REFERENCES
Adesodun J.K., Adeyemi E.F. & Oyegoke C.O. (2007). Distribution of
nutrient elements within water-stable aggregates of two tropical
agro-ecological soils under different land uses. Soil Till. Res.,92 , 190-197. https://doi:
10.1016/j.still.2006.03.003
Anderson R., Kristofor R.B. & Lisa S.W. (2019). Soil Aggregate
Stability as Affected by Landuse and Soil Properties in the Lower
Mississippi River Valley. Soil Sci. Soc. Am. J. ,83 ,1512-1524.https://doi: 10.2136/sssaj2019.05.0139
Assouline S. (2004). Rainfall-Induced Soil Surface Sealing: A Critical
Review of Observations, Conceptual Models, and Solutions. Vadose
Zone J. 3(2) , 5 70-591. https://doi: 10.2113/3.2.570
Assouline S., & Ben-Hur M. (2006).
Effects
of rainfall intensity and slope gradient on the dynamics of interrill
erosion during soil surface sealing. Catena ,66(3) ,211-220. https://doi: 10.1016/j.catena.2006.02.005
Bronick, C.J., & Lal, R. (2005). Soil structure and management: a
review. Geoderma , 124(1-2) , 3-22. https://doi:
10.1016/j.geoderma.2004.03.005
Chen R.C., Dreossi D., & Mancini L. (2012). PITRE: software for
phase-sensitive X-ray image processing and tomography reconstruction.J. Synchrotron Radiat ., 19(5) , 836-845. https://doi:
10.1107/S0909049512029731
Dal Ferro N., Charrier P., & Morari F. (2013).
Dual-scale
micro-CT assessment of soil structure in a long-term fertilization
experiment. Geoderma, 204 , 84-93. https://doi:
10.1016/j.geoderma.2013.04.012
Field, D.J., Minasny, B., & Gaggin, M. (2006). Modelling aggregate
liberation and dispersion of three soil types exposed to ultrasonic
agitation. Aust. J. Soil Res ., 44 , 497-502. https:// doi:
10.1071/sr05127
Fu, Y., Li, G.L., & Zheng. T.H. (2017). Splash detachment and transport
of loess aggregate fragments by raindrop action. Catena ,150 ,154-160. https://doi: 10.1016/j.catena.2016.11.021
Fu, Y., Li, G.L., Wang, D., Zheng, T.H., & Yang, M.X. (2019).
Raindrop
Energy Impact on the Distribution Characteristics of Splash Aggregates
of Cultivated Dark Loessial Cores. Water , 11 , 1514.
https://doi: 10.3390/w11071514
Fu, Y., Li G.L., Zheng, T.H., Zhao,
Y.S., & Yang, M.X. (2020).
Fragmentation
of soil aggregates induced by secondary raindrop splash erosion.Catena,185 ,104342. https://doi: 10.1016/j.catena.2019.104342
Ghadiri, H., Hussein, J., & Rose, C.W. (2007).
A
study of the interactions between salinity, soil erosion, and pollutant
transport on three Queensland soils. Aust. J. Soil Res .,45(6) ,404-413. https://doi: 10.1071/SR07038
Gao, W., Steffen, Schlüter, Blaser, S.R.G.A., Shen, J., & Vetterlein,
D. (2019). A shape-based method for automatic and rapid segmentation of
roots in soil from X-ray computed tomography images: Rootine.Plant & Soil ., 441(1-2) ,643-655. https://doi:
10.1007/s11104-019-04053-6
Garbout, A., Munkholm, L.J., & Hansen, S.B. (2013).
Temporal
dynamics for soil aggregates determined using X-ray CT scanning.Geoderma , 204 ,15-22. https://doi:
10.1016/j.geoderma.2013.04.004
Gelaw, A.M., Singh, B.R. & Lal, R. (2015). Organic carbon and nitrogen
associated with soil aggregates and particle sizes under different land
uses in Tigray, northern Ethiopia. Land Degrad. Dev ., 26 ,
690-700. https://doi: 10.1002/ldr.2261
Han,
Q.L., ZH, Y.D., & Lui, L. (2019).
A
Simplifed Convolutional Network for Soil Pore Identifcation Based on
Computed Tomography Imagery. Soil Sci. Soc. Am. J .,83 ,1309-1318. https://doi: 10.2136/sssaj2019.04.0119
Huang, R., Lan, M., & Liu, J. (2017).
Soil
aggregate and organic carbon distribution at dry land soil and paddy
soil: the role of different straws returning.Environmen.Sci.Pollut. Res., 24(36) ,27942-27952.
https://doi: 10.1007/s11356-017-0372-9
Hu, X., Li, Z.C., Li, X.Y., & Liu, L.Y. (2016). Quantification of soil
macropores under alpine vegetation using computed tomography in the
Qinghai Lake Watershed, NE Qinghai-Tibet Plateau. Geoderma ,264 , 244-251. https://doi: 10.1016/j.geoderma.2015.11.00
Hu, F., Liu, J., Xu, C., Du, W., Yang, Z.H., Liu, X.M., Liu, G., &
Zhao, S.W. (2018). Soil internal forces contribute more than raindrop
impact force to rainfall splash erosion. Geoderma , 330 ,
91-98. https://doi: 10.1016/j.geoderma.2018.05.031
Jastrow
J.D. (1996). Soil aggregate formatin and the accrual of particulate and
mineral–associated organic matter. Soil Biol. Biochem .,28 , 665-676. https://doi: 10.1016/0038-0717(95)00159-X
Kinnell, P.I.A. (2005). Raindrop impact induced erosion processes and
prediction: A review. Hydrol. Process ., 19, 2815-2844.
https://doi: 10.1002/hyp.5788
Kravchenko, A., Wang, A., Smucker, A., & Rivers, M. (2011). Long-term
differences in tillage and land use affect intra-aggregate pore
heterogeneity. Soil Sci. Soc. Am.J ., 75 , 1658-1666.
https://doi: 10.2136/sssaj2011.0096
Lee, S.S., Gantzer, C.J., Thompson, A.L., Anderson, S.H., & Ketcham,
R.A. (2008). Using high-resolution computed tomography analysis to
characterize soil-surface seals. Soil Sci. Soc. Am. J .,72(5) , 1478-1485. https://doi: 10.2136/sssaj2007.0421
Legout, C., Leguédois, S., Le Bissonnais, Y., & Issa, O.M. (2005).
Splash distance and size distributions for various soils.Geoderma , 124 , 279-292.
https://doi:10.1016/j.geoderma.2004.05.006
Li, G.L., Fu, Y., Li, B.Q., Zheng, T.H., & Wu, F.Q. (2018).
Micro-characteristics of soil aggregate breakdown under raindrop action.Catena , 162 , 354-359. https://doi:
10.1016/j.catena.2017.10.027
Li Z.C., Hu, X., & Li, X.Y. (2019).
Characterization
of Root Architectures and Soil Macropore Networks Under Different
Ecosystems Using X-ray CT Scanning in the Qinghai Lake Watershed, NE
Qinghai - Tibet Plateau. J. Soil Sci.Plant Nutr.,19, 743-757.
https://doi:
10.1007/s42729-019-00074-3
Luo, L., Lin, H., & Li, S. (2010). Quantification of 3-D soil macropore
networks in different soil types and land uses using computed
tomography. Journal of Hydrology (Amsterdam) , 393(1-2),53-64.
https://doi: 10.1016/j.jhydrol.2010.03.031
Mahmoodabadi, M., Ghadiri, H., Bofu, Y., & Rose, C. (2104).
Morphodynamic quantification of flow-driven rill erosion parameters
based on physical principles. J. Hydrol ., 514 , 328-336.
https://doi: 10.1016/j.jhydrol.2014.04.041
Ma, R., Cai, C.F., Li, Z.X., Wang, J.G., & Xiao, T.Q. (2015).
Evaluation of soil aggregate microstructure and stability under wetting
and drying cycles in two Ultisols using synchrotron-based X-ray
micro-computed tomography. Soil & Tillage Research, 149 ,1-11.
https://doi: 10.1016/j.still.2014.12.016
Munkholm, L.J., Heck, R.J., & Deen, B. (2012).
Soil
pore characteristics assessed from X-ray micro-CT derived images and
correlations to soil friability. Geoderma , 181 ,22-29.
https://doi: 10.1016/j.geoderma.2012.02.024
Pagliai, M., Vignozzi, N., & Pellegrini, S. (2004). Soil structure and
the effect of management practices. Soil Tillage Res .,79(2) ,131-143. https://doi: 10.1016/j.still.2004.07.002
Perret, J.S., Prasher, S.O., & Kacimov, A.R. (2003). Mass fractal
dimension of soil macropores using computed tomography: from the
box-counting to the cubecounting algorithm. Eur. J. Soil Sci .,54 , 569-579. https://doi: 10.1046/j.1365-2389.2003.00546.x
Peth, S., Horn, R., Beckmann F, Donath, T., Fischer, J., & Smucker,
A.J.M. (2008).
Three-Dimensional
Quantification of Intra-Aggregate Pore-Space Features using
Synchrotron-Radiation-Based Microtomography. Soil Sci. Soc. Am.
J. , 72(4),897-907. https://doi: 10.2136/sssaj2007.0130
Pirmoradian, N., Sepaskhah, A.R., & Hajabbasi, M.A. (2005). Application
of fractal theory to quantify soil aggregate stability as influenced by
tillage treatments. Biosyst Eng. , 90 ,227–234.
https://doi: 10.1016/j.biosystemseng.2004.11.002
Ramos, M.C., Nacci, S., & Pla, I. (2003). Effect of raindrop impact and
its relationship with aggregate stability to different disaggregation
forces. Catena , 53 , 365-376. https://doi:
10.1016/S0341-8162(03)00086-9
Robinson, D.A., & Phillips, C.P. (2001). Crust development in relation
to vegetation and agricultural practice on erosion susceptible,
dispersive clay soils from central and southern Italy. Soil
Tillage Res ., 60 , 1-9. https://doi:
10.1016/s0167-1987(01)00166-0
Sajjadi, A.S., & Mahmoodabadi, M. (2015). Aggregate breakdown and
surface seal development influenced by rain intensity, slope gradient
and soil particle size. Solid Earth , 6 , 311-321.
https://doi:10.5194/se-6-311-2015
Slattery,
M.C., & Burt, T.P. (1997). Particle size characteristics of suspended
sediment in hillslope runoff and stream flow. Earth Surf. Proc.
Land ., 22 , 705-719. https://doi:
10.1002/(sici)1096-9837(199708)22:8<705::aid-esp739>3.0.co;2-6
Six, J., Paustian, K., Elliott, E.T., & Combrink, C. (2000). Soil
structure and organic matter: 1. Distribution of aggregate-size classes
ad aggregate-associated carbon. Soil Sci. Soc. Am. J .,64 ,681-689. https://doi:10.2136/sssaj2000.642681x
Shi, Z.H., Yan, F.L., Li, L., Li, Z.X., & Cai, C.F. (2010). Interrill
erosion from disturbed and undisturbed samples in relation to topsoil
aggregate stability in red soils from subtropical China. Catena,
81 ,240-248. https://doi: 10.1016/j.catena.2010.04.007
Taina, I.A., Heck, R.J., & Elliot, T.R. (2008). Application of X-ray
computed tomography to soil science: A literature review. Canadian
Journal of Soil Science . 88(1) ,1-19. https://doi:
10.4141/CJSS06027
Wang, X., Cammeraat, Erik L.H., Cerli, C., & Kalbitz, K. (2014).
Soil
aggregation and the stabilization of organic carbon as affected by
erosion and deposition. Soil Biol Biochem ., 72,55-65.
https://doi: 10.1016/j.soilbio.2014.01.018
Wang, A., Yan, X., & Wei, Z. (2018).
ImagePy:
an open-source, Python-based and platform-independent software package
for bioimage analysis. Bioinformatics,34, 3238-3240. https://doi:
10.1093/bioinformatics/bty313
Wick, A.F., Daniels, W. L., Nash, W.L., & Burger, J.A. (2016).
Aggregate
recovery in reclaimed coal mine soils of SW Virginia. Land Degrad.
Dev. , 27 ,965-972. https://doi:10.1002/ldr.2309
Xiao, H., Liu, G., Abd-Elbasit, M.A.M., & Zhang, X.C. (2017). Effects
of slaking and mechanical breakdown on disaggregation and splash
erosion. Eur. J. Soil Sci .. 68 , 797-805. https://doi:
10.1111/ejss.12482
Zhao, D., Xu, M.X., & Liu, G.B. (2017). Effect of vegetation type on
microstructure of soil aggregates on the Loess Plateau, China.Agr. Ecosyst. Environ ., 242 ,1-8. https://doi:
10.1016/j.agee.2017.03.014
Zhou, H., Peng, X., Peth, S., & Xiao, T.Q. (2012).
Effects
of vegetation restoration on soil aggregate microstructure quantified
with synchrotron-based micro-computed tomography. Soil Till.
Res .,124 ,17-23. https://doi: 10.1016/j.still.2012.04.006