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Abstract 

Basin scale simulation is fundamental to understand the hydrological cycle, specify 

essential information for water management, accordingly, the applicability of the Soil 

and Water Assessment Tool (SWAT) model is evaluated to simulate runoff in the semi-

arid Tambo River basin (Peru), due to economic activities are driven by available water. 

The objective of the study, SWAT model was configured using the basin properties, 

such as soil type, digital reduction model, land use, meteorological information 

(precipitation and temperature from Meteorological Stations). The SWAT model was 

calibrated using the SUFI-2 algorithm for the periods from 1994 to 2001, with 3 years 

of warming and validated from 2002 to 2016 using daily river discharges. The results 

during the daily and monthly calibration period had Nash-Sutcliffe Simulation 

Efficiency (NSE) of 0.69 and 0.86, Determination Coefficient (R2) of 0.70 and 0.87, 

Percent bias (PBIAS) of -14.4 and Ratio of standard deviation of the observation of the 

root mean square error (RSR) of the root of 0.55 and 0.37, respectively. For the daily 

and monthly validation period, they had (NSE) of 0.52 and 0.70, (R2) of 0.67 and 0.87, 

(PBIAS) of -6.1 and (RSR) of 0.69 and 0.55, respectively. These results show that  

SWAT model has the ability to predict current flows within the Tambo River basin, in 

southern Peru. Also, it may serve as guideline for hydrology modellers, being a useful 

tool to detail change of land use and impact climate in a semi-arid basin. 

Keywords: SWAT model, Calibration, Runoff, SUFI-2, NSE, Tambo River Valley, 

Semi-arid, Peru.  



 

 

1. Introduction 

Accurate analysis of water flow pathways from rain to streams is critical to optimal protection of 

water resources (Kannan et al., 2007). For this, it is essential to understand the physical 

phenomena that occur within a basin because they represent the relationships that can be found 

within the system (Dong et al., 2018). Therefore, the use of hydrological models become an 

economic and effective tool for the development of almost all water resource management plans. 

(Suryavanshi et al., 2017).  

The great applicability of SWAT model and its versatility, made in different hydrological studies 

such as climate change impacts, sediment transport, simulation of flows and effects of extreme 

urbanization (Gassman et al., 2014), the main reason for its implementation and study, finding 

studies  (Aouissi et al, 2016; Duru et al., 2018; Jajarmizadeh et al, 2017; Jodar-Abellan et al., 

2018; Mengistu et al, 2019; Niraula et al., 2012; Sellami et al., 2014; Shao et al., 2019) related to 

similar conditions in basin. SWAT is a continuous, spatially semi-distributed, process-based 

model capable of simulating water balance (Arnold et al., 1998), developed and supported by the 

USDA Agricultural Research Service (Arnold et al., 2012; Neitsch et al., 2011).  

Hydrological models are generally calibrated against observation variables, to estimate some 

parameters that cannot be measured directly and to achieve a reliable prediction of the basin 

response (Sivapalan et al., 2003). The calibration of the model will only be considered successful 

if the observation period is representative of the hydrological behaviour of basin (Wagener et al., 

2003). In calibration process, the parameters were optimized by SUFI-2, it is carried out with 

SWAT Calibration and Uncertainty Programs (SWAT-CUP) was developed for automatically 

computing sensitive model parameters (Fakult & Kiel, 2015). Most SWAT-CUP applications are 

using Sequential Uncertainty Fitting (SUFI-2) algorithms and flow observations to analyze 

sensitivity, calibration process and  uncertainty of model (Wu & Chen, 2015). In SUFI-2 

algorithm all uncertainties (parameter, input data, etc.) are mapped onto the parameter ranges as 

the procedure tries to capture most of the measured data within the 95% prediction uncertaint (K. 

C. Abbaspour et al., 2004) . 

The Tambo River basin, due to its topography, climatic and hydrological factors in the region, 

produce spatio-temporal variability in the distribution of water resources (Tapley & Waylen, 

1990). The thermo-pluviometric interaction with other elements of the climate, has been able to 

establish that in the lower part of the Tambo River basin there is a water deficit, while in the 



 

 

headwater there is an excess (Alegria, 2007; ANA., 2015), especially in the dry months, due to 

the diversion of water from a Tambo River basin part to the hydraulic system Pasto grande 

(ANA., 2005). In the headwater Tambo basin, the annual volume of water available at 75% 

persistence is sufficient to meet current demand, however, the monthly balance shows that there 

is an average deficit of 23.65 MMC in the dry season, however there are 10 other sub-basins in 

the middle and upper part of the Tambo basin, with average annual deficits of less than 1.5 

MMC (ANA., 2013). Also droughts, like the one in 1983 that caused estimated losses of USD 

200 million in southern Peru (Lavado-Casimiro et al., 2013) and had a critical impact on the 

success and survival of the region, causing agricultural production in southern Peru to be reduced 

by up to 75% in 2016 (ANA., 1966; Mortensen et al., 2018). 

Finally, the floods in the coastal valleys are recurring problems year after year, generating 

material and economic damage (ANA., 1966; Mortensen et al., 2018) The complete dependence 

on water resources is 98.7% of total use, among agricultural, population, industrial and livestock 

uses, for these reasons the implementation of a hydrological model that is capable of forecasting 

the amount of available water with a reasonable level of precision. Due to the scarce information 

and situation of the basin, it is necessary to carry out the hydrological simulation study in the 

Tambo River basin capable of forecasting surface runoff with a reasonable level of precision. 

The main objective of this study is to implement the SWAT model for the hydrological 

simulation of current flow in the Tambo River basin through the identifiability and sensitivity 

analysis of fifteen parameters that influence current generation and regime. of basin flow, model 

calibration defines optimal qualitative performance ratings of the SWAT model using the SUFI-2 

algorithm. The results of this study will help to understand the hydrological processes and will 

provide supporting information regarding the adaptation, planning and management of the water 

resources of the Tambo River basin. 

2. Materials and Methods 

2.1 Study Area  

The Tambo River basin is located a South latitude between 16º 00 ’and 17º 15’ and west 

longitude 70º 30 ’and 72º 00’ in the South of Peru at 3,900 meters above sea level and includes 

the provinces of Mariscal Nieto y Sánchez Cerro, Islay and San Román;  located in the 

departments of Moquegua, Arequipa and Puno respectively. 



 

 

The basin has an extension of 13,361 km2, and a maximum length of route, from its source to its 

mouth, of 289 km, its main tributaries are the rivers: Carurnas, Coralaque, Ichuna and Paltature. 

The surface water resources of the Tambo River basin are generated in the upper basin, with a 

total annual volume of 1,077 MMC and an average annual discharge of 31,457 m3 / s. The 

population of Mollendo is the one with the highest flow with 98.5 l / s, followed by Mejía with 

20.6 l / s, Cocachacra with 12.5 l / s, Arenal and La Curva with 8.5 l / s and 6.5 l / s respectively 

(ANA., 2003), The population of the Rio Tambo basin is concentrated in urban and rural areas, 

such as the Mollendo and Ubinas district. The productive activities of its population are 

agricultural, farming and livestock.  (Suelos & Ica, 2000).  

The basin is characterized by presenting variable thermal conditions, 3 types of climate have 

been distinguished based on the Köppen criteria: Very dry semi-warm climate (desert or 

subtropical arid) with average annual rainfall of 150 mm and average annual temperatures of 18º 

to 19º C, temperate sub-humid climate (Steppe and low inter-Andean valleys) with temperatures 

exceeding 20º C and annual precipitation is below 200 mm and cold or boreal climate (Meso-

Andean Valleys) is characterized by its average annual precipitation of 300 mm and for its 

annual temperatures of 12º C (ANA., 2003). In the basin the lands without vegetation 

predominate, you can also find small snow-capped mountains in the upper part, in the south there 

is the Pasto Grande that contributes 7.4 hm3 annually in the dry seasons from September to 

December (ANA., 2015). 

2.2 The Model—Soil and Water Assessment Tool (SWAT) 

The free software Soil and Water Assessment Tool (SWAT) is a rainfall-runoff model, of semi-

distributed parameters, capable of simulating various physical processes on a continuous time 

scale (annual, monthly, daily, and daily). The main objective is to predict the impact of 

management on water, sediments in hydrographic basins, as well as the impact of agricultural 

management practices on water quality (nutrients and pesticides). It has reasonable precision in 

large basins, with a variety of relief, types and uses of the soil. Its high spatial resolution allows 

it to be implemented at both continental and hydrological basin scales (Arnold et al., 2012, 

1998). The hydrological component of SWAT allows calculating the elements of the water 

balance and, consequently, the water resources (blue, green water, etc.) even at the sub-

basin level. The terrestrial phase of the hydrological cycle is simulated based on the 



 

 

following equation of the water balance (Eq. 1). 

𝑆𝑊𝑡 = 𝑆𝑊0 + ∑(𝑅𝑑𝑎𝑦 − 𝑄𝑠𝑢𝑟𝑓 − 𝐸𝑎 − 𝑤𝑠𝑒𝑒𝑝 − 𝑄𝑔𝑤)

𝑡

𝑡=1

         (1) 

 

Where SWt and SW0  are the final and initial soil moisture content, Rday is the precipitation, 

Qsurf  is the is surface runoff, Ea is the evapotranspiration, wseep is the water seepage from the 

vadose zone into the soil profile, y Qgw  is the groundwater volume. The variables are 

expressed in mm of H2O to day, i, and time, t, in days. (Neitsch et al., 2011). 

2.3 Data Used   

Ministry of the Environment of Peru (MINAM) (http://geoservidorperu.minam.gob.pe/) (Figure 

1a) was used for topography information; The map of greater land use capacity is available at the 

geoserver of the Ministry of the Environment of Peru (MINAM) 

(http://geoservidor.minam.gob.pe/)(Figure 2); The soil map was extracted from the Food and 

Agriculture Organization of the United Nations (FAO) (http://www.fao.org/) (Figure 3). As input 

data for the SWAT meteorological generator, such as daily temperature, daily precipitation for 

periods from 1994 to 2016, they were obtained from the National Service of Meteorology and 

Hydrology of Peru (SENAMHI) (https://www.senamhi.gob.pe /), while the wind speed, Solar 

radiation and relative humidity were simulated by the SWAT Model, the flow data with periods 

from 1994 to 2016 required for the calibration are provided by Autoridad Nacional del Agua 

(ANA) (https://www.ana.gob.pe/) (Figure 1b). A resume Information is in Table 1. 

2.4 SWAT Set-Up 

The SWAT model was set up with the help of ArcGIS interface version of SWAT (ArcSWAT 

2012). The first step was watershed delineation. The basin and sub-basin were delineated using 

automatic watershed delineation tool. On the basis of topography, flow direction and flow 

accumulation, stream networks were generated. The whole basin was divided into 36 sub-basins 

(Figure 1. c), containing a point source each of them. The delineation was finished by selecting 

the outlet of the whole watershed and defined a points inlet in the south-east of the basin. Next 

step was HRU creation. HRUs is the portion of a sub-basin that contains single soil attributes. 

Depending upon a user defined percentage value of soil type, land use and slope, HRUs of each 

https://www.ana.gob.pe/


 

 

sub-basin were generated. For this simulation, 598 HRU were generated, threshold values of 2%, 

2%, and 5% were used for land use, soil type, and slope value respectively, to maintain an 

accurate spatial variability as much as possible compared to most articles related to SWAT, 

where thresholds take values greater than 5%. Moreover, this study used five slope classes, 

which are the maximum number in SWAT. The watershed’s slope classes were defined as 0–5%, 

5–10%, 10–15%, 15–25% y > 25% (Figure 4), According to a study conducted by (Niraula et al., 

2012) in a semiarid basin. It was considered an inlet point for water from 2001, by a spillway 

from the Pasto Grande reservoir, which discharge (water) from September to December. The 

Pasto Grande reservoir is within the basin in the south-east of Peru. The model was built for the 

period 1994 - 2016.Next step was about writing input tables. In this part, all meteorological data 

(precipitation, relative humidity, temperature, wind speed and solar radiation) were linked to the 

existing model. After completing the abovementioned steps, the model was ready to run with the 

default parameter setting. 

2.5 SUFI-2  algorithm description of SWAT-CUP 

The algorithm SUFI-2 calibration is performed with a series of iterations including 

numerous simulations. Each iteration is fed with the results of the previous one. This 

achieves approximate (optimize) the simulated variable. The results of the iterations are a 

set of values (ranges) assigned to the parameters that represent the hydrological processes, 

the physical characteristics and the dynamics of each hydrographic basin. Each new iteration 

presents intervals (ranges) of the parameters recursively closest to their real value. This aims 

to limit the uncertainty existing in the initial ranges of the parameters, since measurements 

of these are often not available. (Karim C. Abbaspour et al., 2017; Karim C. Abbaspour et al., 

2007) . Thus, based on flow measurements, introduced in SUFI-2, it provides iteration after 

iteration greater accuracy in the ranges of the parameters of each study area. This procedure 

is called Reverse Hydrological Modeling (K. C. Abbaspour et al., 2004; Karim C. Abbaspour 

et al., 2007; Beven & Binley, 1992). an objective function must define to calculate the 

sensitivities of the response parameters, with the method specified by the user (Yang, 

Reichert et al., 2008). Different methods defining an objective function may lead to different 

results (Legates & McCabe, 1999). Several objective functions have been used to estimate 

model performance, including (R2) and Nash-Sutcliffe (NSE) efficiency to reduce the 



 

 

problem of non-uniqueness in model characterization (Duan et al., 2006). 

2.6 Sensitivity Analysis 

The sensitivity analysis is performed by the average changes in the objective functions, they 

are estimated based on the consequent changes of each parameter, called here the relative 

sensitivities. It provides partial information on the sensitivity of the objective function and 

It´s based on the linear approximation of the model parameters. Furthermore, to estimate the 

level of significance between the data sets, a t-test is applied to identify the relative 

significance of each parameter. The t-test and p-values were used to provide a measure and 

significance of sensitivity, respectively. Larger absolute values of t are more sensitive than 

lower ones, while a p value closer to zero are of more importance (Narsimlu et al., 2015), all 

these procedures are developed in SWAT-CUP. 

2.7 Calibration and Validation 

The calibration process consists of adjusting the values of the model parameters so that the 

simulated values approach those observed, which best represents the simulated process. It is 

important to emphasize the hydrological model does not know the initial simulation conditions, 

the conditions that can have great difficulties in the simulated process, therefore, it needs heating 

(Li et al., 2015).  

The degree of measurement of the calibrated model explains the uncertainties, it was evaluated 

by factor P and factor R, with factor P being the percentage of observations in square brackets 

for the 95% prediction uncertainty (95PPU). The R factor, which is the average thickness of the 

95PPU band divided by the standard deviation of the data. The suggested values are> 0.7 and 

<1.5 respectively (K. C. Abbaspour et al., 2004, 2007, 2015). 

Validation is based on the use of the model with parameters calibrated in a mass of independent 

data for the application of the model to the event can be evaluated through various tests 

(Daggupati et al., 2015; Pereira et al., 2014). After the validation phases, if the model achieves 

satisfactory performance, it is possible to perform model simulations according to different 

movements (Marek et al., 2016). 



 

 

SWAT calibration and validation was processed with the SUFI-2 algorithm (Sequential 

Uncertainty Fitting version-2) included in the SWAT-CUP (K. C. Abbaspour et al., 2015). A 

divided sample procedure will be used that uses runoff data from the Puente Santa Rosa bridge 

station for the period 1994-2001 and 2002-2016. The objective function was NSE since it is 

suggested in several studies related to SWAT for example (Asadzadeh et al., 2016; Brighenti et 

al., 2019) or as the study by (Kouchi et al., 2017).  indicates that It has the most common 

parameters with other objective functions, this results in a reduction of uncertainty compared to 

other objective functions. Throughout the Calibration and Validation process, 3 years of heating 

(1994-1996) were carried out to have a better performance, since the initial conditions of the 

system are not known, executing multiple simulation iterations with a minimum of 250 and 500 

simulations in every execution. 

2.8 Model Performance Evaluation 

El R2, NSE For scientifically sound model calibration and validation, a combination of different 

efficiency criteria is suggested (Krause et al., 2005) and (D. N. Moriasi et al., 2007) three 

quantitative statistics be used in model performance evaluation in watershed simulations: The 

Nash–Sutcliffe efficiency (NSE), percent bias (PBIAS) and ratio of the root mean square error to 

the standard deviation of measured data (RSR). In this study, NSE, R2, RSR and PBIAS are the 

four parameters that are used to evaluate the performance of the results of the Hydrological 

model. The Nash-Sutcliffe Efficiency Criteria (NSE) is one of the most often used performance 

criteria in hydrology, focuses on determining the relative magnitude of the residual variance 

compared to the measured data variance  (Nash & Sutcliffe, 1970) and its value. varies from −∞ 

to 1, with a high value indicating an accurate model. NSE is calculated using the following 

define by (Eq. 2): 

 

𝑁𝑆𝐸 = 1 −
∑ (𝑄𝑚 − 𝑄𝑠)𝑖

2𝑛
𝑖=1

∑ (𝑄𝑚,𝑖 − 𝑄̅𝑚)
2𝑛

𝑖=1

             (2) 

 

where, Qm is mean of observed discharges, and Qs is simulated discharge and n is the total 

number of observations. 



 

 

The degree of collinearity between the simulated and measured flow rate can be obtained using 

the coefficient of determination (R2) and the range of R2 is 0 to 1, with a higher value signifying 

better performance. It can be calculated as following (Eq. 3): 

 

𝑅2 =
[∑ (𝑄𝑚,𝑖 − 𝑄̅𝑚)(𝑄𝑠,𝑖 − 𝑄̅𝑠)𝑛

𝑖=1 ]
2

∑ (𝑄𝑚,𝑖 − 𝑄̅𝑚)
2𝑛

𝑖=1 ∑ (𝑄𝑠,𝑖 − 𝑄̅𝑠)
2𝑛

𝑖=1

        (3) 

 

PBIAS (Percent Bias) measures the average tendency of the simulated data to be larger or 

smaller than the observed equivalents  (Gupta et al., 1999). Small magnitude PBIAS values are 

preferred. The optimal value of PBIAS is zero, where low magnitude values indicate better 

simulations. Positive values indicate an underestimation of the model and negative values 

indicate an overestimation of the model (Gupta et al., 1999), It can be calculated as following 

(Eq. 4): 

 

𝑃𝐵𝐼𝐴𝑆 = 100 ×
∑ (𝑄𝑚 − 𝑄𝑠)𝑖

𝑛
𝑖=1

∑ 𝑄𝑚,𝑖
𝑛
𝑖=1

           (4) 

 

where, Q is a variable (e.g. discharge), and m and s stand for measured and simulated, 

respectively. 

The standard deviation index (RSR) of observations is the mean squared error index (RMSE) 

divided by the standard deviation of the measured data. RSR varies from the optimal value of 0 

to ∞ (Moriasi et al., 2015),  where zero indicates zero RMSE or residual variation and, therefore, 

perfect simulation of the model, to a large positive value. The lower the RSR, the lower the 

RMSE and the better the performance of the model simulation (D. N. Moriasi et al., 2007; 

Kumar wet al., 2017) .It can be calculated as following (Eq. 5): 

 

𝑅𝑆𝑅 =
√∑ (𝑄𝑚 − 𝑄𝑠)𝑖

2𝑛
𝑖=1

√∑ (𝑄𝑚,𝑖 − 𝑄̅𝑚,𝑖)
2𝑛

𝑖=1

         (5) 

 

where, Qm is mean of observed discharges, and Qs is simulated discharge and n is the total 

number of observations. The optimal ranges of the parameters can be observed using Table 2. 



 

 

3. Results  

3.1 Parameter sensitivity analysis 

The results of the sensitivity analysis of 15 parameters (CN2, ALPHA_BF, GW_DELAY, 

GWQMN, GW_REVAP, REVAPMN, RCHRG_DP, ESCO, EPCO, SLSUBBSN, OV_N, 

SOL_BD, CH_K2, CH_N2, TRNSRCH) with respect to model output. Table 3 summarizes the 

parameter sensitivity with respect to surface flow, base flow, and stream flow and the initial 

values and the best ranges of model parameters. In this study, the result of the global sensitivity 

analysis with the t-test indicates that the most sensitive parameters (0.05 <p) , the fraction of 

transmission losses from main channel that enter deep aquifer (TRNSRCH, p= 0.00, t= -18.51) 

was found to be the most sensitive parameter followed by effective hydraulic conductivity of the 

soil layer  (CH_K2 (p=0.00, t= -11.84) and Groundwater delay (days) (GW_DELAY , p=0.026, 

t= -2.218), Deep aquifer percolation fraction (RCHRG_DP, p=0.0312, t= -2.159) and  Manning’s 

n value for overland flow (OV_N, p=0.043, t= 2.024) in calibration process.  

Groundwater studies should be carried out to provide more information, according to the 

sensitivity analysis indicated by sensitive parameters, as well as the improvement of channels to 

avoid loss water. 

Dotty plot (Figure.  5) is the plot of parameters versus objective function; indicating distribution 

of the sampling points which explain the parameter sensitivity (K. C. Abbaspour et al., 

2015).The parameters are related to the configuration of the lateral flow between the root zone 

and the connection of the shallow aquifer to the river bed, pointing out the importance of the 

shallow aquifer and the main channel relationship in Semi-Arid zones. This situation is also 

reported in other countries basins Mediterranean and France (Sellami et al., 2014; Zhang et al., 

2019).  

3.2 Calibration and uncertainty analysis 

Before calibration, the model was incapable of simulating stream flow value and shows indices 

poor R2 0.48, NSE -0.98, RSR 1.41 and PBIAS -162 values, necessitating the calibration process 

and automated analysis of flow uncertainty to improve such indices. 

The sensitive parameters were continuously modified for daily and monthly time period of time 

of 1994 - 2001 using SUFI-2 algorithms for 500 simulations. In the selection of parameters, it 



 

 

was carried out according to the study of  (Lévesque et al., 2008). The measured and predicted 

results were correlated at the same time with the output end, FLOW_OUT_34 (sub-basin 34). 

During the calibration, the P-factor and R-factor obtained were 0.98 and 1.18 respectively, the 

final results turned out to be good as expected, the ratio of P-factor and R-factor is high enough 

(greater than 1 for SUFI-2) for a typical uncertainty analysis (Rostamian et al., 2008; Xue et al., 

2014; Yang, Reichert et al.2008) indicating the acceptable performance of uncertainty analysis in 

this study. the results of daily simulation have a different value in the daily and monthly 

simulation. For calibration in daily time series simulation, the value of NSE, R2, PBIAS, RSR 

are 0.69, 0.70, -14.4 and 0.55 respectively. Those values describe that the SWAT model could be 

simulated well in this area.  According to Table 2, those results categorize as satisfactory due to 

the results is more than 0.5 for NSE, R2, RSR values. The hydrograph of daily simulation is 

presented in Figure 6. The output of calibration in monthly simulation has better value than daily 

simulation. the value of NSE, R2, PBIAS, RSR in monthly simulation are 0.86, 0.87, -14.4, 0.37 

respectively. According to Table 2, those results categorize as very good. It indicated that the 

model could describe hydrological processes very good for monthly simulation. Although, the 

model simulated low streamflow in the catchment particularly during may - december than what 

were observed. This should be attributed to land-use largely changed in this period. The 

hydrograph of monthly simulation is presented in Figure 7, and the scatter plot of the monthly 

simulation is presented in Figure 8. The calibrated parameter ranges were later used to validate. 

The adjusted values and the best final distribution of parameters are represented in Table 3. 

3.3 Model Validation 

The model validation is to check accuracy of the output representation towards the real stream 

flow data. Model validation was conducted for a different period of the calibration using 

comparison observed data and simulated data. The model validation process both daily and 

monthly simulation was conducted from 2002 to 2016. The result of daily flow validation was 

the less than calibration periods. NSE, R2, PBIAS, RSR values were 0.52, 0.67, -6.1 and 0.69, 

respectively. According to Table 2, Those results can be categorized as satisfied simulation. The 

hydrograph of daily simulation is presented in Figure 9. For monthly simulation, NSE, R2, 

PBIAS, RSR values were less than calibration periods. NSE, R2, PBIAS and RSR values were 

0.70, 0.87, -6.1 and 0.55 respectively. According to Table 2, Those results can be categorized as 



 

 

good simulation. The hydrograph of monthly simulation (Figure 10) and the scatter plot of the 

month simulation is presented in (Figure 11). 

4. Conclusions and discussion 

The purpose of this study was to evaluate the performance of the SWAT model using SUFI-2 

algorithm. The SWAT model presented a good performance in the calibration stage and in the 

validation stage it was satisfactory. The SWAT-CUP module was an important tool for 

sensitivity analysis, calibration and validation of the model. Monthly simulation has better results 

than daily simulation in basin with the categorize of monthly simulation as very good for 

calibration (R2 = 0.87, NSE = 0.86, PBIAS = -14.4, RSR = 0.37) and good for validation (R2 =  

0.87, NSE = 0.70, PBIAS = -6.1, RSR= 0.55) periods in other hand classification of daily 

simulation categorize as good for calibration ( R2 = 0.70, NSE = 0.69, PBIAS = -14.4, RSR = 

0.55) and satisfactory for validation ( R2 =  0.67, NSE = 0.52, PBIAS = -6.1, RSR = 0.69) 

periods. The process of modelling streamflow becomes even more difficult in catchments where 

irregular rainfall distribution occurs. Even more so, the lack of continuous high quality data 

especially in Peru, is a challenge that hydrologists face when modelling streamflow. Land use 

and soils are the most important data for the HRUs definition step; any effort to achieve more 

accurate data and maps will reduce the model uncertainty. A hydrological station for calibration 

increases the uncertainty model since it simplifies parameters and phenomena. All impediments 

have not been able to influence the performance indices. 

 

The sensitivity results showed that TRNSRCH, RCHRG_DP, GW_DELAY, CH_K2, and OV_N 

were more sensitive (p<0.05) to the simulation of  flow, compared to others ( ESCO, CN2, 

ALPHA_BF, ...) in basin. This result confirms similar studies done by (Thavhana et al., 2018) 

and (Jajarmizadeh et al., 2017)  where these parameters were shown to be most sensitive to 

streamflow. the relative processes  to groundwater and high precipitation at the head of the 

Basin, makes water transport one of the most important processes. This may be seen in 

parameters related to transport efficiency processes in channels. 

Finally, The generality of suchfindingsis may help with select parameters for calibration 

processes and more applications in other semi-arid areas. The calibrated model may be used to 

guide water management decisions by stakeholders who have water provision targets to meet, 

especially in the assigning of more realistic agricultural water demands. Furthermore, the 



 

 

modelling can be applied for planning of dam construction in the future, climate change studies 

and flood disaster risk management, which will contribute to the water resources management in 

the Tambo River basin. 
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Table 2. Classification of statistical indices. 
 

 

 

 

 

 

 

 

Source: (D. N. Moriasi et al., 2007; Fernandez et al., 2005; Van Liew et al., 2003) 

 

Input Data Description Source 

Extreme 

Temperatura 

Minimum and maximum 

daily Temperatura. Period 

(1994-2016). 

19 Station. 
The National Service of Meteorology 

and Hydrology of Peru (SENAMHI) 

https://www.senamhi.gob.pe / 

Precipitation 

Daily Precipitation. Period 

(1994-2016). 

19 Station. 

DEM 
Digital elevation model (30 

m resolution ) 
GeoServidor Ministry of the 

Environment of Peru (MINAM) 

http://geoservidorperu.minam.gob.pe/ Land use resolution  30 m 

Soil Type resolution 10 km 

The Food and Agriculture 

Organization of the United Nations 

(FAO) http://www.fao.org/ 

River 

discharge 

and Point 

Inlet 

Daily river discharge. 

Period (2001-2016). 

Autoridad Nacional del Agua (ANA) 

https://www.ana.gob.pe/ 

ENS PBIAS R² RSR Classification 

0.75 < ENS ≤ 1.00 PBIAS ≤ ± 10 0.75 < R² ≤ 1.00 0.00 ≤ RSR ≤0.50 Very good 

0.60 < ENS ≤ 0.75 ± 10 < PBIAS ≤ ± 15 0.60 < R² ≤ 0.75 0.50 ≤ RSR ≤ 0.60 Good 

0.36 < ENS ≤ 0.60 ± 15 < PBIAS ≤ ± 25 0.50 < R² ≤ 0.60 0.60 ≤ RSR ≤ 0.70 Satisfactory 

0.00 < ENS ≤ 0.36 ± 25 < PBIAS ≤ ± 50 0.25 < R² ≤ 0.50 
RSR > 0.7 

Bad 

ENS ≤ 0.00 ± 50 ≤ PBIAS R² ≤ 0.25 Inappropriate 

https://www.ana.gob.pe/


 

 

 

Table 3. Sensitivity ranking of SWAT model parameters in the Tambo River Basin catchment 

 

* r_ refers to a relative change in the parameters were their current values are multiplied by (1 plus a factor in the given range)  

** v_ refers to the substitution of a parameter value by another value in the given range (Karim C. Abbaspour et al., 2007) 

 

Rank Parameter Name Description 
Initial 

range 
Final range t-Stat P-Value 

1 v__TRNSRCH.bsn Fraction of transmission losses from main channel that enter deep aquifer 0  -  1 -0.204633  -  0.598633 -18.5109484 0.0000000 

2 v__CH_K2.rte Effective hydraulic conductivity in main channel alluvium (mm/h) 0  -  100 18.539167  -  72.860832 -11.8464087 0.0000000 

3 v__GW_DELAY.gw Groundwater delay (days) 5  -  50 -17.031847  -  27.661848 -2.21875986 0.0269661 

4 v__RCHRG_DP.gw Deep aquifer percolation fraction 0.4  -  1 0.24304  -  0.74776 -2.15961564 0.0312928 

5 r__OV_N.hru Manning’s n value for overland flow -0.1  -  0.1 -0.14152  -  0.01952 2.02458484 0.0434586 

6 r__CN2.mgt Curve number II -0.3  -  0.1 -0.313439  -  -0.037761 -1.49212675 0.1363174 

7 r__SOL_BD().sol Baseline flow recession constant (days) -0.2  -  0.2 -0.03064  -  0.30824 -1.27785105 0.2019144 

8 v__GW_REVAP.gw Ground water re-evaporation coefficient 0.01  -  0.3 0.097406  -  0.272334 -1.21252521 0.2259029 

9 v__CH_N2.rte Manning’s ‘‘n’’ value for the channel 0  -  1 0.338401  -  1.015599 0.9599710 0.3375490 

10 v__REVAPMN.gw 
Threshold depth of water in the shallow aquifer for re-evaporation to occur 

(mm) 
15  -  60 15.107997  -  45.042004 0.6500594 0.5159622 

11 v__ESCO.bsn Soil evaporation compensation factor 0.5  -  0.9 0.608161  -  0.824639 0.4283419 0.6685927 

12 v__ALPHA_BF.gw Base flow recession constant 0.5  -  0.85 0.656239  -  0.968861 0.4061440 0.6848162 

13 r__SLSUBBSN.hru Average slope length (m) -0.2  -  0.2 -0.340641  -  0.019841 -0.3696609 0.7117968 

14 v__GWQMN.gw 
Threshold depth of water in the shallow aquifer required for return flow to 

occur (mm) 
500  -  1600 621.441467  -  1273.958496 0.2568921 0.7973711 

15 v__EPCO.bsn Plant uptake compensation factor 0.4  -  0.8 0.546961  -  0.841039 0.1728068 0.8628754 
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