Declarations
Funding. This study was supported by the Austrian Science Fund (FWF) grant I 1951-B16 to AH. The research stay of AH at the University of Connecticut was generously supported by a Fulbright Scholarship. TEM and CLSM imaging of cells was supported by 2017 UConn EEB Research Award (The Betty Foster Feingold Endowment for Ecology and Evolutionary Biology to the Department of Ecology and Evolutionary Biology).
Conflicts of interest/Competing interests. The authors declare no conflicts of interest.
Availability of data and material . New DNA sequence data are accessed in NCBI GenBank. Raw physiological data and scripts for data analysis were deposited to DRYAD repository and GitHub/eterlova/TetradesmusPhysiology.
Figure legends
Fig. 1 Phylogenetic tree of desert and aquaticTetradesmus species based on BI of tuf A, rbc L, and ITS 2 rDNA. Numbers associated with the nodes indicate support values for BI and ML analysis, respectively. Strains used in the desiccation experiments indicated with a dot (a black dot for the strains from the original experiment, gray dots indicate strains desiccated in a second experiment, see the supplementary materials). Habitats of origin (aquatic, temperate soils, or desert soil crusts) are indicated by the color of a bar (blue, brown, and orange, respectively).
Fig. 2 Example trace of the desiccation/rehydration cycle. In black (left y-axis): representative example of raw measurements of PSII effective yield of a desert alga (T. adustus , strain LG2-VF29) taken every 10 min during desiccation to 65% RH, and rehydration. Data points correspond to the mean of four ΦPSIImeasurements, error bars indicate one standard deviation. In gray (right y-axis) is RH recorded during desiccation and rehydration. A rapid decrease in humidity coinciding with the shift from desiccation to rehydration was by the opening of the desiccation chamber to replace the desiccant with water for algae rehydration.
Fig. 3 Examples of typical responses to desiccation and rehydration (a) by aquatic and desert Tetradesmus and (b) to different desiccation modes by a desert species. Each data point represents mean ΦPSII (n=4), measurements were taken every 10 min. (a) Behavior of T. obliquus (aquatic species),T. deserticola , and T. bajacalifornicus (desert taxa) when desiccated at 65% RH. (b) Response of T. deserticola to desiccation under three conditions (RH 5%, 65% and 80%). We used cluster analysis to differentiate among cell physiological states (hydrated, desiccating, or rehydrated).
Fig. 4 Hierarchical cluster analyses of recovery indices (ratio of a rehydrated value to the initial hydrated photosynthetic yield) ofTetradesmus across desiccation treatments demonstrate that the habitat of the species (aquatic or terrestrial) as well as the desiccation mode influence their ability to recover from desiccation. (a) After 10 min of rehydration all desert algae are able to re-initiate their photosynthetic activity rapidly upon rehydration, and aquatic algae do not, although there is variation among strains of most species). (b) After 12 h of rehydration the difference in recovery from different desiccation modes became apparent. Within-species variation in the aquatic taxon is clear under the gentlest desiccation at 80% RH. Cluster number on the x-axis represents distinct groups (identified in cluster analysis of Euclidean distances, verified with gap statistic). Symbol shape indicated the native habitat of each species (circles for aquatic and triangles for terrestrial), color indicates the individual species. Multiple symbols of the same color correspond to different strains of each species.
Fig. 5 TEM photographs of an aquatic and terrestrialTetradesmus in hydrated, desiccated, and rehydrated states. (a) Ultrastructure of the aquatic species Tetradesmus obliquus (UTEX 393). (b) Ultrastructure of the desert species T. deserticola(EM2-VF30). Arrows point at plastoglobuli. GA - Golgi body, Chl - chloroplast, M - mitochondrion, N - nucleus, P – pyrenoid.
Fig. 6 Fluorescence photomicrographs of an aquatic and terrestrial Tetradesmus in hydrated state, under osmotic stress, and rehydrated. Effect of osmotic stress by 4M sorbitol on the cells ofT. obliquus UTEX 72 (a-c), T. dissociatus SAG 5/95 (d-f), and T. deserticola SNI-2 (h-i) visualized by CLSM and lipid-soluble fluorescent dye FM 1-43. (a) T. obliquus fully hydrated control cells, only plasma membrane was exposed to the dye. (b)T. obliquus cells under osmotic stress, arrow points to the fracture in the cell membrane. (c) T. obliquus rehydrated cells with the dye binding to the intracellular material, indicating the damage to the plasma membrane by desiccation. (d)T. dissociatus hydrated cells. (e) T. dissociatus under osmotic stress, no indication of membrane damage. (f) T. dissociatus rehydrated cells the membrane preserved its integrity. (g) T. deserticola hydrated control cells. (h) T. deserticola under osmotic stress, no indication of membrane fracturing. (i) T. deserticola rehydrated, the membrane integrity was preserved. Chl — chloroplast, P — pyrenoid.
REFERENCES:
Akaike, H. (1998). Information theory and an extension of the maximum likelihood principle. In Selected Papers of Hirotugu Akaike , (eds E. Parzen, K. Tanbe & G. Kitagawa), pp. 199–213. Springer New York, New York, NY.
Alpert, P. (2006). Constrains of tolerance: why are desiccation tolerant organisms so small or rare? Journal of Experimental Biology209(9), 1575–1584.
Alpert, P. & M. J. Oliver (2002). Drying without dying. InDesiccation and Survival in Plants: Drying Without Dying (eds M. Black & H. W. Pritchard), pp. 3–44. CABI Publishing.
Banchi, E., F. Candotto Carniel, A. Montagner, F. Petruzzellis, G. Pichler, V. Giarola, D. Bartels, A. Pallavicini & M. Tretiach (2018). Relation between water status and desiccation-affected genes in the lichen photobiont Trebouxia gelatinosa . Plant Physiology and Biochemistry , 120, 189–197.
Bartoškova, H., J. Komenda & J. Nauš (1999). Functional changes of photosystem II in the moss Rhizomnium punctatum (Hedw.) induced by different rates of dark desiccation. Journal of Plant Physiology , 154: 597–604.
Becker B, X. Feng, Y. Yin & A. Holzinger (2020). Desiccation tolerance in streptophyte algae and the algae to land plant transition: evolution of LEA and MIP protein families within the Veridiplantae. Journal of Experimental Botany , eraa105.
Belnap, J. & O. L. Lange (2001). Biological soil crusts: structure, function, and management. Springer, Berlin.
Büdel, B., T. Darienko, K. Deutschewitz, S. Dojani, T. Friedl, K. I. Mohr, M. Salisch, W. Reisser & B. Weber (2009). Southern African biological soil crusts are ubiquitous and highly diverse in drylands, being restricted by rainfall frequency. Soil Microbiology , 57, 229–247.
Cardon, Z. G., D. W. Gray & L. A. Lewis (2008). The green algal underground: evolutionary secrets of desert cells. BioScience , 58(2), 114–122.
Cardon, Z. G., E. L. Peredo, A. C. Dohnalkova, H. L. Gershone & M. Bezanilla (2018). A model suite of green algae within the Scenedesmaceae for investigating contrasting desiccation tolerance and morphology.Journal of Cell Science , 131.
Cheng, X., I. Lang, O. S. Adeniji & L. Griffing (2017). Plasmolysis-deplasmolysis causes changes in endoplasmic reticulum form, movement, flow, and cytoskeletal association. Journal of Experimental Biology , 68(15), 4075–4087.
Costa, M.-C., M. A. S. Artur, J. Maia, E. Jonkheer, M. F. L. Derks, H. Nijveen, B. Williams, S. G. Mundree, J. M. Jiménez-Gómez, T. Hesselink, E. G. W. M. Schijlen, W. Ligterink, M. J. Oliver, J. M. Farrant & H. W. M. Hilhorst (2017). A footprint of desiccation tolerance in the genome of Xerophyta viscosa . Nature Plants , 3, 17038.
Domozych, D. S., R. Roberts, C. Danyow, B. Flitter, R. Smith & K. Providence (2003). Plasmolysis, Hechtain strand formation, and localized membrane-wall adhesions in the desmid, Closterium acerosum(Chlorophyta). Journal of Phycology , 39(6), 1194–1206.
Donner, A., K. Glaser, N. Borchhardt & U. Karsten (2017). Ecophysiological response of dehydration and temperature in terrestrialKlebsormidium (Streptophyta) isolated from biological soil crusts in central European grasslands and forests. Microbiological Ecology , 73(4), 850–864.
Evans, J. H. (1958). Algae during dry periods: Part I. An investigation of the algae of five small ponds. Journal of Ecology , 46(1), 149–167.
Evans, R. D. & J. R. Johansen (1999). Microbiotic crusts and ecosystem processes. Critical Reviews in Plant Sciences , 18, 183–225.
Famá, P., B. Wysor, W. Kooistra & G.C. Zuccarello (2012). Molecular phylogeny of the genus Caulerpa (Caulerpales, Chlorophyta) inferred from chloroplast tuf A gene. Journal of Phycology , 38(5), 1040–1050.
Farrant, J. M. (2000). Comparison of mechanisms of desiccation tolerance among three angiosperm resurrection plants. Plant Ecology , 151, 29–39.
Farrant, J. M., A. Lehner, K. Cooper & S. Wiswedel (2009). Desiccation tolerance in the vegetative tissues of the fern Mohria caffrorumis seasonally regulated. The Plant Journal , 57(1), 65–79.
Fletchner, V. R., J. R. Johansen & W.H. Clark (1998). Algal composition of microbiotic crusts from the central desert in Baja California, Mexico. Great Basin Naturalist , 58, 295–311.
Fučíková, K., P. O. Lewis & L. A. Lewis (2014). Widespread desert affiliation of Trebouxiophycean algae (Trebouxiophyceae, Chlorophyta) including discovery of three new desert genera. Phycological Research , 62(4), 294–305.
Gao, B., X. Li, D. Zhang, Y. Liang, H. Yang, M. Chen, Y. Zhang, J. Zhang & A. Wood (2017). Desiccation tolerance in bryophytes: the dehydration and rehydration transcriptomes in the desiccation-tolerant bryophyteBryum argenteum . Scientific Reports , 7, 7571.
Gray, D. W., L. A. Lewis & Z. G. Cardon (2007). Photosynthetic recovery following desiccation of desert green algae (Chlorophyta) and their aquatic relatives. Plant, Cell & Environment , 30(10), 1240–1255.
Guindon, S., J. F. Dufayard, V. Lefort, M. Anisimova, W. Hordijk & O. Gascuel (2010). New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of Phyml 3.0.Systematic Biology , 59(3) 307–21.
Hall, J., K. Fučíková, C. Lo, L. Lewis & K. Karol (2010). An assessment of proposed DNA barcodes in freshwater green algae. Cryptogamie Algologie . 31(4), 529–555.
Holzinger, A., K. Herburger, F. Kaplan & L. A. Lewis (2015). Desiccation tolerance in the chlorophyte green alga Ulva compressa : does cell wall architecture contribute to ecological success? Planta , 242(2), 477–492.
Holzinger, A., K. Lütz & U. Karsten (2011). Desiccation stress causes structural and ultrastructural alterations in the aeroterrestrial green alga Klebsormidium crenulatum (Klebsormidiophyceae, Streptophyta) isolated from an alpine soil crust. Journal of Phycology , 47(3), 591–602.
Illing, N., K. J. Denby, H. Collett, A. Shen & J. M. Farrant (2005). The signature of seeds in resurrection plants: a molecular and physiological comparison of desiccation tolerance in seeds and vegetative tissues. Integrative and Comparative Biology , 45(5), 771–787.
Ismagulova, T., K. Chekanov, O. Gorelova, O. Baulina, L. Semenova, I. Selyakh, O. Chivkunova, E. Lobakova, O. Karpova & A. Solovchenko (2018). A new subarctic strain of Tetradesmus obliquus – Part I: Identification and fatty acid profiling. Journal of Applied Phycology , 30, 2737–2750.
Karsten, U., K. Herburger & A. Holzinger (2014). Dehydration, temperature, and light tolerance in members of the aeroterrestrial green algal genus Interfilum (Streptophyta) from biogeographically different temperate soils. Journal of Phycology , 50(5), 804–816.
Karsten, U., K. Herburger & A. Holzinger (2016). Living in biological soil crusts communities of African deserts – physiological traits of green algal Klebsormidium species (Streptophyta) to cope with desiccation, light and temperature gradients. Journal of Plant Physiology , 194, 2–12.
Koetschan, C., T. Hackl, T. Müller, M. Wolf, F. Förster & J. Schultz (2012). ITS2 Database IV interactive taxon sampling for internal transcribed Spacer 2 based phylogenies. Molecular Phylogenetics and Evolution , 63(3), 585–588.
Koster, K. L., R. A. Balsamo, C. Espinoza & M. J. Oliver (2010). Desiccation sensitivity and tolerance in the moss Physcomitrella patens : assessing limits and damage. Plant Growth Regulation , 62, 293–302.
Lanfear, R., B. Calcott, S. Y. Ho & S. Guindon (2012). PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Molecular Biology and Evolution , 29(6), 1695–1701.
Lanfear, R., P. B. Frandsen, A. M. Wright, T. Senfeld & B. Calcott (2017). PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses.Molecular Biology and Evolution , 34(3), 772–773.
Leliaert, F., D. R. Smith, H. Moreau, M. D. Herron, H. Verbruggen, C. F. Delwiche & O. De Clerck (2012). Phylogeny and molecular evolution of the green algae. Critical Reviews in Plant Sciences , 31(1). 1–46.
Lewis, L. A. & V. R. Flechtner (2005). Tetradesmus bajacalifornicus L. A. Lewis & Flechtner, Sp. Nov. andTetradesmus deserticola L. A. Lewis & Flechtner, Sp. Nov. (Scenedesmaceae, Chlorophyta). Systematic Biology , 54, 936–947.
Lewis, L. A. & P. O. Lewis (2005). Unearthing the molecular phylodiversity of desert soil green algae (Chlorophyta).Systematic Biology , 54(6), 936–947.
Li, J., X. Li & P. Zhang (2014). Micro-morphology, ultrastructure and chemical composition changes of Bryum argenteum from a desert biological soil crust following one-year desiccation. The Bryologist , 117(30, 232–240.
Ligrone, R., J. G. Duckett & K. S. Renzaglia (2012). Major transitions in the evolution of early land plants: a bryological perspective.Annals of Botany , 109(5), 851–871.
McManus, H. A. & L. A. Lewis (2011). Molecular phylogenetic relationships in the freshwater family Hydrodictyaceae (Sphaeropleales, Chlorophyceae), with an emphasis on Pediastrum duplex .Journal of Phycology , 47(1), 152–163.
Mikhailyuk, T., K. Glaser, P. Tsarenko, U. Demchenko & E. Karsten (2019). Composition of biological soil crusts from sand dunes of the Baltic sea coast, in the context of an integrative approach to the taxonomy of microalgae and cyanobacteria. European Journal of Phycology , 54(3), 236–255.
Miller, M. A., W. Pfeiffer & T. Schwartz (2010). Creating the CIPERS science gateway for inference of large phylogenetic trees.Proceedings of the Gateway Computing Environments Workshop 14 Nov. 2010, New Orleans, LA , 1–8.
Oliver, M. J., L. Guo, D. Alexander, J. A. Ryals & B. W. M. Wone (2011). A sister group contrast using untargeted global metabolomic analysis delineates the biochemical regulation underlying desiccation tolerance in Sporobolus stapfianus . Plant Cell , 23, 1231–1248.
Oliver, M. J., T. Zoltan & B. D. Mishler (2000). The evolution of vegetative desiccation tolerance in land plants. Plant Ecology , 151, 85–100.
Pierangelini, M., D. Rysanek, I. Lang, W. Adlassnig & A. Holzinger (2017). Terrestrial adaptation of green algae Klebsormidium andZygnema (Charophyta) involves diversity in photosynthetic traits but not in CO2 acquisition. Planta , 246(5), 971–986.
Pierangelini M., K. Glaser, T. Mikhailyuk, U. Karsten & A. Holzinger (2019). Light, dehydration but not temperature drive photosynthetic adaptations of basal streptophytes (Hormidiella ,Streptosarcina and Streptofilum ) living in terrestrial habitats. Microbial Ecology , 77, 380–393.
Proctor, M. C., M. J. Oliver, A. J. Wood, P. Alpert, L. R. Stark, N. L. Cleavitt & B. D. Mishler (2007). Desiccation-tolerance in bryophytes: a review. The Bryologist , 110(4), 595–621.
Proctor, M. C. & N. Smirnoff (2000). Rapid recovery of photosystems on rewetting desiccation-tolerant mosses: chlorophyll fluorescence and inhibitor experiments. Experimental Botany , 51(351), 1695–1704.
Rambout, A., A. J. Drummond, D. Xie, G. Baele & M. A. Suchard (2018). Posterior summarization in Bayesian phylogenetics using Tracer 1.7.Systematic Biology , 67(5), 901–904.
Rengefors, K., I. Karlsson & L.-A. Hansson (1998). Algal cyst dormancy: a temporal escape from herbivory. Proceedings of The Royal Society of London , 265(1403), 1353–1358.
Rindi, F., H. A. Allali, D. W. Lam & J. M. Lopez-Bautista (2009). An overview of the biodiversity and biogeography of terrestrial green algae. In Biodiversity hotspots (eds. V. Rescigno, S. Maletta), pp. 105–122. New York: Nova Science.
Rippin, M., B. Becker & A. Holzinger (2017). Enhanced desiccation tolerance in mature cultures of the streptophytic green algaZygnema circumcarinatum revealed by transcriptomics.Plant and Cell Physiology , 58(12), 2067–2084.
Ronquist, F. & J. P. Huelsenbeck (2003). MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics , 19(12), 1572–1574.
Starr, R. C. (1955). Zygospore Germination in Cosmarium botrytisvar. subtumidum . American Journal of Botany , 42(7), 577–581.
Schultz, J., T. Müller, M. Achtziger, P. N. Seibel, T. Dandekar & M. Wolf (2006). The internal transcribed Spacer 2 Database — a web server for (not only) low level phylogenetic analyses. Nucleic Acids Research , 34, 704–707.
Song, G., X. Li & R. Hui (2017). Effect of biological soil crusts on seed germination and growth of an exotic and two native plant species in an arid ecosystem. PLoS ONE , 12(10), e018583.
Swofford, D. L. (2003). “PAUP*. Phylogenetic Analysis Using Parsimony (* and Other Methods). Version 4. Sinauer Associates, Sunderland .
Terlova, E. F. & L. A. Lewis (2019). A new species ofTetradesmus (Chlorophyceae, Chlorophyta) isolated from desert soil crust habitats in southwestern North America. Plant and Fungal Systematics , 64(1), 25–32.
VanBuren, R., C. M. Wai, Q. Zhang, X. Song, P. P. Edger, D. Bryant, T. P. Michael, T. C. Mockler & D. Bartels (2017). Seed desiccation mechanisms co-opted for vegetative desiccation tolerance in the resurrection grass Oropetium thomaeum . Plant, Cell and Environment , 40(10), 2292–2306.
White, J., T, T. D. Bruns, S.B. Lee, J. W. Taylor, M. A. Innis, D. H. Gelfand & J. Sninksy (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protocols: A Guide to Methods and Applications , 18, 315–322.
Wu, N, Y. M. Zhang, A. Downing, J. Zhang & C. H. Yang (2012). Membrane stability of the desert moss Syntrichia caninervis Mitt. during desiccation and rehydration. Journal of Bryology , 34(1), 1–8.
Yobi, A., B. W. M. Wone, W. Xu, Alexander D. C., L. Guo, J. A. Ryals, M. J. Oliver & J. C. Cushman (2012). Comparative metabolic profiling between desiccation-sensitive and desiccation-tolerant species ofSelaginella reveals insights into the resurrection trait.The Plant Journal , 72(6), 983–999.