References
Agresti JJ, Antipov E, Abate AR, Ahn K, Rowat AC, Baret JC, Marquez M, Klibanov AM, Griffiths AD, Weitz DA. 2010. Ultrahigh-throughput screening in drop-based microfluidics for directed evolution. Proc Natl Acad Sci U S A 107(9), 4004-4009.
Allazetta S, Kolb L, Zerbib S, Bardy Ja, Lutolf MP. 2015. Cell‐instructive microgels with tailor‐made physicochemical properties. Small 11(42), 5647-5656.
Almario MP, Reyes LH, Kao KC. 2013. Evolutionary engineering ofSaccharomyces cerevisiae for enhanced tolerance to hydrolysates of lignocellulosic biomass. Biotechnol Bioeng 110(10), 2616-2623.
Álvarez-Chávez CR, Edwards S, Moure-Eraso R, Geiser K. 2012. Sustainability of bio-based plastics: general comparative analysis and recommendations for improvement. J Clean Prod 23(1), 47-56.
Arino J, Ramos J, Sychrová H. 2010. Alkali metal cation transport and homeostasis in yeasts. Microbiol Mol Biol Rev 74(1), 95-120.
Borodina I, Kildegaard KR, Jensen NB, Blicher TH, Maury J, Sherstyk S, Schneider K, Lamosa P, Herrgård MJ, Rosenstand I. 2015. Establishing a synthetic pathway for high-level production of 3-hydroxypropionic acid in Saccharomyces cerevisiae via β-alanine. Metab Eng 27, 57-64.
Bowman EK, Alper HS. 2019. Microdroplet-Assisted Screening of Biomolecule Production for Metabolic Engineering Applications. Trends Biotechnol 38(7), 701-714.
Brouzes E, Medkova M, Savenelli N, Marran D, Twardowski M, Hutchison JB, Rothberg JM, Link DR, Perrimon N, Samuels ML. 2009. Droplet microfluidic technology for single-cell high-throughput screening. Proc Natl Acad Sci U S A 106(34), 14195-14200.
Chen Y, Daviet L, Schalk M, Siewers V, Nielsen J. 2013. Establishing a platform cell factory through engineering of yeast acetyl-CoA metabolism. Metab Eng 15, 48-54.
Curran KA, Leavitt JM, Karim AS, Alper HS. 2013. Metabolic engineering of muconic acid production in Saccharomyces cerevisiae. Metab Eng 15, 55-66.
de Jong BW, Shi S, Siewers V, Nielsen J. 2014. Improved production of fatty acid ethyl esters in Saccharomyces cerevisiae through up-regulation of the ethanol degradation pathway and expression of the heterologous phosphoketolase pathway. Microb Cell Fact 13(1), 39.
Eglinton JM, Heinrich AJ, Pollnitz AP, Langridge P, Henschke PA, de Barros Lopes M. 2002. Decreasing acetic acid accumulation by a glycerol overproducing strain of Saccharomyces cerevisiae by deleting the ALD6 aldehyde dehydrogenase gene. Yeast 19(4), 295-301.
Fischlechner M, Schaerli Y, Mohamed MF, Patil S, Abell C, Hollfelder F. 2014. Evolution of enzyme catalysts caged in biomimetic gel-shell beads. Nat Chem 6(9), 791.
Gonzalez-Garcia RA, McCubbin T, Navone L, Stowers C, Nielsen LK, Marcellin E. 2017. Microbial propionic acid production. Fermentation 3(2), 21.
Gonzalez-Ramos D, de Vries ARG, Grijseels SS, van Berkum MC, Swinnen S, van den Broek M, Nevoigt E, Daran JMG, Pronk JT, van Maris AJ. 2016. A new laboratory evolution approach to select for constitutive acetic acid tolerance in Saccharomyces cerevisiae and identification of causal mutations. Biotechnol Biofuels 9(1), 173.
Headen DM, García JR, García AJ. 2018. Parallel droplet microfluidics for high throughput cell encapsulation and synthetic microgel generation. Microsyst Nanoeng 4, 17076.
Hindson BJ, Ness KD, Masquelier DA, Belgrader P, Heredia NJ, Makarewicz AJ, Bright IJ, Lucero MY, Hiddessen AL, Legler TC, Kitano TK, Hodel MR, Petersen JF, Wyatt PW, Steenblock ER, Shah PH, Bousse LJ, Troup CB, Mellen JC, Wittmann DK, Erndt NG, Cauley TH, Koehler RT, So AP, Dube S, Rose KA, Montesclaros L., Wang S, Stumbo DP, Hodges SP, Romine S, Milanovich FP, White HE, Regan JF, Karlin-Neumann G.A, Hindson C.M, Saxonov S, Colston BW. 2011. High-throughput droplet digital PCR system for absolute quantitation of DNA copy number. Anal Chem 83(22), 8604-8610.
Hong KK, Nielsen J. 2012. Metabolic engineering of Saccharomyces cerevisiae : a key cell factory platform for future biorefineries. Cell Mol Life Sci 69(16), 2671-2690.
Hosokawa M, Nishikawa Y, Kogawa M, Takeyama H. 2017. Massively parallel whole genome amplification for single-cell sequencing using droplet microfluidics. Sci Rep 7(1), 1-11.
Ishida N, Saitoh S, Tokuhiro K, Nagamori E, Matsuyama T, Kitamoto K, Takahashi H. 2005. Efficient production of L-lactic acid by metabolically engineered Saccharomyces cerevisiae with a genome-integrated L-lactate dehydrogenase gene. Appl Environ Microbiol 71(4), 1964-1970.
Joensson HN, Uhlén M, Svahn HA. 2011. Droplet size based separation by deterministic lateral displacement—separating droplets by cell-induced shrinking. Lab Chip 11(7), 1305-1310.
Kahm M, Navarrete C, Llopis-Torregrosa V, Herrera R, Barreto L, Yenush L, Ariño J, Ramos J, Kschischo M. 2012. Potassium starvation in yeast: mechanisms of homeostasis revealed by mathematical modeling. PLoS Comput Biol 8(6).
Kiatpapan P, Murooka Y. 2002. Genetic manipulation system in propionibacteria. J Biosci Bioeng 93(1), 1-8.
Kildegaard KR, Hallström BM, Blicher TH, Sonnenschein N, Jensen NB, Sherstyk S, Harrison SJ, Maury J, Herrgård MJ, Juncker AS. 2014. Evolution reveals a glutathione-dependent mechanism of 3-hydroxypropionic acid tolerance. Metab Eng 26, 57-66.
Klein AM, Mazutis L, Akartuna I, Tallapragada N, Veres A, Li V, Peshkin L, Weitz DA, Kirschner MW. 2015. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell 161(5), 1187-1201.
Li M, van Zee M, Goda K, Di Carlo D. 2018. Size-based sorting of hydrogel droplets using inertial microfluidics. Lab Chip 18(17), 2575-2582.
Li M, van Zee M, Riche CT, Tofig B, Gallaher SD, Merchant SS, Damoiseaux R, Goda K, Di Carlo D. 2018. A gelatin microdroplet platform for high‐throughput sorting of hyperproducing single‐cell‐derived microalgal clones. Small 14(44), 1803315.
Liu H, Li M, Wang Y, Piper J, Jiang L. 2020. Improving single-cell encapsulation efficiency and reliability through neutral buoyancy of suspension. Micromachines 11(1), 94.
Ma T, Gao X, Dong H, He H, Cao X. 2017. High-throughput generation of hyaluronic acid microgels via microfluidics-assisted enzymatic crosslinking and/or Diels–Alder click chemistry for cell encapsulation and delivery. Appl Mater Today 9, 49-59.
Nitta N, Sugimura T, Isozaki A, Mikami H, Hiraki K, Sakuma S, Iino T, Arai F, Endo T, Fujiwaki Y, Fukuzawa H, Hase M, Hayakawa T, Hiramatsu K, Hoshino Y, Inaba M, Ito T, Karawa H, Kasai Y, Koizumi K, Lee S, Lei C, L M, Maeno T, Matsusaka S, Murakami D, Nakagawa A, Oguchi Y, Oikawa M, Ota T, Shiba K, Shintaku H, Shirasaki Y, Suga K, Suzuki Y, Suzuki N, Tanaka ZY, Tezuka H, Toyokawa C, Yalikun Y, Yamada M, Yamagishi M, Yamano T, Yasumoto A, Yatomi Y, Yazawa M, Di Carlo D, Hosokawa Y, Uemura S, Ozeki Y, Goda K. 2018. Intelligent image-activated cell sorting. Cell 175(1), 266-276. e213.
Ostafe R, Prodanovic R, Lloyd Ung W, Weitz DA, Fischer R. 2014. A high-throughput cellulase screening system based on droplet microfluidics. Biomicrofluidics 8(4), 041102.
Otero JM, Cimini D, Patil KR, Poulsen SG, Olsson L, Nielsen J. 2013. Industrial systems biology of Saccharomyces cerevisiae enables novel succinic acid cell factory. PLoS ONE 8(1).
Pan J, Stephenson AL, Kazamia E, Huck WT, Dennis JS, Smith AG, Abell C. 2011. Quantitative tracking of the growth of individual algal cells in microdroplet compartments. Integr Biol 3(10), 1043-1051.
Sauer M, Porro D, Mattanovich D, Branduardi P. 2008. Microbial production of organic acids: expanding the markets. Trends Biotechnol 26(2), 100-108.
Siedler S, Khatri NK, Zsohar A, Kjærbølling I, Vogt M, Hammar P, Nielsen CF, Marienhagen J, Sommer MO, Joensson HN. 2017. Development of a bacterial biosensor for rapid screening of yeast p-coumaric acid production. ACS Synth Biol 6(10), 1860-1869.
Steen EJ, Kang Y, Bokinsky G, Hu Z, Schirmer A, McClure A, Del Cardayre SB, Keasling JD. 2010. Microbial production of fatty-acid-derived fuels and chemicals from plant biomass. Nature 463(7280), 559-562.
Williams T, Averesch N, Winter G, Plan M, Vickers C, Nielsen L, Krömer J. 2015. Quorum-sensing linked RNA interference for dynamic metabolic pathway control in Saccharomyces cerevisiae . Metab Eng 29, 124-134.
Xia Y, Whitesides GM. 1998. Soft lithography. Annu Rev Mater Sci 28(1), 153-184.
Xu X, Williams TC, Divne C, Pretorius IS, Paulsen IT. 2019. Evolutionary engineering in Saccharomyces cerevisiae reveals aTRK1 -dependent potassium influx mechanism for propionic acid tolerance. Biotechnol Biofuels 12(1), 97.
Yenush L, Mulet JM, Ariño J, Serrano R. 2002. The Ppz protein phosphatases are key regulators of K+ and pH homeostasis: implications for salt tolerance, cell wall integrity and cell cycle progression. The EMBO J 21(5), 920-929.
Yu Z, Boehm CR, Hibberd JM, Abell C, Haseloff J, Burgess SJ, Reyna-Llorens I. 2018. Droplet-based microfluidic analysis and screening of single plant cells. PLoS ONE 13(5), e0196810.
Zhu Z, Zhang W, Leng X, Zhang M, Guan Z, Lu J, Yang CJ. 2012. Highly sensitive and quantitative detection of rare pathogens through agarose droplet microfluidic emulsion PCR at the single-cell level. Lab Chip 12(20), 3907-3913.
Zhuge X, Liu L, Shin Hd, Chen RR, Li J, Du G, Chen J. 2013. Development of a Propionibacterium-Escherichia coli shuttle vector for metabolic engineering of Propionibacterium jensenii, an efficient producer of propionic acid. Appl Environ Microbiol 79(15), 4595-4602.
Zinchenko A, Devenish SR, Kintses B, Colin PY, Fischlechner M, Hollfelder F. 2014. One in a million: flow cytometric sorting of single cell-lysate assays in monodisperse picolitre double emulsion droplets for directed evolution. Anal Chem 86(5), 2526-2533.
Fig. 1. Schematic illustration of conventional laboratory approach (A) and droplet-based microfluidics (B) for tracking the growth of yeast at population level and the single-cell level, respectively. (C) Bright-field microscope images of CEN.PK 113-7D growth without organic acid stress in ~144 pL microdroplets. Scale bar = 50 µm.
Fig. 2. The effect of organic acid stress on the growth of single wild-type S. cerevisiae (CEN.PK 113-7D) cells in microdroplets over 24 hours. (A) Plots of the logarithms of the number of cells per droplets at every hour over the culture of 10 hrs. The μ was calculated as 0.23 ± 0.03 h-1, and the coefficient of determination (R2) is 0.97 for the linear fit. (B) Plots of the number of cells per droplet at eight selected time points: 0 hr, 2 hrs, 4 hrs, 6 hrs, 8 hrs, 10 hrs, 18 hrs and 24 hrs. 60 cell-laden droplets were measured for each time point. The top and bottom edges of the box refer to the 25th and 75th percentiles, the cross line represents the median value, the black square represents the mean value, the whiskers extend to 1.5 times the interquartile range (IQR) and the asterisks represent upper and lower limits. The R2 is 0.98 for the fitted growth curve. Scale bar = 50 µm. (C, D) Comparison of the growth of single CEN.PK 113-7D cells at different concentrations of (C) PA: 0 mM, 7.5 mM and 35 mM, and (D) AA: 0 g/L, 50 mM and 67 mM. 60 cell-laden droplets were measured for each time point and for each condition.
Fig. 3. The effects of PA and K+ concentration on the growth of single CEN.PK2-1C cells in microdroplets over 24 hours. (A) Bright-field and fluorescence microscope images of CEN.PK2-1C growth without environmental stress in microdroplets at 6 hrs, 10 hrs and 24 hrs. Scale bar = 50 µm. (B) Enlarged bright-field and fluorescence images showing the growth of CEN.PK2-1C in microdroplets over time. Scale bar = 50 µm. (C) Plots of the number of cells per droplet at five selected time points: 2 hrs, 6 hrs, 10 hrs, 18 hrs and 24 hrs. 60 cell-laden droplets for each time point were measured. The top and bottom edges of the box refer to the 25th and 75th percentiles, the cross line represents the median value, the black square represents the mean value and the whiskers extend to 1.5 times the interquartile range (IQR). (D) Comparison of the growth of single CEN.PK2-1C cells with 25 mA PA and without PA, when the concentration of K+ is fixed at 10 mM. (E) Comparison of the growth of single CEN.PK2-1C cells under different concentrations of K+, 1, 10 and 50 mM, when the concentration of PA is fixed at 25 mM.
Fig. 4. The growth of wild-type (CEN.PK 113-7D) and PA evolved mutantS. cerevisiae strain (PA-3) in microdroplets over 24 hours when 15 mM PA is applied. 60 cell-laden microdroplets were measured for each time point. The inset represents the causal mutation for the acquired PA tolerance identified in PA-3.
Fig. 5. The growth of GFP-tagged P. pastoris strain (CBS7435-GFP) at the single-cell level in microdroplets over 24 hours. (A) Bright-field and fluorescence images showing the growth of single CBS7435-GFP cells in microdroplets over time. Scale bar = 50 µm. (B) Plots of total fluorescence intensity per droplet. 20 cell-laden droplets were measured for each time point. The top and bottom edges of the box refer to the 25th and 75th percentiles, the cross line represents the median value, the black square represents the mean value, the whiskers extend to 1.5 times the interquartile range (IQR) and the asterisks represent upper and lower limits. The insets are bright-field and fluorescence images of P. pastoris after 24 hours of culture in microdroplets. Scale bar = 50 µm.
Fig 6. The viability of S. cerevisiae and P. pastorisgrown in the microdroplets experiences no noticeable reduction over 48 hours. (A) Fluorescence images showing the viability of S. cerevisiae (left) and P. pastoris (right) recovered from microdroplets after 48 hours of culture. Scale bars are 50 μm for images obtained by a 20× objective and the insets obtained by a 40× objective. (B) Bar plots showing cell viability at three time points: 0 hrs (before encapsulation), 24 hrs and 48 hrs (after encapsulation). Three repetitions, each of 100 cells, were measured for each time point.