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4 Results and discussion
4.1 Fit to assessed ranges

The ability of RCMs to match the assessed ranges varies (Table 3, Supplementary
Table S1 and Supplementary Figures S1 - S10). In general, the RCMs capture the cen-
tral assessed values better than the likely and very likely ranges. Historical warming and
the TCRE are notable exceptions to this. For both these metrics, the very likely lower
and likely lower assessed values are better captured by the RCMs than the central val-
ues.

Considering the variation between metrics, we see that the proxy assessment of the
ECS and effective radiative forcing metrics is better captured by the RCMs than the other
metrics (see multi-model median in Table 3). For ECS and all the effective radiative forc-
ing metrics, the median multi-model difference is less than or equal to 10% for the cen-
tral proxy assessed range. However, there is less close agreement with the very likely and
likely proxy assessed ranges for the ECS and effective radiative forcing metrics, with me-
dian multi-model differences being up to 18% (CHy effective radiative forcing).

For the other metrics (historical warming, TCR, TCRE and historical ocean heat
content changes), the median multi-model difference is greater than 20% for at least one
of the assessed ranges. However, there is significant variation across the likelihood lev-
els. For example, the multi-model median matches the very likely lower and likely lower
historical warming (rows labelled ‘2000-2019 GMST rel. to 1961-1990’ in Table 3) to within
2% and 6% respectively. However, the multi-model median differs from the central, likely
upper and very likely upper historical warming by 11%, 25% and 44% respectively, in-
dicating that the models are having greater difficulty capturing the upper-end warming
estimates.

There is also significant spread in performance across the models. Two models per-
form better than the multi-model median across all metrics and assessed ranges (very
likely lower, likely lower, central, likely upper, very likely upper) except for three met-
rics. Those models are MAGICC7 (worse than multi-model median for all assessed ranges
of TCR, likely lower 2011 CH, effective radiative forcing and very likely lower TCRE)
and MCE-v1-2 (worse than multi-model median for all assessed ranges of ECS, very likely
lower and very likely upper TCR and likely lower, central, likely upper and very likely
upper TCRE). However, all RCMs had at least one strength where they matched the proxy
assessment at all likelihood levels to within 20%.

4.2 Projections

For each probabilistic setup, the RCMs also submitted projections of global-mean
surface temperature, effective radiative forcing (split into total, aerosols and COs) and
atmospheric CO5 concentrations for the SSPX-Y.Y, ESM-SSPX-Y.Y and ESM-SSPX-
Y.Y-allGHG experiments. Despite all being constrained with the same target distribu-
tions, there are considerable differences between the projections from various models.

4.2.1 Global-mean Surface Air Temperature

Under SSP1-1.9, median end of century (2081-2100) projections relative to 1995-
2014 vary by 0.3°C across the models (from Cicero-SCM, EMGC and Hector with 0.3°C
of warming to MAGICC?7, FalR1.6 and FalRv2.0.0-alpha with 0.6°C, Figure 1 a)-c)). Vari-
ations in 5" percentile warming show a similar range, from -0.1°C to 0.2°C. In contrast,
upper-end, 95" percentile warming shows far greater variation, from 0.4°C for OSCARv3.1
to 1.9°C for EMGC. For the SSP1-1.9 scenario, the spread in RCMs’ probabilistic pro-
jections is similar to the spread in the CMIP6 multi-model ensemble. Nonetheless, the
most extreme CMIP6 model projections are outside the range of most RCMs’ 5-95" per-
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centiles, suggesting that such projections are incompatible with current observations of
historical warming and ocean heat content as well as effective radiative forcing under-
standing (a similar conclusion to Tokarska et al. (2020)).

A similar spread is seen in peak temperature (Figure 1 f)-g)). Across the RCM en-
semble, SSP1-1.9 median peak warming ranges from 0.6°C to 0.75°C while the 5" and
95" percentiles range from 0.2°C to 0.5°C and 0.7°C to 2.0°C, respectively. In contrast,
the year of peak warming shows much more variation, particularly at the upper end (Fig-
ure 1 d)-e)). While the median peak year is fairly consistent across the RCMs’ ensem-
bles, around 2045, and the 5*" percentile peak year varies from 2030 to 2040, the 95"
percentile varies from 2050 to beyond the end of this century. In SCM40OPTv2.0, EMGC,
FalR1.6 and FalRv2.0.0-alpha, there is a significant area of parameter space which re-
sults in ongoing warming even after COy emissions have reached net zero. However, the
warming rate is quite slow in these simulations because there is not an equivalently large
spread in end of century temperature projections (see the relatively consistent 95" per-
centile end of century projections in Figure 1 f)-g)).

In the SSP1-2.6 scenario, median warming is 0.3-0.5°C higher than in SSP1-1.9 (Sup-
plementary Figure S11). Median end of century warming (relative to 1995-2014) ranges
from 0.6°C to 1.0°C. End of century 5" percentile warming ranges from 0.1°C to 0.5°C
and 95" percentile warming ranges from 1.2°C to 1.9°C. A number of CMIP6 model pro-
jections lie above the upper end of the constrained RCMs for this SSP1-2.6 scenario.

Under SSP1-2.6, the RCMs diverge more in their peak temperature projections,
both compared to end of century warming and compared to SSP1-1.9. Once again, the
5" percentile and median are fairly consistent (ranging from 0.3°C to 0.8°C and 0.7°C
to 1.1°C respectively). However, 95" projections vary from 1.2°C to 2.8°C. The upper-
end is driven by FalR1.6, and appears to be the result of persistent warming after COq
emissions reach net zero given that its 83'¢ percentile peak warming year is after 2100.
Across the models, peak warming year shows a similar range to SSP1-1.9, albeit occur-
ring 25-30 years later in the median (ranging from 2065 to 2075). Once again, the 5"
percentile (ranging from 2050 to 2060) shows a much smaller spread across the models
than the 95" percentile (ranging from 2075 to beyond the end of the 21%* Century).

The warmest RCMs in mitigation scenarios are also the warmest under the high-
emissions, SSP5-8.5, scenario (Supplementary Figure S12). The exception is MAGICC?,
which is about 0.5°C warmer by the end of the century than all other models in the me-
dian under SSP5-8.5, in contrast to the mitigation scenarios where it showed similar warm-
ing levels to both FalR1.6 and FalRv2.0.0-alpha. Under SSP5-8.5, median end of cen-
tury warming ranges from 2.4°C to 4.0°C across the RCMs. Unlike the mitigation sce-
narios, there is a similar level of disagreement in 5" and 95" percentile warming, with
the 5t percentile ranging from 1.8°C to 3.1°C and the 95" percentile ranging from 3.8°C
to 5.5°C. MAGICCY is the model closest to the CMIP6 projections, with most other RCMs
showing warming projections well below the CMIP6 multi-model ensemble. Such a dif-
ference suggests a structural difference between CMIP6 models and RCMs, which most
clearly emerges under high warming scenarios.

The difference between MAGICC7 and the other RCMs becomes even clearer if we
consider long-term (2250-2300) warming under the SSP5-8.5 scenario (Figure 2, see Sup-
plementary Figure S13 and Supplementary Figure S14 for long-term warming under SSP1-
1.9 and SSP1-2.6 respectively). MAGICC7’s median 2250-2300 warming relative to 1995-
2014 of 9.5°C is only just below the 834 percentile of FalRv2.0.0-alpha and above this
percentile for all other models (despite having quite similar long-term effective radiative
forcing, see Supplementary Figure S15). There is a significant spread in such long-term
projections across the models, with the median ranging from 4.5°C to 9.5°C, 5" percentile
from 3°C to 7°C (excluding SCM4OPTv.20 which is a clear outlier) and 95" from 8°C
to 14°C. Even these upper end projections are below the highest CMIP6 projections, which
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Figure 1. Surface air temperature (also referred to as global-mean surface air temperature,
GSAT) change under the very low-emissions SSP1-1.9 scenario. a) GSAT projections from 1995
to 2100. We show the median RCM projections (coloured lines), GMST observations from Had-
CRUT4.6.0.0 (Morice et al., 2012) up to 2019 (dashed black line) and CMIP6 model projections
(thin blue lines, we show the average of all available ensemble members for each CMIP6 model);
b) distribution of 2081-2100 mean GSAT from each RCM; c) very likely (whiskers), likely (box)
and central (white line) 2081-2100 mean GSAT estimate from each RCM; d) as in b) except for
the year in which GSAT peaks; e) as in ¢) except for the year in which GSAT peaks; f) as in b)
except for the peak GSAT; g) as in ¢) except for the peak GSAT. All results are shown relative
to the 1995-2014 reference period.
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Figure 2. Long-term surface air temperature (also referred to as global-mean surface air
temperature, GSAT) change under the high-emissions SSP5-8.5 scenario. a) GSAT projections
from 1995 to 2300. We show the median RCM projections (coloured lines), GMST observations
from (Morice et al., 2012) up to 2019 (dashed black line) and available CMIP6 model projections
(thin blue lines, we show the average of all available ensemble members for each CMIP6 model);
b) distribution of 2250-2300 mean GSAT from each RCM; c) very likely (whiskers), likely (box)
and central (white line) 2250-2300 mean GSAT estimate from each RCM. All results are shown
relative to the 1995-2014 reference period.

reach up to 17°C of global-mean warming. Across all the RCMs, only Cicero-SCM shows
any sign of temperatures peaking by 2300 under such a high-emissions scenario.

4.2.2 Effective Radiative Forcing

Compared to temperatures, there is relatively less variance in end of century to-
tal effective radiative forcing projections (Figure 3, Supplementary Figure S16 and Sup-
plementary Figure S17), with SCM40OPTv2.0 being a clear outlier. This finding reinforces
the understanding that the parameterisation of the climate response to effective radia-
tive forcing is a key driver of climate projection uncertainty.

In SSP1-1.9, 2081-2100 mean total effective radiative forcing varies from 2.2 W /
m? to 2.6 W / m?, with SCM40OPTv2.0 being a an outlier with only 1.7 W / m?. The
spread is larger for the upper, 95, percentile and lower for the lower, 5" percentile. The
95" percentile ranges from 2.5 W / m? to 3.2 W / m? while the 5 percentile ranges
from 1.9 W / m? to 2.1 W / m? across the models (excluding SCM4OPTv2.0 and Cicero-
SCM which has an extremely narrow range). This trend, of uncertainty being higher for
upper percentiles than lower percentiles, is seen across other key scenarios and highlights
that the high effective radiative forcing risks are much more uncertain than the best case
low effective radiative forcing projections.
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In SSP1-2.6 (Supplementary Figure S16, once again excluding SCM40OPTv2.0 as
an outlier and Cicero-SCM because of its narrow range) median 2081-2100 total effec-
tive radiative forcing ranges from 2.9 W / m? to 3.4 W / m? while the 5" percentile only
ranges from 2.5 W / m? to 2.7 W / m? and the 95" percentile has a much wider range
of 3.2 W / m? to 4.1 W / m2. Under SSP5-8.5 (Supplementary Figure S17, excluding
EMGC and Cicero-SCM as outliers), median 2081-2100 total effective radiative forcing
ranges from 7.9 W / m? to 9.0 W / m? while the 5** percentile only ranges from 7.4 W
/ m? to 7.7 W / m? and the 95" percentile has a much wider range of 9.0 W / m? to
10.8 W / m2.

The general agreement in total effective radiative forcing is reflected in the agree-
ment of each of the key contributors to this total, namely CO5 and aerosol effective ra-
diative forcing (Figure 4 and Supplementary Figures S18 - S22). The key exceptions to
this relate to aerosol effective radiative forcing, particularly in SCM40OPTv2.0 and OS-
CARv3.1. SCM40PTv2.0’s low effective radiative forcing is driven by its strong nega-

tive aerosol effective radiative forcing. This negative aerosol forcing is driven by SCM40OPTv2.0’s

inclusion of a climate feedback on aerosol effective radiative forcing, which makes their
end of century aerosol effective radiative forcing 0.3 - 0.4 W / m? more negative the across
the scenarios. This effect is absent in all other models except OSCARv3.1. However, the
strong aerosol forcing is somewhat cancelled out by other factors in OSCARv3.1, for ex-
ample its relatively large tropospheric ozone forcing (Supplementary Figure S23). As a
result, OSCARv3.1’s total effective radiative forcing is more in line with the other mod-
els.

4.2.3 Carbon Cycle

Moving beyond effective radiative forcing and its temperature response, we con-
sider the behaviour of the carbon cycle in the different RCMs. For these comparisons,
we use the emissions-driven ESM-SSPX-Y.Y set of scenarios, in which emissions of COq
are prescribed and atmospheric CO4 concentrations are allowed to freely evolve (in con-
trast to the SSP experiments in which CO2 concentrations are prescribed). There are
considerable variations between the RCMs which submitted relevant results. However,
these variations mainly occur in the width of the projections (i.e. the upper and lower
percentiles) and the medians are surprisingly consistent across the RCMs which submit-
ted data (Supplementary Figure S24, Supplementary Figure S25 and Figure 5).

In esm-SSP1-1.9 (Supplementary Figure S24, excluding Cicero-SCM because of its
narrow range), the spread in median peak atmospheric CO2 concentrations (430 ppm
to 445 ppm) is smaller than the spread in 2081-2100 median concentrations (385 ppm
to 405 ppm). In contrast, in esm-SSP1-2.6 (Supplementary Figure S25, again excluding
Cicero-SCM), the spread in median peak atmospheric COq concentrations (455 ppm to
480 ppm) is the same width as the spread in 2081-2100 median concentrations (25ppm,
430 ppm to 455 ppm). Under both scenarios, there are wide variances in percentile ranges
across the models, with MAGICCT7 showing largest uncertainty in 2081-2100 atmospheric
CO4 concentrations and FalRv1.6 showing the least.

Next, we consider esm-SSP5-8.5, the only scenario with available CMIP6 Earth Sys-
tem Model results (Figure 5). Median atmospheric COy concentrations range from 920
ppm to 1 000 ppm while 5*" percentile and 95*" percentile concentrations range from 800
ppm to 920 ppm and 1 020 ppm to 1 130 ppm respectively. MAGICC7 once again shows
the largest uncertainties, but is more similar to the other RCMs than in the other sce-
narios. These comparisons highlight differences in the dynamics of the carbon cycle (and
its feedbacks) in the various RCMs: uncertainties scale more quickly with temperature
in MCE, FalR1.6 and OSCARv3.1 than they do in MAGICCY.

Median atmospheric CO4 projections from all of the RCMs lie within the plume
of available CMIP6 results (Figure 5). FaIR1.6 lies at the top end of the CMIP6 plume,
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Effective radiative forcing under the very low-emissions SSP1-1.9 scenario. a) Me-

dian effective radiative forcing projections from 1995 to 2100 for each RCM; b) distribution of

2081-2100 mean effective radiative forcing from each RCM; c¢) very likely (whiskers), likely (box)

and central (white line) 2081-2100 mean effective radiative forcing estimate from each RCM; d)

as in b) except for the year in which effective radiative forcing peaks; e) as in ¢) except for the

year in which effective radiative forcing peaks; f) as in b) except for the peak effective radiative
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Figure 5. Atmospheric CO2 concentration projections in the esm-SSP5-8.5 experiment. a)

Atmospheric CO2 concentration projections from 1995 to 2100. We show the median RCM pro-
jections (coloured lines), prescribed CMIP6 ScenarioMIP input concentrations from the SSP5-8.5
concentration-driven experiment (dashed black line) and available CMIP6 model projections
(thin blue lines, we show the average of all available ensemble members for each CMIP6 model);
b) distribution of 2081-2100 mean atmospheric CO2 concentration projections from each RCM;
c) very likely (whiskers), likely (box) and central (white line) 2081-2100 mean atmospheric CO2
concentration projections estimate from each RCM. Note that FalR1.6 data is taken from the
esm-SSP5-8.5-allGHG simulations because esm-SSP5-8.5 simulations are not available. [TODO
fix panel labels]
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and its 5-95*" range does not include low end CMIP6 results. In contrast, OSCARv3.1

lies at the bottom end of the CMIP6 plume, and its 5-95*" range does not include high

end CMIP6 results. MAGICC7 and MCE span the CMIP6 range, with MCE’s range be-
ing almost exactly in line with the CMIP6 range whilst MAGICCT’s projections are slightly
wider than the CMIP6 range. Cicero-SCM does not include uncertainty in the carbon
cycle, nor temperature feedbacks on the carbon cycle, hence produces only a single best-
estimate projection.

4.2.4 All greenhouse gas emisstons-driven runs

The final set of experiments we present are the experiments which are most rele-
vant to WG3: all greenhouse gas emissions-driven runs. As discussed in Section 1, WG3
describes scenarios in terms of their emissions hence needs models which can run in a
fully-emissions driven setup. The cost of running Earth System Models in such a setup
is computationally prohibitive, hence there is a paucity of data against which to eval-
uate the projections of RCMs in such experiments. Nonetheless, here we present the re-
sults of such experiments in the hope that they will inspire further thinking into how to
validate RCMs in this fully-coupled, all greenhouse gas emissions driven setup.

Ounly three models (Cicero-SCM, MAGICC?7 and FalR1.6) have submitted results
for the all greenhouse gas emissions-driven scenarios. The MAGICC7 and FalR1.6 mod-
els suggest that there is little difference between the concentration-driven and all green-
house gas emissions-driven runs (Figure 6, Supplementary Figure S26 and Supplemen-
tary Figure S27). For both these models, the emissions-driven results have slightly lower
temperature projections (both long-term and peak) and slightly earlier warming peaks,
with slightly wider uncertainties. These differences are consistent with: a) their slightly
lower median CO» concentrations in emissions-driven runs and b) the fact that emissions-
driven runs introduce carbon cycle uncertainties into temperature projections, an un-
certainty which is missing in concentration-driven runs. The Cicero-SCM results sug-
gest a larger discrepancy between all greenhouse gas emissions-driven runs and the concentration-
driven runs. In general, Cicero-SCM’s warming projections are notably lower in emissions-
driven runs, with the same uncertainty (Cicero-SCM does not include carbon cycle un-
certainties or temperature feedbacks), reflecting their lower COg concentration projec-
tions in emissions-driven runs.

4.3 Further Discussion

The results presented previously prompt consideration of a number of further points.
Firstly, the assessment performed here provides a way to easily identify differences be-
tween an RCM’s behaviour and the assessed range of a particular metric. Such differ-
ences are important to quantify, as they often point to a bias in the model’s behaviour
or setup. The quantification makes it possible for the users of these models to consider
the impact of these biases on their own conclusions.

There are, however, cases where the issue lies in the combination of the proxy as-
sessed ranges taken together, rather than in the models. In this study, we used a com-
bination of ECS from the literature (based on multiple lines of evidence), TCR from con-
strained CMIP6 models and TCRE from unconstrained CMIP6 Earth System Models.
This combination has likely resulted in slight inconsistencies between these metrics as
the metrics are sourced from various lines of evidence, yet are strongly interdependent.
This potential inconsistency could in part explain our finding that the RCMs’ TCR ranges
are generally too high, while their TCRE ranges are generally too low. The inconsistency
is further demonstrated by the fact that a) the realised warming fraction implied by our
TCR and ECS distributions, i.e. the ratio between TCR and ECS, is around 0.5, at the
low end of the assessment by Millar et al. (2015) and b) the airborne fraction implied
by our TCR and TCRE assessment is around 0.65, at the high-end of the CMIP5 and
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(solid) and all greenhouse gas emissions driven experiment (dashed) as well as observations up to

2019 (dashed black line); b) distribution of 2081-2100 mean GSAT for each scenario from each

RCM; c) very likely (whiskers), likely (box) and central (white line) 2081-2100 mean GSAT esti-
mate for each scenario from each RCM; d) as in b) except for the year in which GSAT peaks; €)

as in ¢) except for the year in which GSAT peaks; f) as in b) except for the peak GSAT; g) as in
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CMIP6 range quantified by Arora et al. (2020). Identifying such inconsistencies is a use-
ful secondary benefit of exercises such as the one performed here.

Next, while they are a useful way of quickly visualising a model’s agreement with
the (here proxy) assessed ranges, summary tables of the form of Table 3 hide the full story.
Specifically, for timeseries based variables, assessed ranges can only consider the trend
or change between specific timepoints and don’t consider the entire timeseries as a whole.

Not considering the entire timeseries can lead to problematic interpretations of the
agreement between a model and the assessment. A clear example here is historical sur-
face air ocean blended temperature change. In our proxy assessment, we focussed on 2000-
2019 warming relative to the 1961-1990 reference period. On this measure, many of the
RCMs showed poor agreement with the observations. However, the level of agreement
is clearly reference period dependent (Figures 7a) and 7b)). In Figure 7a), which uses
a 1961-1990 reference period, MAGICC7, MCE and OSCARv3.1 show the best agree-
ment with observations (as also seen in Table 3). However, if we use a different refer-
ence period, e.g. 1850-1900 (Figures 7b)), that impression changes with Hector, MAG-
ICC7, and OSCARv3.1 being the closest to observations in the recent period.

Considering the entire timeseries provides a more robust check on model behaviour.
Fitting only to one evaluation and reference period can be achieved by slightly adjust-
ing different model behaviour e.g. aerosol effective radiative forcing. However, if the en-
tire timeseries are considered with multiple reference periods, such tuning quickly be-
comes impossible and the check provides detail into how well a model’s dynamics are con-
sistent with observations.

Moving away from evaluating the models, it is clear that historical performance alone
does not determine a model’s projections. For example, MAGICC7 and MCE have very
similar fits to historical temperatures and historical effective radiative forcing yet have
vastly different ECS and TCR distributions and make notably different projections about
the magnitude, peak and timing of future warming. Investigating the extent to which
the difference in ECS and TCR distributions could be rectified, without degrading the
historical temperature simulations, is an area for future work. More generally, we find
that higher ECS and TCR values lead to higher warming projections. Hector provides
an exception to this trend, with relatively low temperature projections, especially in SSP1-
1.9, despite its relatively high TCR. There is clear uncertainty in RCM projections, and
it does not disappear even if the reduced complexity modelling groups all start with the
same target ranges. In the strong mitigation scenarios (SSP1-1.9 and SSP1-2.6), the range
in median warming across the RCMs is around 0.3°C and is much higher for the upper-
end (95" percentile) of the range, being at least 1.0°C. In the context of international
climate policy, even the relatively small deviations in median temperature projections
presented here are not trivial. For a 1.5°C target, deviations of 0.3°C are roughly 60%
of our remaining warming.

While historical performance alone does not determine a model’s projections, the
constraining process does have an impact on projections. This is most obvious when com-
paring the constrained RCM-based projections with the CMIP6-based projections (Fig-
ure 2, Supplementary Figure S13 and Supplementary Figure S14). Clearly, constrain-
ing the RCMs to match our proxy assessment across a range of metrics causes projec-
tions to be lower than the CMIP6 multi-model ensemble, perhaps because the high ECS
seen in many CMIP6 models (Zelinka et al., 2020) is hard to reconcile with historical ob-
servations without a compensating strong negative aerosol forcing. This study lays the
foundation for examining why this is the case in detail, using the comprehensive set of
experiments (and possibly more) and data handling infrastructure implemented here.

There is another corollary from our finding that future warming diverges, even among
a set of RCMs that share the same historical benchmarks: to extrapolate assessed warm-
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Figure 7. Historical surface air ocean blended temperature change (also referred to as

global-mean surface temperature, GMST) from each RCM. We compare observations from Had-
CRUT4.6.0.0 (Morice et al., 2012) (solid black line) to the distribution from each RCM (coloured

lines). All panels use 1961-1990 as the reference period, the same reference period as is used

in our proxy assessed ranges, except b) which uses 1850-1900. a), b) median GMST from 1950
to 2019; ¢) median GMST from 2000 to 2019 (the proxy assessment period); d) distribution of
2000-2019 mean GMST from each RCM and the proxy assessed range; e) Very likely (whiskers),
likely (box) and central (white line) estimate of 2000-2019 mean GMST from each RCM and the

proxy assessed range. The historical simulation has been extended with SSP2-4.5 for the period

2015-2019.
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ing ranges from one set of scenarios (e.g. the RCP or SSP-based scenarios) to a wider
set of scenarios, it may be beneficial to include a benchmark of assessed future warm-
ing under the benchmark scenarios. Adding such a benchmark (to the historical obser-
vations, present-day assessments and idealised metrics used in this study) would high-
light where future warming significantly diverges from wider understanding. Such quan-
tifications could be key when assessing future projections under large sets of scenarios,
like the WG3 scenario database climate assessment.

Nonetheless, deciding which projections are most sensible will never be an exact
science. It is possible to make judgements about what is more reasonable based on the
evaluation performed here, and to rule out clearly incorrect projections, but a definitive
answer is impossible: we will not know which projections are correct until we get there,
by which time it is too late for climate policy. Hence while it is important to continue
to evaluate and improve our models to remove as many sources of error as possible, it
is also important that research into decision making under uncertainty (e.g. Weaver et
al., 2013; Dittrich et al., 2016) continues to develop and be used because the uncertainty
in projections will not disappear anytime soon, never in fact.

Beyond the implications for policy, there are other scientific outcomes to consider.
The first is the difference between these RCMs and the more comprehensive CMIP6 mod-
els. Here, the most obvious difference is the behaviour in high-warming scenarios. In such
scenarios, MAGICCT is a clear outlier from the rest of the RCMs, yet it appears to be
the most ‘CMIP6-like’, showing sustained warming out to 2300 in SSP5-8.5 (Figure 2).
This ‘more CMIP6-like’ impression is reinforced by the similarity between MAGICC7
and the CMIP6 models’ relatively strong recovery in SSP1-2.6, something which is not
as prominent in the other RCMs except for Cicero-SCM. In SSP1-2.6, MAGICC7 shows

a similar peak median warming to FalR1.6 and FaiRv2.0.0-alpha before exhibiting a stronger

cooling trend than the other RCMs (with the exception of Cicero-SCM, Supplementary
Figure S14). A likely explanation for the MAGICC7 ‘outlier’ behaviour, particularly for
the sustained warming seen in SSP5-8.5, is MAGICC7’s state-dependent climate sensi-
tivity, which arises from its calibration to CMIP6 models (Nicholls et al., 2020) and re-
flects the finding that CMIP models have state-dependent climate sensitivities (Rugenstein
et al., 2020). It appears that the state-dependent climate sensitivity is a feature of MAG-
ICC7 which is either missing or less prominent in the other RCMs.

We have limited our evaluation of the carbon-cycle behaviour to emissions-driven
simulations. While this decision limits us to a relatively small set of CMIP6-comparison
data (given that only few emissions-driven simulations (Jones et al., 2016) have been run
by CMIP6 models), it provides the cleanest comparison between RCMs and CMIP6 mod-
els, given that many RCMs do not separate the land and ocean carbon pools. Using the
concentration-driven simulations would allow us to evaluate the RCMs’ land and ocean
carbon cycles (for those RCMs which include such a distinction) under more varied sce-
narios. We reserve such evaluation for future work.

It is notable that the CMIP6 ScenarioMIP input concentrations are generally higher
than the RCMs’ medians in emissions-driven runs across all considered scenarios (Fig-
ure 5, Supplementary Figure S24 and Supplementary Figure S25). Emissions-driven sce-
nario data from CMIP6 ESMs is almost exclusively related to the esm-SSP5-8.5 exper-
iment. Hence while the trend appears to be that the prescribed SSP5-8.5 CMIP6 con-
centrations are at the high-end of the range compared to the esm-SSP5-8.5 CMIP6 ESM
results, there is little data with which to determine whether the prescribed CO5 concen-
trations in the low-emissions scenarios would be within the projected concentration change
by emission-driven ESM models. In hindsight, the input atmospheric CO5 concentra-
tions used in the concentration-driven runs may turn out to be at the high-end of CMIP6
ESM results across a range of scenarios. Given that only one set of input concentrations
can be used in CMIPG6, it is not surprising that the CO5 concentrations prescribed for
CMIP6 experiments do not sit exactly in the middle of later emissions-driven runs (see
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further discussion in Section 4.3). The opposite was observed in CMIP5: the input COq
concentrations (derived with MAGICCG6) were found to be in the lower-half of the CMIP5
emissions-driven runs that later emerged from the CMIP5 emission driven runs (Friedlingstein
et al., 2014). Choosing a carbon cycle parameterisation more in line with the median of
CMIP5 models appears to have lead to CO2 concentrations which are now in the upper-
half of CMIP6 ESM projections (Figure 5). Whenever a single estimate of the relation-
ship between CO5 emissions and concentrations is used, there is always the risk that it
will not be the central estimate of the next generation of ESMs as our understanding of
the carbon cycle improves and the ensembles of participating ESMs changes in each in-
tercomparison phase. While this does not invalidate the design of concentration-driven
experiments which are developed in this way, it must be kept in mind when relating emis-
sions scenarios and the output of concentration-driven CMIP experiments.

Finally, we find that there is relatively little difference in climate projections be-
tween the concentration-driven experiments typical of CMIP and the emissions-driven
experiments required by WG3. This finding provides confidence that validating RCMs
using concentration-driven experiments covers the most important earth system uncer-
tainties and features of the RCMs climate projections. However, this confidence is tem-
pered by the sparsity of available emissions-driven CMIP6 ESM model output, partic-
ularly for mitigation scenarios. Given that all greenhouse gas emissions driven experi-
ments should also include uncertainties from each non-CO5 greenhouse gas cycle, it is
somewhat surprising that the uncertainties in RCMs all greenhouse gas emissions driven
experiment temperature projections are not wider. We suggest this could be explained
in two ways: a) the uncertainties in non-COs greenhouse gas cycles are relatively small
hence don’t add much to the uncertainty from the carbon cycle and temperature response
to effective radiative forcing and/or b) the RCMs are underestimating the uncertainty
in the relationship between non-COs greenhouse gas emissions and changes in atmospheric
concentrations.

5 Extensions

This exercise is a first step towards more comprehensive, routine evaluation of RCMs’
probabilistic parameter ensembles and their corresponding projections. However, there
is still much room for future work to improve on this study and the first phase of RCMIP.
As a first suggestion, repeating this exercise with the assessed ranges from Working Group
1 of the Intergovernmental Panel on Climate Change’s Sixth Assessment Report (due
in mid 2021) would provide an evaluation of the extent to which RCMs can capture the
latest international assessment of the scientific literature.

This future work could go beyond evaluation and also diagnose the root causes of
differences between the models. Such an exercise could also provide insights into why
the constrained RCMs’ probabilistic distributions systematically lead to lower temper-
ature projections than the CMIP6 multi-model ensemble (as discussed in Section 4.3).

Finally, given how RCMs are typically used by WG3, it appears that a truly thor-
ough evaluation would need to consider a larger set of individual steps in the emissions-
climate change cause-effect chain. While it is not completely clear to us which compo-
nents would need to be considered (and which could be ignored), a first suggestion of
important components is: the carbon cycle, other earth system feedbacks e.g. represen-
tation of permafrost, representation of aerosols, non-CQOy greenhouse gas cycles, trans-
lation between changes in greenhouse gas concentrations and effective radiative forcing,
ozone representation, land-use change albedo representation, temperature response to
effective radiative forcing and all the feedbacks and interactions. To see the full picture,
a broad range of literature would need to be considered as a validation source and a wide
range of experiments, spanning historical, scenario-based and idealised experiments, would
need to be performed. In performing a more thorough evaluation, an updated evalua-
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tion technique may be required. Specifically, using percentage differences from the as-
sessed range will lead to problems when the assessed range is close to or spans zero. Hence,
more sophisticated ways of evaluating the agreement between model results and assessed
ranges may be required. For reasons of scope, we haven’t achieved such a thorough eval-
uation here, but we hope that this work provides a basis upon which future work can

aim for the lofty goal of more complete evaluation of all of the relevant parts of the cli-
mate system.

6 Conclusions

We have found that the best performing RCMs can match our proxy assessment
across a range of climate metrics. However, no RCM matched the proxy assessment across
all metrics. At the same time, all RCMs had at least one strength where they matched
the proxy assessment well.

Our evaluation of probabilistic projections from RCMs provides a comparison where,
for the first time, each reduced complexity modelling team knew the target distributions
before developing and submitting their results. This exercise provides a unique insight
into RCMs probabilistic parameter ensembles, specifically how they compare with the
target distributions and their implications for climate projections across a range of cli-
mate variables and scenarios.

Notably, we found that agreement with the proxy assessment, i.e. past performance,
did not determine future performance (i.e. projections) from the RCMs. Given the var-
ious model structure that the reduced complexity models employ, ranging from linearised
impulse response functions to 50-layer ocean models, it is not surprising that models may
diverge in scenarios that go significantly beyond the domain of the validation data. Adding
constraints on future performance i.e. extending the domain of validation data (for ex-
ample based on an independent assessment of warming in a limited subset of scenarios)
would likely reduce the divergence. Deciding which projections are most likely to be cor-
rect will never be an exact science. While exercises such as the one performed here can
provide helpful information about where the biases may lie, they cannot provide defini-
tive answers about what the future holds. Those who use RCMs for climate projections
should carefully consider how they’re going to use the RCMs and how they’re going to
validate them before making conclusions about the implications of their projections.

In addition, we found that many of the RCMs did not reproduce the high, long-
term warming seen in CMIP6 models under high-emissions scenarios. Given that the ex-
ception was MAGICCY7, it appears that its state-dependent climate sensitivity is a key
feature for replicating CMIP6-style high-warming responses. Beyond the question of tem-
perature projections, we found that the prescribed COs concentrations used in the CMIP6
SSP-based experiments are at the high-end of projections made with historically con-
strained carbon cycles. Finally, we observed that a change in reference period significantly
altered how well some models agreed with observations, reinforcing the need to consider
more than one reference period when evaluating models.

With sufficient validations, RCMs provide a unique synthesis tool to integrate the
latest scientific understanding, including its uncertainties, along the complex cause-effect
chain from emissions to global-mean temperatures. Integrating this understanding in an
internally consistent RCM framework, with all the implicit cross-correlations, is our best
method to inform decision-making and other scientific domains, for example the likeli-
hood of exceeding a given global-mean temperature threshold under a specific emissions
scenario. Further developing these tools opens vast opportunities to go beyond global-
mean variables and temperature changes, and to robustly represent the complex science
beneath.
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