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Abstract We derive the fractional version of one-phase one-dimensional Stefan model. We
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i.e. we impose the memory e�ect in the examined model. Furthermore, we �nd a special

solution to this problem.

Key words: fractional derivatives, Stefan problem, self-similar solution.

2010 Mathematics Subject Classi�cation. Primary: 35R11 Secondary: 35R37

1 Introduction

The purpose of this paper is to study the process of changing the phase of medium, in
which the di�usion exhibits non-local in time e�ects. We are motivated by the paper [2],
where the authors represent the non-locality in time, assuming that the di�usive �ux is
given in the form of time-fractional Riemann-Liouville derivative of temperature gradient,
i.e.

q∗(x, t) = −∂1−αTx(x, t). (1)

Based on this assumption, the authors derived the sharp-interphase as well as the di�usive
interphase fractional Stefan model. The sharp-interphase model obtained in [2] is char-
acterized by the replacement of time derivative by fractional Caputo derivative. In last
years several attempts to solve this problem have been done. In [4] the authors proved the
existence of weak solutions in non-cylindrical domain with �xed boundary. In [10] under
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suitable regularity assumptions the Hopf lemma was proven. It is also worth to mention
the paper [3] were the special solution to this problem was found. However, due to the
lack of regularity results, the time-fractional Stefan problem with the Caputo derivative
have not been solved.

It has been noticed already in [11] that the obtained di�usive-interphase model does
not converge to the sharp one. This result encouraged the researchers to investigate the
time-fractional Stefan model more deeply. In papers [1], [6] - [9] the authors discussed
other possible formulations of time-fractional Stefan problem and compare the formulas
for special solutions. In paper [5] there is shown that the time-fractional sharp-interphase
model obtained in [2] is not a consequence of the assumption (1). Moreover, the authors
obtained a new model based on (1). In this paper, we derive the sharp-interphase model
with non-local �ux given by (1) under mild regularity assumptions. We arrive at the
similar model as in [5], however we obtain additional boundary condition. At last, we
�nd a self-similar solution to this problem, which is the main result of this paper.

2 Formulation of the problem

In the paper we discuss one-dimensional domain Ω = (0, L) for a positive L. We assume
that at the initial time t = 0 the domain Ω is divided onto two parts: (0, x0) - �liquid� and
(x0, L) - �solid�. In particular, we admit the case where x0 = 0. Following [2] we de�ne
the enthalpy function by E = T + φ, where T (x, t) is the temperature at point x ∈ Ω at
time t and φ represents the latent heat. We consider the sharp-interface model, hence we
assume that φ is given in the following form

φ =

{
1 in liquid,
0 in solid.

(2)

We shall consider the one-phase model, i.e. we assume that T ≡ 0 in �solid� part. We
denote by q∗(x, t) the �ux at x ∈ Ω at time t. In this setting, the principle of energy
conservation takes the following form: for every V = (a, b) ⊆ Ω

d

dt

∫
V

E(x, t)dx = q∗(a, t)− q∗(b, t). (3)

We may easily see that if the model does not exhibit memory e�ects then identity (3)
leads to classical one-phase Stefan problem. We state this result in the remark.

Remark 1. If the �ux is de�ned by the Fourier law q∗(x, t) = −Tx(x, t), then (3) leads
to the classical Stefan problem

d

dt
T (x, t)− Txx(x, t) = 0 for t > 0 and x ∈ (0, L) \ {s(t)}, (4)

ṡ(t) = −T−x (s(t), t) for t > 0, (5)

where s(t) denotes an interface and

T−x (s(t), t) = lim
ε→0+

Tx(s(t)− ε, t).

2



In order to study non-local model we recall the de�nitions of fractional operators. By
Iαa we denote the fractional integral given by

Iαa f(t) =
1

Γ(α)

∫ t

a

(t− τ)α−1f(τ)dτ. (6)

We also introduce the Riemann-Liouville and Caputo fractional derivatives de�ned re-
spectively by

∂αa f(t) =
d

dt
I1−α
a f(t), Dα

a f =
d

dt
I1−α
a [f(t)− f(a)].

If a subscript a = 0 we omit it in a notation. Following [2], we assume that the �ux is
given by the Riemann-Liouville fractional derivative with respect to the time variable, i.e.

q∗(x, t) = −∂1−αTx(x, t),

where

∂1−αTx(x, t) =
1

Γ(α)

d

dt

∫ t

0

(t− τ)α−1Tx(x, τ)dτ, α ∈ (0, 1).

We �nish this section with a formal justi�cation, why such a form of the �ux seems to be
reasonable in the model exhibiting memory e�ects.

Remark 2. Let us denote by s(t) the phase interface. We decompose the domain Ω on
the solid and liquid parts.

Ωl(t) = (0, s(t)) - liquid, Ωs(t) = (s(t), L) - solid.

Let V ⊆ Ω be arbitrary. Then, if we assume that V = (a, b) and denote

Vl(t) = Ωl(t) ∩ V, Vs(t) = Ωs(t) ∩ V

then, (3) takes the form

d

dt

[∫
Vl(t)

(T (x, t) + 1)dx

]
+
d

dt

[∫
Vs(t)

T (x, t)dx

]
= ∂1−αTx(b, t)− ∂1−αTx(a, t). (7)

Assuming that the temperature gradient is bounded with respect to time variable, after
integrating with resect to time we arrive at∫

Vl(t)

(T (x, t) + 1)dx+

∫
Vs(t)

T (x, t)dx =

∫
Vl(0)

(T (x, 0) + 1)dx+

∫
Vs(0)

T (x, 0)dx

+
1

Γ(α)

∫ t

0

(t− τ)α−1 [Tx(b, τ)− Tx(a, τ)] dτ, (8)

i.e. the total enthalpy in V at time t is a sum of the initial enthalpy and the time-average
of di�erences of local �uxes at the endpoints of V .
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3 Main results

We derive the fractional Stefan model from the balance law (3) with the di�usive �ux
given by (1). In order to do it rigorously we have to impose certain regularity conditions
on the phase interface s and the temperature function T . At �rst, we assume that t∗ is
positive and

s(t) ∈ AC[0, t∗], Tx(x, ·) ∈ L∞(Ux) for every x ∈ Ω,

Tx(·, t) ∈ AC[0, s(t)− ε] for every ε > 0 and every t ∈ (0, t∗), (A1)

Tt(·, t) ∈ L1(0, s(t)) for each t ∈ (0, t∗),

where we denote
Qs,t∗ = {(x, t) : 0 < x < s(t), t ∈ (0, t∗)},

Ux = {t : (x, t) ∈ Qs,t∗}.

Here and henceforth by AC we denote the space of absolutely continuous functions.
The standard setting of the initial-boundary condition for the Stefan problem is the
following

T (x, 0) = T0(x) ≥ 0 and T (0, t) = TD(t) ≥ 0 or Tx(0, t) = TN(t) ≤ 0.

We expect that if T0, TD ≡ 0 or T0, TN ≡ 0, then T ≡ 0. Otherwise, we expect

ṡ(t) > 0, (A2)

i.e. melting of solid. We note that since we consider one-phase Stefan problem the
temperature in the solid vanishes. Therefore, the �ux is nonzero only in the liquid part
of the domain, i.e. in Qs,t∗ and it is given by the formula

q∗(x, t) =

{
−∂1−α

s−1(x)Tx(x, t) for (x, t) ∈ Qs,t∗ ,

0 for (x, t) 6∈ Qs,t∗ ,
(9)

where

∂1−α
s−1(x)Tx(x, t) =

{
1

Γ(α)
d
dt

∫ t
0
(t− τ)α−1Tx(x, τ)dτ for x ≤ s(0),

1
Γ(α)

d
dt

∫ t
s−1(x)

(t− τ)α−1Tx(x, τ)dτ for x > s(0).
(10)

This together with (2) leads to the following form of equality (3)

d

dt

[∫
Vl(t)

T (x, t) + 1dx

]
= −q∗(b, t) + q∗(a, t). (11)

The last of the regularity assumptions, that we will make advantage of, are

ṡ(t) ∈ L∞loc((0, t∗]) and Dα
s−1(x)T (·, t) ∈ L1(0, s(t)) for t ∈ (0, t∗), (A3)

Now we are ready to formulate the �rst result of this paper.
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Theorem 1. Let us discuss the sharp one-phase one-dimensional Stefan problem with the
boundary condition T (s(t), t) = 0. Then, under the assumptions (A1)-(A2), the conser-
vation law (3) with the �ux given by (1) leads to the following equation

Dα
s−1(x)T (x, t)dx− Txx(x, t) =

{
0 for x < s(0)

− 1
Γ(1−α)

(t− s−1(x))−α for x ∈ (s(0), s(t))
(12)

for a.a. (x, t) ∈ Qs,t∗, where

Dα
s−1(x)T (x, t) =

{
1

Γ(1−α)

∫ t
0
(t− τ)−α d

dτ
T (x, τ)dτ for x ≤ s(0)

1
Γ(1−α)

∫ t
s−1(x)

(t− τ)−α d
dτ
T (x, τ)dτ for x > s(0).

(13)

Moreover, functions T and s are related by the formula

ṡ(t) = − 1

Γ(α)
lim
a↗s(t)

[
d

dt

∫ t

s−1(a)

(t− τ)α−1Tx(a, τ)dτ

]
. (14)

Furthermore, if (A3) holds, then the additional boundary condition

T−x (s(t), t) = 0, (15)

is satis�ed, where T−x is de�ned as in Remark 1.

Remark 3. We were informed by prof. Andrea N. Ceretani, that the equation (12) with
the condition (14) have been already obtained in [5]. It is worth to mention that the
fractional Stefan problem with the �ux given by the Riemann-Liouville derivative were
considered in [2]. However, the Authors obtained the following system of equations

DαT (x, t)dx− Txx(x, t) = 0, (16)

Dαs(t) = −Tx(s(t), t), (17)

(see (17)and (18) in [2]). As pointed out in [5] and proved by careful calculations, the
equations (16) and (17) are not the consequences of the assumptions imposed on the �ux.

In this paper we present another derivation of (12) and (14), which leads to the addi-
tional boundary condition (15). Then, the following questions arise:

• is the assumption (A3) to strong and this is way it implies "unexpected" boundary
condition (15)?

• is there any relation between (14) and (15)?

We partially answer to these questions. We show that, at least in the class of self-similar
solutions, (A3) is satis�ed and (14) implies (15).

Remark 4. Passing formally with α to 1 in equations (12) and (14) we arrive at (4) - (5).
Indeed, assuming that T (s(t), t) = 0 we get

Dα
s−1(x)T (x, t) +

1

Γ(1− α)
(t− s−1(x))−α = ∂αs−1(x)[T (x, t) + 1]→ Tt(x, t) as α→ 1.

Moreover, by (14)

ṡ(t) = − lim
a→s(t)

∂1−α
s−1(a)Tx(a, t)→ −T

−
x (s(t), t) as α→ 1.
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Now we will present the second result of this paper. We will �nd a self-similar solution
to the time-fractional Stefan problem in the domain

U = {(x, t) ∈ R× (0,∞) : 0 < x < s(t)}, (18)

where (s(t), t) is the curve separating the phases. We impose a constant positive Dirichlet
boundary condition on the left boundary and we assume that s(0) = 0. In this case, the
problem formulated in Theorem 1 takes the following form

Dα
s−1(x)u(x, t) = uxx(x, t)−

1

Γ(1− α)
(t− s−1(x))−α in U, (19)

u(s(t), t) = 0, (20)

u(0, t) = γ, (21)

ṡ(t) = − 1

Γ(α)
lim
a↗s(t)

d

dt

[∫ t

s−1(a)

(t− τ)α−1ux(a, τ)dτ

]
. (22)

Theorem 2. For any γ > 0 there exists a pair (u, s) which satis�es (19)-(22). Further-
more, the solution is given by

s(t) = c1t
α
2 , (23)

u(x, t) =

∫ c1

xt−
α
2

H(p, xt−
α
2 )Gc1(p)dp in U, (24)

where c1 = c1(α, γ) > 0 and

Gc1(y) =
1

Γ(1− α)

∫ c1

y

(1− c−
2
α

1 µ
2
α )−αdµ for 0 ≤ y ≤ c1, (25)

H(p, x) = 1 +

∫ p

x

N(p, y)dy for 0 ≤ x ≤ p, (26)

N(p, y) =
∞∑
n=1

Mn(p, y) for 0 ≤ y ≤ p, (27)

where

M1(p, y) =
1

Γ(1− α)

∫ p

y

(1− p−
2
αµ

2
α )−αdµ for 0 ≤ y ≤ p (28)

and

Mn(p, y) =

∫ p

y

M1(a, y)Mn−1(p, a)da for 0 ≤ y ≤ p and n ≥ 2. (29)

For every R > 0 the series (27) converges uniformly on WR = {(p, y) : 0 ≤ y ≤ p ≤ R}.
Functions Mn, N are positive on {(p, y) : 0 ≤ y < p}, hence u is positive in U .
For every a, λ > 0 function u satis�es the scaling property

u(x, t) = u(λax, λ
2a
α t) (30)
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and
ux(s(t), t) = 0. (31)

Furthermore, for every t > 0 there hold ux(·, t) ∈ C([0, s(t)]), uxx(·, t) ∈ L1(0, s(t)) and
for every x > 0 there holds ut(x, ·) ∈ C([s−1(x),∞)). Finally, for every x > 0 we have
ux(x, ·) ∈ L∞(s−1(x),∞)∩C([s−1(x),∞)) and for every t > 0 the hold ut(·, t) ∈ L1(0, s(t))
and Dα

s−1(·)u(·, t) ∈ L1(0, s(t)). In particular, the pair (u, s) satis�es the assumptions (A1)

- (A3).

Corollary 1. The Dirichlet condition (21) may be replaced by the Neumann condition

ux(0, t) = −βt−
α
2 , β > 0.

Then, Theorem 2 holds with c1 = c1(α, β) > 0.

4 Derivation of the model

In this section we will prove Theorem 1.

Proof of Theorem 1. In order to derive the system of equations from (11), we apply the
principle of energy conservation to an arbitrary subset V of the domain at time t ∈ (0, t∗).
We will consider two cases.

• If V = (a, b) ⊆ (0, s(0)), then from (A2) we have V ⊆ (0, s(t)) for each t ∈ (0, t∗)
and (11) gives

d

dt

[∫
V

T (x, t) + 1dx

]
= ∂1−αTx(b, t)− ∂1−αTx(a, t).

Hence, ∫
V

d

dt
T (x, t)dx = ∂1−αTx(b, t)− ∂1−αTx(a, t).

We apply the fractional integral I1−α with respect to the time variable to both sides
of the identity and with a use of assumption (A1) we arrive at∫

V

DαT (x, t)dx = Tx(b, t)− Tx(a, t).

By the fundamental theorem of calculus we obtain∫
V

[DαT (x, t)− Txx(x, t)]dx = 0.

Since V ⊆ (0, s(0)) is arbitrary, we get

DαT (x, t)− Txx(x, t) = 0 for (x, t) ∈ (0, s(0))× (0, t∗). (32)
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• If V = (a, b), where s(0) < a < s(t) < b, then (11) has the form

d

dt

[∫ s(t)

a

T (x, t) + 1dx

]
= q∗(a, t) = − 1

Γ(α)

d

dt

∫ t

s−1(a)

(t− τ)α−1Tx(a, τ)dτ.

Di�erentiating the integral on the left hand side leads to∫ s(t)

a

d

dt
T (x, t)dx+ ṡ(t)[T (s(t), t) + 1] = − 1

Γ(α)

d

dt

∫ t

s−1(a)

(t− τ)α−1Tx(a, τ)dτ.

Applaying T (s(t), t) = 0, we get∫ s(t)

a

d

dt
T (x, t)dx+ ṡ(t) = − 1

Γ(α)

d

dt

∫ t

s−1(a)

(t− τ)α−1Tx(a, τ)dτ. (33)

If a ↗ s(t), then by the assumption (A1) the �rst term vanishes and as a conse-
quence we get (14). Next, if we apply the operator I1−α

s−1(a) (de�ned in (6)) to both

sides of (33), then we obtain

1

Γ(1− α)

∫ t

s−1(a)

(t− τ)−α
∫ s(τ)

a

d

dτ
T (x, τ)dxdτ +

1

Γ(1− α)

∫ t

s−1(a)

(t− τ)−αṡ(τ)dτ

= − 1

Γ(α)

1

Γ(1− α)

∫ t

s−1(a)

(t− τ)−α
d

dτ

∫ τ

s−1(a)

(τ − p)α−1Tx(a, p)dpdτ. (34)

We note that by the assumption (A1) we have Tx(a, ·) ∈ L∞(Ua) hence, the right
hand side of (34) may be written in the form

−I1−α
s−1(a)

d

dt

[
Iαs−1(a)Tx(a, ·)(t)

]
= − d

dt

[
I1−α
s−1(a)I

α
s−1(a)Tx(a, ·)(t)

]
= −Tx(a, t).

If we apply the Fubini theorem to the �rst term in (34), then we arrive at the
identity∫ s(t)

a

Dα
s−1(x)T (x, t)dx+

1

Γ(1− α)

∫ t

s−1(a)

(t− τ)−αṡ(τ)dτ = −Tx(a, t). (35)

Applying the substitution τ = s−1(x) we get

1

Γ(1− α)

∫ t

s−1(a)

(t− τ)−αṡ(τ)dτ =
1

Γ(1− α)

∫ s(t)

a

(t− s−1(x))−αdx.

We expect that Tx(·, t) may admit singular behaviour near the phase change point.
Thus, we proceed very carefully. We �x ε > 0 such that a < s(t)− ε, then, by (A1)
we have

−Tx(a, t) =

∫ s(t)−ε

a

Txx(x, t)dx− Tx(s(t)− ε, t).
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Making use of this identity in (35) we obtain∫ s(t)−ε

a

[
Dα
s−1(x)T (x, t)dx− Txx(x, t) +

1

Γ(1− α)
(t− s−1(x))−α

]
dx

= −
∫ s(t)

s(t)−ε

[
Dα
s−1(x)T (x, t)dx+

1

Γ(1− α)
(t− s−1(x))−α

]
dx− Tx(s(t)− ε, t). (36)

Let us choose arbitrary ã such that s(0) < ã < a. Repeating the above calculations
for ã instead of a, we obtain that∫ s(t)−ε

ã

[
Dα
s−1(x)T (x, t)dx− Txx(x, t) +

1

Γ(1− α)
(t− s−1(x))−α

]
dx

= −
∫ s(t)

s(t)−ε

[
Dα
s−1(x)T (x, t)dx+

1

Γ(1− α)
(t− s−1(x))−α

]
dx− Tx(s(t)− ε, t). (37)

Subtracting the sides of (36) and (37) we arrive at∫ a

ã

[
Dα
s−1(x)T (x, t)dx− Txx(x, t) +

1

Γ(1− α)
(t− s−1(x))−α

]
dx = 0 (38)

for arbitrary a, ã ∈ (s(0), s(t)− ε) hence, we may deduce that

Dα
s−1(x)T (x, t)dx− Txx(x, t) +

1

Γ(1− α)
(t− s−1(x))−α = 0 for x ∈ (s(0), s(t)),

(39)
i.e. (12) is proven.

It remains to show (15). From (37) and (39) we infer that

0 = −
∫ s(t)

s(t)−ε

[
Dα
s−1(x)T (x, t)dx+

1

Γ(1− α)
(t− s−1(x))−α

]
dx− Tx(s(t)− ε, t).

In order to obtain additional information about Tx(s(t), t), we employ further reg-
ularity assumptions. Applying (A3) we immediately get

lim
ε→0+

∫ s(t)

s(t)−ε
(t− s−1(x))−αdx = 0 and lim

ε→0+

∫ s(t)

s(t)−ε
Dα
s−1(x)T (x, t)dx = 0. (40)

Making use of (40) we obtain

lim
ε→0+

Tx(s(t)− ε, t) = 0, (41)

hence, we arrive at (15), which �nishes the proof of Theorem 1.
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5 Self-similar solution

This section is devoted to the proof of Theorem 2. The proof will be divided into a few
steps. At �rst we will proceed with formal calculations that will lead us to appropriate
scaling. We introduce parameters a, b, c and we de�ne the function

uλ(x, t) = λcu(λax, λbt). (42)

Our aim is to �nd a, b, c and the curve (s(t), t) such that, if (u, s) is a solution to (19),
then uλ = u.
At �rst, we perform calculations. We note that uxx(x, t) = λ−cλ−2auλxx(λ

−ax, λ−bt) and

Γ(1−α)Dα
s−1(x)u(x, t) =

∫ t

s−1(x)

(t−τ)−αut(x, τ)dτ = λ−cλ−b
∫ t

s−1(x)

(t−τ)−αuλt (λ
−ax, λ−bτ)dτ

= λ−c
∫ tλ−b

λ−bs−1(x)

(t− λbp)−αuλt (λ−ax, p)dp = λ−cλ−bα
∫ tλ−b

λ−bs−1(x)

(tλ−b − p)−αuλt (λ−ax, p)dp

= λ−cλ−bαΓ(1− α)Dα
λ−bs−1(x)u

λ(λ−ax, λ−bt),

i.e.
Dα
s−1(λax)u(λax, λbx) = λ−cλ−bαDα

λ−bs−1(λax)u
λ(x, t).

Hence, if the pair (u, s) is a solution to (19), then

0 = Dα
s−1(λax)u(λax, λbt)− uxx(λax, λbt) +

1

Γ(1− α)
(λbt− s−1(λax))−α

= λ−cλ−bαDα
λ−bs−1(λax)u

λ(x, t)− λ−cλ−2auλxx(x, t) +
1

Γ(1− α)
λ−bα(t− λ−bs−1(λax))−α.

Thus, if we set c = 0 and

b =
2a

α
, (43)

then we get

0 = Dα
λ−bs−1(λax)u

λ(x, t)− uλxx(x, t) +
1

Γ(1− α)
(t− λ−bs−1(λax))−α.

We observe that, if s(t) satis�es

s−1(x) = λ−bs−1(λax), (44)

then u and uλ are the solutions to the same equation. From the identity (43) we infer

that s−1(x) = λ−
2a
α s−1(λax). Hence, the function s−1 ful�lls the functional equation

f(λx) = λ
2
αf(x). To solve this equation, it is enough to write

f(x)− f(λx)

x(1− λ)
=
f(x)

x

1− λ 2
α

1− λ
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and take the limit λ→ 1. Then we get that f ′ = 2
α
f
x
, i.e. f(x) = cx

2
α . Thus, we obtained

that, if there exists a self-similar solution, then the phase interface may have a form

s(t) = c1t
α
2 (45)

for some positive c1. If we denote

c0 = c
− 2
α

1 , (46)

then we may write
s−1(x) = c0x

2
α . (47)

Our aim is to �nd a special solution u to the system (19), (20), (22), when function s is
given by (45). We will proceed as follows. At �rst, we will rewrite the equations (19), (22)
in terms of a new self-similar solution. Subsequently, we will show that in this setting,
assuming appropriate regularity of u, condition (22) implies ux(s(t), t) = 0. Then, we will
solve the problem

Dα
s−1(x)u(x, t) = uxx(x, t)−

1

Γ(1− α)
(t− s−1(x))−α in U, (48)

u(s(t), t) = 0, ux(s(t), t) = 0 for t > 0,

with s given by (45). Then, we will show that the solution satis�es (22). In the �nal
section, we will prove that obtained solution is positive and that for every γ > 0 we may
�nd c1 > 0 such that obtained solution satis�es Dirichlet boundary condition u(0, t) = γ.

5.1 Similarity variable

Let us begin with introducing a similarity variable

ξ = tx−
2
α . (49)

We de�ne function f as follows

f(ξ) = f(tx−
2
α ) := u(x, t). (50)

In the next proposition we establish how the expected regularity properties of u trans-
forms to the properties of f . Furthermore, we will rewrite the conditions (48), (20), (22)
in terms of f and prove that (22) implies vanishing of derivative of f in point c0.

Proposition 1. Let us assume that s is given by (45) and u satis�es (19), (20), (22).
Suppose that u has following regularity. For some k > 1 and every t > 0 there hold
ux(·, t) ∈ L1(0, s(t)), uxx(·, t) ∈ L1(s(t)/k, s(t)). Then, the function f de�ned by (50)

satis�es f ′ ∈ AC([c0, k
2
α c0]), f ∈ C2(c0, k

2
α c0) and for ξ ∈ (c0, k

2
α c0) there hold

1

Γ(1− α)

∫ ξ

c0

(ξ−p)−αf ′(p)dp =

(
2

α

)2

ξ2f ′′(ξ) +

[(
2

α

)2

+
2

α

]
ξf ′(ξ)− (ξ − c0)−α

Γ(1− α)
, (51)

11



f(c0) = 0, (52)(α
2

)2

c−2
0 Γ(α) = lim

b↘c0

d

db

[∫ b

c0

(b− p)α−1f ′(p)dp

]
. (53)

The identity (51) together with regularity of f implies

lim
ξ↘c0

(ξ − c0)αf ′′(ξ) =
(α

2

)2 c−2
0

Γ(1− α)
, (54)

while from (53) we deduce
f ′(c0) = 0. (55)

Proof. Let us begin with a simple calculation,

ut(x, τ) = f ′(τx−
2
α )x−

2
α , (56)

ux(x, t) = − 2

α
f ′(tx−

2
α )tx−

2
α
−1, (57)

uxx(x, t) =

(
2

α

)2

f ′′(tx−
2
α )(tx−

2
α )2x−2 +

2

α
(

2

α
+ 1)f ′(tx−

2
α )(tx−

2
α )x−2. (58)

Applying the substitution p = τx−
2
α we get

Dα
s−1(x)u(x, t) =

1

Γ(1− α)

∫ t

c0x
2
α

(t− τ)−αf ′(τx−
2
α )x−

2
αdτ

=
1

Γ(1− α)

∫ tx−
2
α

c0

(t− x
2
αp)−αf ′(p)dp = x−2 1

Γ(1− α)

∫ tx−
2
α

c0

(tx−
2
α − p)−αf ′(p)dp.

Furthermore, we have
(t− c0x

2
α )−α = x−2(tx−

2
α − c0)−α.

Applying these results in equation (19) with s given by (45), we obtain (51). To show
that (52) holds, it is enough to notice that, since the function u vanishes on the free
boundary, we have

0 = u(s(t), t) = u(c1t
α
2 , t) = f(c0),

where we used (46). Now, we will prove the regularity results. By (57) we get

∞ >

∫ s(t)

0

|ux(x, t)|dx =
2

α

∫ s(t)

0

|f ′(tx−
2
α )|tx−

2
α
−1dx =

∫ ∞
c0

|f ′(ξ)|dξ. (59)

From (58) we obtain in the similar way that

∞ >

∫ s(t)

s(t)/k

|uxx(x, t)|dx =

∫ s(t)

s(t)/k

∣∣∣∣∣
(

2

α

)2

f ′′(tx−
2
α )(tx−

2
α )2x−2 +

2

α
(

2

α
+ 1)f ′(tx−

2
α )(tx−

2
α )x−2

∣∣∣∣∣ dx
12



=

∫ k
2
α c0

c0

∣∣∣∣ 2αf ′′(ξ)ξ1+α
2 t−

α
2 + (

2

α
+ 1)f ′(ξ)ξ

α
2 t−

α
2

∣∣∣∣ dξ
≥ 2

α
c

1+α
2

0 t−
α
2

∫ k
2
α c0

c0

|f ′′(ξ)| dξ − (
2

α
+ 1)kc

α
2
0 t
−α

2

∫ ∞
c0

|f ′(ξ)|dξ for every t > 0

and as a consequence we obtain ∫ k
2
α c0

c0

|f ′′(ξ)| dξ <∞. (60)

The estimates (59) and (60) lead to f ′ ∈ AC([c0, k
2
α c0]). Making use of the absolute

continuity of f ′ in identity (51) we deduce that f ∈ C2(c0, k
2
α c0). Hence, we obtained

postulated regularity results. Now, we shall rewrite the condition (22) in terms of the
function f . We will show that it leads to (53). Let us �x a ∈ (s(t)/k, s(t)). Applying the

substitution p = a−
2
α τ we get that

A ≡ d

dt

[∫ t

s−1(a)

(t− τ)α−1ux(a, τ)dτ

]
= − 2

α

d

dt

[∫ t

c0a
2
α

(t− τ)α−1f ′(τa−
2
α )τa−

2
α
−1dτ

]

= − 2

α
a

2
α
−1 d

dt

[∫ ta−
2
α

c0

(t− a
2
αp)α−1pf ′(p)dp

]
= − 2

α
a
d

dt

[∫ ta−
2
α

c0

(ta−
2
α − p)α−1pf ′(p)dp

]
.

After integrating by parts we obtain

A ≡ − 2

α
a
d

dt

[∫ ta−
2
α

c0

(ta−
2
α − p)α

α
(f ′(p) + pf ′′(p)) dp+

(ta−
2
α − c0)α

α
c0f
′(c0)

]
.

By the continuity of second derivatives of f in (c0, k
2
α c0) we obtain

lim
p↗ta−

2
α

(ta−
2
α − p)α

α
(f ′(p) + pf ′′(p)) = 0.

Therefore, we obtain

A = − 2

α
a1− 2

α

[∫ ta−
2
α

c0

(ta−
2
α − p)α−1 (f ′(p) + pf ′′(p)) dp+ (ta−

2
α − c0)α−1c0f

′(c0)

]
.

Since f ′ ∈ AC([c0, k
2
α c0]) we get

lim
a↗s(t)

∫ ta−
2
α

c0

(ta−
2
α − p)α−1f ′(p)dp = 0.

13



Applying these results together with (45) in (22) we obtain that

α

2
c1t

α
2
−1 =

1

Γ(α)

2

α
c

1− 2
α

1 t
α
2
−1 lim

a↗s(t)

[∫ ta−
2
α

c0

(ta−
2
α − p)α−1pf ′′(p)dp+ (ta−

2
α − c0)α−1c0f

′(c0)

]
.

(61)
We note that∫ ta−

2
α

c0

(ta−
2
α−p)α−1pf ′′(p)dp = −

∫ ta−
2
α

c0

(ta−
2
α−p)αf ′′(p)dp+ta−

2
α

∫ ta−
2
α

c0

(ta−
2
α−p)α−1f ′′(p)dp.

Moreover,

lim
a↗s(t)

∣∣∣∣∣
∫ ta−

2
α

c0

(ta−
2
α − p)αf ′′(p)dp

∣∣∣∣∣ ≤ lim
a↗s(t)

(ta−
2
α − c0)α

∫ ta−
2
α

c0

|f ′′(p)| dp = 0.

Making use of this convergence in (61), we obtain

(α
2

)2

c
2
α
1 Γ(α) = c0 lim

a↗s(t)

[∫ ta−
2
α

c0

(ta−
2
α − p)α−1f ′′(p)dp+ (ta−

2
α − c0)α−1f ′(c0)

]
,

i.e. (α
2

)2

c−2
0 Γ(α) = lim

b↘c0

d

db

[∫ b

c0

(b− p)α−1f ′(p)dp

]
,

where we applied the equality∫ b

c0

(b− p)α−1f ′′(p)dp =
d

db

[∫ b

c0

(b− p)α−1f ′(p)dp

]
− (b− c0)α−1f ′(c0). (62)

Thus, we arrive at (53). To prove (54), we notice that from the equation (51) we get(
2

α

)2

(ξ−c0)αξ2f ′′(ξ) =
(ξ − c0)α

Γ(1− α)

∫ ξ

c0

(ξ−p)−αf ′(p)dp−

[(
2

α

)2

+
2

α

]
(ξ−c0)αξf ′(ξ)+

1

Γ(1− α)
.

The function f ′ is absolutely continuous on some neighborhood of c0 thus, taking the limit
at ξ = c0 we obtain (54).
It remains to show that (53) implies f ′(c0) = 0. We note that

d

db

∫ b

c0

(b− p)α−1f ′(p)dp = Γ(α)∂1−α
c0

f ′(b).

We �x ε > 0. Then, from (53), there exists x0 > c0 such that for every x ∈ (c0, x0)(
α

2c0

)2

− ε ≤ ∂1−α
c0

f ′(x) ≤
(
α

2c0

)2

+ ε.

14



We note that, since f ′ is absolutely continuous we have I1−α
c0

∂1−α
c0

f ′ = f ′. Applying I1−α
c0

to the above inequalities we obtain that for every x ∈ (c0, x0)[(
α

2c0

)2

− ε

]
(x− c0)1−α

Γ(2− α)
≤ f ′(x) ≤

[(
α

2c0

)2

+ ε

]
(x− c0)1−α

Γ(2− α)
,

hence for every x ∈ (c0, x0)(
α

2c0

)2

− ε ≤ f ′(x)(x− c0)α−1Γ(2− α) ≤
(
α

2c0

)2

+ ε.

The last pair of inequalities is equivalent with

lim
x→c0

f ′(x)

(x− c0)1−α =

(
α

2c0

)2
1

Γ(2− α)

and in particular f ′(c0) = 0. This way we �nished the proof of Proposition 1.

We note that, the converse statement also holds. Reverting the calculations, we obtain
the following result.

Corollary 2. Assume that k > 1 and function f is such that f ′ ∈ AC([c0, k
2
α c0]), f ∈

C2(c0, k
2
α c0) and for ξ ∈ (c0, k

2
α c0) the equality (51) holds. Then u(x, t) := f(tx−

2
α )

satis�es

Dα
s−1(x)u(x, t) = uxx(x, t)−

1

Γ(1− α)
(t− s−1(x))−α for s(t)/k < x < s(t), 0 < t,

where s(t) is given by (45). Furthermore, for every t > 0 there hold ux(·, t), uxx(·, t) ∈
L1(s(t)/k, s(t)) and for every x > 0 there holds ut(x, ·) ∈ AC([s−1(x), s−1(kx)]). If in
addition f satis�es (52), then u(s(t), t) = 0. Moreover, the condition (53) implies (22).
As a consequence, (54) and (55) hold and then ux(s(t), t) = 0.

5.2 Existence of solution

Now, we shall �nd the solution to the problem (51)-(53). As it was proven in the previous
section, if the solution exists, then it also satis�es (55) so, it is convenient to consider the
space

XR := {f ∈ C1([c0, R]) : f(c0) = f ′(c0) = 0},

for R ∈ (c0,∞). Firstly, we transform the equation (51) into the weaker form and we
obtain the existence of the solution to the transformed equation in the space XR.

Let us apply the integral Ic0 to both sides of (51)

I2−α
c0

f ′(ξ) =

(
2

α

)2 ∫ ξ

c0

τ 2f ′′(τ)dτ +

[(
2

α

)2

+
2

α

]∫ ξ

c0

τf ′(τ)dτ − (ξ − c0)1−α

Γ(2− α)
.
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If we integrate by parts and take into account that f(c0) = 0, f ′(c0) = 0, then we obtain

I1−α
c0

f(ξ) =

[(
2

α

)2

− 2

α

]∫ ξ

c0

f(τ)dτ−

[(
2

α

)2

− 2

α

]
ξf(ξ)+

(
2

α

)2

ξ2f ′(ξ)− (ξ − c0)1−α

Γ(2− α)
.

We apply again Ic0 to both sides and integrate by parts to get

I2−α
c0

f(ξ) =

[(
2

α

)2

− 2

α

]
I2
c0
f(ξ)−

[
3

(
2

α

)2

− 2

α

]∫ ξ

c0

τf(τ)dτ+

(
2

α

)2

ξ2f(ξ)−(ξ − c0)2−α

Γ(3− α)
.

The above equality has the following form

f(ξ) = Kf(ξ) + g(ξ), (63)

where

Kf(ξ) =
(α

2

)2

ξ−2I2−α
c0

f(ξ) +
[α

2
− 1
]
ξ−2I2

c0
f(ξ) +

[
3− α

2

]
ξ−2

∫ ξ

c0

τf(τ)dτ

and

g(ξ) =
(α

2

)2

ξ−2 (ξ − c0)2−α

Γ(3− α)
.

Proposition 2. Assume that R ∈ (c0,∞). Then there exists the unique f ∈ XR solution
to (63). Furthermore, the obtained solution belongs to C2((c0, R)) and it satis�es (51)
on (c0, R).

Proof. At �rst, we note that g ∈ XR and the operator K is linear and bounded on
XR. After applying Arzeli-Ascoli theorem we deduce that K is compact operator in XR

hence, by Fredholm alternative the equation (63) has the unique solution provided, the
homogeneous equation has only one solution. Indeed, from the estimate

|Kf(ξ)| ≤
[(α

2

)2

c−2
0

(ξ − c0)1−α

Γ(2− α)
+ (1− α

2
)c−2

0 (ξ − c0) + (3− α

2
)c−1

0

] ∫ ξ

c0

|f(τ)|dτ

and Gronwall lemma we deduce that the only solution in XR of f−Kf = 0 is f ≡ 0. Since
the right hand side of (63) belongs to C2((c0, R)), then so does f . Hence, we may invert
the calculations leading to identity (63) and we obtain that f satis�es (51) on (c0, R).

Proposition 3. For every R > 0 there exists exactly one f belonging to C1([c0, R]) ∩
C2(c0, R) which satis�es the system (51) - (55).

Proof. It remains to show that the solution obtained in Proposition 2 satis�es (53)
and (54). We note that (54) is a simple consequence of (51) and continuity of f ′. Let us
show (53). We �x ε > 0. Then, by (54) there exists ξ0 > c0 such that for every c0 < ξ < ξ0(α

2

)2 c−2
0

Γ(1− α)
− ε ≤ (ξ − c0)αf ′′(ξ) ≤

(α
2

)2 c−2
0

Γ(1− α)
+ ε.
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Hence, for every c0 < ξ < ξ0((α
2

)2 c−2
0

Γ(1− α)
− ε
)

(ξ − c0)−α ≤ f ′′(ξ) ≤
((α

2

)2 c−2
0

Γ(1− α)
+ ε

)
(ξ − c0)−α.

Applying 1
Γ(1−α)

Iαc0 to both these inequalities we obtain that for every c0 < ξ < ξ0(α
2

)2 c−2
0

Γ(1− α)
− ε ≤ 1

Γ(1− α)
Iαf ′′(ξ) ≤

(α
2

)2 c−2
0

Γ(1− α)
+ ε.

Hence,

Iαf ′′(ξ)→
(α

2

)2

c−2
0 as ξ → c0.

If we recall that f ′(c0) = 0, then from (62) we have

lim
ξ→c0

d

dξ

∫ ξ

c0

(ξ − p)α−1f ′(p)dp = lim
ξ→c0

Γ(α)Iαf ′′(ξ) = Γ(α)
(α

2

)2

c−2
0

and we arrive at (53).

From Corollary 2 and Proposition 3 we deduce the following result.

Corollary 3. Let f be the solution to (51)-(55) given by Proposition 3. Then, for every

k ∈ (1,∞) function u(x, t) := f(tx−
2
α ) satis�es

Dα
s−1(x)u(x, t) = uxx(x, t)−

1

Γ(1− α)
(t− s−1(x))−α for s(t)/k < x < s(t), t > 0,

u(s(t), t) = 0,

ṡ(t) = − 1

Γ(α)
lim
a↗s(t)

d

dt

[∫ t

s−1(a)

(t− τ)α−1ux(a, τ)dτ

]
,

ux(s(t), t) = 0,

where s(t) is given by (45). Furthermore, for every t > 0 there hold ux(·, t), uxx(·, t) ∈
L1(s(t)/k, s(t)) and for every x > 0 there holds ut(x, ·) ∈ AC([s−1(x), s−1(kx)]).

Now, we shall examine the positivity of u given in the above corollary. By (54) and
the equality

f(ξ) =

∫ ξ

c0

(ξ − τ)f ′′(τ)dτ

we deduce that there exists ξ0 ∈ (c0, R) such that f(ξ) > 0 for ξ ∈ (c0, ξ0). In the next
subsection we shall show that f(ξ) > 0 for each ξ > c0 and we determine the limit at
in�nity.
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5.3 Positivity of solution

Proposition 4. The solution f given by Proposition 3 is positive on (c0,∞). Further-
more,

f(tx−
2
α ) =

∫ c1

xt−
α
2

∞∑
n=0

(LnG(y))dy, if tx−
2
α ∈ [0, c1], (64)

where

(Lh)(x) :=
1

Γ(1− α)

∫ c1

x

∫ c1

µ

(1− p−
2
αµ

2
α )−αh(p)dpdµ, (65)

G(x) =
1

Γ(1− α)

∫ c1

x

(1− c0µ
2
α )−αdµ (66)

and the series converges uniformly on [0, c1]. Moreover, if F (µ) := f(µ−
2
α ), then F ∈

C1([0, c1]) and F ′′ ∈ L1(0, c1).

Proof. In order to prove the positivity of f on (c0,∞) we have to transform the equa-
tion (51). We introduce µ := ξ−

α
2 and

F (µ) := f(µ−
2
α ) = f(ξ). (67)

We note that if ξ ∈ (c0,∞), then µ ∈ (0, c1) and f(c0) = f ′(c0) = 0 implies F (c1) =
F ′(c1) = 0. We will rewrite the identity (51) in terms of function F . We note that

F ′(µ) = − 2

α
µ−

2
α
−1f ′(µ−

2
α ) (68)

and

F ′′(µ) =
2

α
(

2

α
+ 1)µ−

2
α
−2f ′(µ−

2
α ) + (

2

α
)2µ−

2
α
−1µ−

2
α
−1f ′′(µ−

2
α ).

Hence,

µ2F ′′(µ) =

[(
2

α

)2

+
2

α

]
ξf ′(ξ) +

(
2

α

)2

ξ2f ′′(ξ).

Furthermore,∫ c1

µ

(µ−
2
α − p−

2
α )−αF ′(p)dp = − 2

α

∫ c1

µ

(µ−
2
α − p−

2
α )−αp−

2
α
−1f ′(p−

2
α )dp.

Applying the substitution p−
2
α = w we get∫ c1

µ

(µ−
2
α − p−

2
α )−αF ′(p)dp = −

∫ µ−
2
α

c0

(µ−
2
α − w)−αf ′(w)dw = −

∫ ξ

c0

(ξ − w)−αf ′(w)dw.

Using this calculations in (51) we get that function F satis�es

F ′′(µ) = − 1

Γ(1− α)
µ−2

∫ c1

µ

(µ−
2
α − p−

2
α )−αF ′(p)dp+

1

Γ(1− α)
µ−2(µ−

2
α − c0)−α,
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which is equivalent with

F ′′(µ) = − 1

Γ(1− α)

∫ c1

µ

(1− p−
2
αµ

2
α )−αF ′(p)dp+

1

Γ(1− α)
(1− c0µ

2
α )−α. (69)

Integrating this equality from x to c1 and recalling that F ′(c1) = 0 we get

F ′(x) =
1

Γ(1− α)

∫ c1

x

∫ c1

µ

(1−p−
2
αµ

2
α )−αF ′(p)dpdµ− 1

Γ(1− α)

∫ c1

x

(1−c0µ
2
α )−αdµ. (70)

We are going to obtain an explicit formula for F and we will show that F is positive in
[0, c1]. Since f ′ is continuous in [c0,∞) from (68) we may deduce that F ′ ∈ C(0, c1].

Then, identity (70) may be written as

F ′(x) = (LF ′)(x)−G(x) (71)

where the operator L and function G are de�ned by (65) and (66), respectively. We apply
L to both sides of (71) and we deduce that

F ′(x) = (L2F ′)(x)− (G(x) + LG(x)).

Iterating this procedure we obtain that for every n ∈ N and every x ∈ (0, c1) there holds

F ′(x) = (LnF ′)(x)−
n∑
k=0

(LkG)(x). (72)

Let us show that for every �xed x0 ∈ (0, c1)

lim
n→∞

max
x∈[x0,c1]

|(LnF ′)(x)| = 0. (73)

At �rst we note that for any x0 ∈ [0, c1] and h ∈ C([x0, c1]) there holds

‖Lnh‖C([x0,c1]) ≤ ‖h‖C([x0,c1]) ‖L
n1‖

C([x0,c1])
. (74)

Let us focus on the estimate of Ln1. By the Fubini theorem we have

1

Γ(1− α)

∫ c1

x

∫ c1

µ

(1− p−
2
αµ

2
α )−αdpdµ =

1

Γ(1− α)

∫ c1

x

∫ p

x

(1− p−
2
αµ

2
α )−αdµdp.

We note that ∫ p

x

(1− p−
2
αµ

2
α )−αdµ ≤ α

2
B(

α

2
, 1− α)p, (75)

where we applied the substitution w := p−
2
αµ

2
α . Hence, we obtain

0 < L1(x) ≤
Γ(1 + α

2
)

Γ(1− α
2
)
c1(Ix1)(c1) for x ∈ [0, c1). (76)
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We shall show by induction that

0 < Ln1(x) ≤
[

Γ(1 + α
2
)

Γ(1− α
2
)
c1

]n
(Inx 1)(c1) for x ∈ [0, c1) (77)

for each n ∈ N. Indeed, suppose that (77) holds for n = k − 1 and then we have

Lk1(x) = LLk−11(x) =
1

Γ(1− α)

∫ c1

x

∫ p

x

(1− p−
2
αµ

2
α )−αdµ(Lk−11)(p)dp

≤ 1

Γ(1− α)

[
Γ(1 + α

2
)

Γ(1− α
2
)
c1

]k−1 ∫ c1

x

∫ p

x

(1− p−
2
αµ

2
α )−αdµ(Ik−1

p 1)(c1)dp

≤ 1

Γ(1− α)

[
Γ(1 + α

2
)

Γ(1− α
2
)
c1

]k−1 ∫ c1

x

α

2
B(

α

2
, 1− α)p(Ik−1

p 1)(c1)dp,

where in the last inequality we used (75). Thus, we have

Lk1(x) ≤
[

Γ(1 + α
2
)

Γ(1− α
2
)
c1

]k ∫ c1

x

(Ik−1
p 1)(c1)dp =

[
Γ(1 + α

2
)

Γ(1− α
2
)
c1

]k
Ikx1(c1)

and (77) is proven. We note that

(Inx 1)(c1) =
1

Γ(n)

∫ c1

x

(c1 − τ)n−1dτ =
(c1 − x)n

n!
(78)

hence, by (77) we get

0 < Ln1(x) ≤
[

Γ(1 + α
2
)

Γ(1− α
2
)
c2

1

]n
1

n!
. (79)

Applying the estimate (79) in (74) we obtain that

max
x∈[x0,c1]

|(LnF ′)(x)| ≤ max
x∈[x0,c1]

|F ′(x)| max
x∈[x0,c1]

|Ln1(x)|

≤ max
x∈[x0,c1]

|F ′(x)|
(

Γ(1 + α
2
)

Γ(1− α
2
)
c2

1

)n
1

n!

and due to the presence of factorial function in the denominator the convergence (73)
holds. We will show that the series

∑∞
k=0(LkG)(x) is uniformly convergent on [0, c1].

Indeed, applying the substitution w := c0µ
2
α in the de�nition of G we obtain that

G(x) =
1

Γ(1− α)

α

2
c1

∫ 1

c0x
2
α

(1− w)−αw
α
2
−1dw.

Thus,

max
x∈[0,c1]

|G(x)| ≤
Γ(1 + α

2
)

Γ(1− α
2
)
c1.
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Applying estimates (74) and (79) for x0 = 0 we arrive at

max
x∈[0,c1]

|LnG(x)| ≤
Γ(1 + α

2
)

Γ(1− α
2
)
c1

(
Γ(1 + α

2
)

Γ(1− α
2
)
c2

1

)n
1

n!
=: an.

We note that
an+1

an
=

Γ(1 + α
2
)

Γ(1− α
2
)
c2

1

1

n+ 1
→ 0 as n→∞.

Hence, by comparison criterion and d'Alembert criterion for convergence of the series we
obtain that

∑∞
k=0(LkG)(x) is uniformly convergent on [0, c1]. Finally, we may pass to the

limit in (72) to obtain

F ′(x) = −
∞∑
n=0

(LnG)(x) for every x ∈ [0, c1], (80)

where the right hand side converges uniformly. As a consequence, F ∈ C1([0, c1]) and by
(69) we get F ′′ ∈ L1(0, c1).

We note that LnG(x) > 0 for [0, c1) thus,

F ′ < 0 on [0, c1). (81)

Applying the fundamental theorem of calculus, we may write

F (x) = −
∫ c1

x

F ′(y)dy =

∫ c1

x

∞∑
n=0

(LnG)(y)dy for every x ∈ [0, c1]. (82)

Thus, we have obtained that F is positive on [0, c1). We recall that the functions f and
F are related by the equality (67) therefore, we proved the claim.

From Corollary 3 and Proposition 4 we arrive at the following conclusion.

Corollary 4. Let c1 > 0 and s(t) = c1t
α
2 . Let us de�ne

u(x, t) :=

∫ c1

xt−
α
2

∞∑
n=0

(LnG(y))dy for x ∈ [0, s(t)], t > 0,

where L and G are given by (65) and (66), respectively. Then, the above series converges
uniformly and for every n ∈ N there holds LnG(y) > 0 for every y ∈ [0, c1). Moreover,
u(x, t) satis�es

Dα
s−1(x)u(x, t) = uxx(x, t)−

1

Γ(1− α)
(t− s−1(x))−α for 0 < x < s(t),

u(s(t), t) = 0,

ṡ(t) = − 1

Γ(α)
lim
a↗s(t)

d

dt

[∫ t

s−1(a)

(t− τ)α−1ux(a, τ)dτ

]
,

ux(s(t), t) = 0,

for t > 0. Finally, by equality u(x, t) = F (xt−
α
2 ) we get: for every t > 0 there hold

ux(·, t) ∈ C([0, s(t)]), uxx(·, t) ∈ L1(0, s(t)) and for every x > 0 there holds ut(x, ·) ∈
C([s−1(x),∞)).
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Corollary 5. Functions u and s de�ned in Corollary 4 satisfy additionally ux < 0, ut > 0
in {(x, t) ∈ R× (0,∞) : 0 < x < s(t)},

∀ x > 0 ux(x, ·) ∈ L∞(s−1(x),∞) ∩ C([s−1(x),∞)) (83)

and
∀ t > 0 ut(·, t) ∈ L1(0, s(t)) and Dα

s−1(·)u(·, t) ∈ L1(0, s(t)). (84)

In particular, the pair (u, s) satis�es the assumptions (A1) - (A3).

Proof. At �rst, we recall that

ux(x, t) = t−
α
2F ′(µ), ut(x, t) = −α

2
xt−

α
2
−1F ′(µ),

where µ = xt−
α
2 . Hence, by (81) we infer ux < 0, ut > 0. Since, F ′ ∈ C([0, c1]) and for

�xed x > 0 µ is continuous and bounded function of t on [s−1(x),∞), we obtain (83). To
prove (84), we note that for every t > 0

‖u(·, t)‖L1(0,s(t)) =

∫ s(t)

0

ut(x, t)dx = −α
2

∫ c1t
α
2

0

xt−
α
2
−1F ′(xt−

α
2 )dx = −α

2
t
α
2
−1

∫ c1

0

pF ′(p)dp <∞,

because F ′ ∈ C([0, c1]). Using this results we obtain further,∫ s(t)

0

∣∣∣Dα
s−1(x)u(x, t)

∣∣∣ dx =
1

Γ(1− α)

∫ s(t)

0

∫ t

s−1(x)

(t− τ)−αut(x, τ)dτdx

=
1

Γ(1− α)

∫ t

0

(t−τ)−α
∫ s(τ)

0

ut(x, τ)dxdτ = − 1

Γ(1− α)

α

2

∫ c1

0

pF ′(p)dp

∫ t

0

(t−τ)−ατ
α
2
−1dτ

= −
Γ(1 + α

2
)

Γ(1− α
2
)

∫ c1

0

pF ′(p)dp <∞.

Corollary 4 together with (83) and (84) implies that the pair (u, s) satis�es the assump-
tions (A1) - (A3).

5.4 Boundary condition

By Corollary 4, for each c1 > 0 we have obtained self-similar solution of time-fractional
Stefan problem (u, s)c1 such that

u(0, t) =

∫ c1

0

∞∑
n=0

(LnG(y))dy. (85)

Now, we address to Dirichlet boundary condition (21). We investigate whether for given
γ > 0 it is possible to �nd c1 > 0 such that (u, s)c1 satisfy (19)-(22).
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For this purpose we write explicitly the dependence of solution on c1. Recall, that
from (65), (66) and the Fubini theorem we have

(Lc1h)(y) =
1

Γ(1− α)

∫ c1

y

∫ p

y

(1− p−
2
αµ

2
α )−αdµh(p)dp, (86)

Gc1(y) =
1

Γ(1− α)

∫ c1

y

(1− c−
2
α

1 µ
2
α )−αdµ. (87)

The next proposition provides the representation (24) of the self-similar solution.

Proposition 5. If c1 is positive and s(t) = c1t
α
2 , then for t > 0 and x ∈ [0, s(t)] there

holds ∫ c1

xt−
α
2

∞∑
n=0

(Lnc1Gc1(y))dy =

∫ c1

xt−
α
2

H(p, xt−
α
2 )Gc1(p)dp, (88)

where the function H is de�ned by (26)-(29). Furthermore, H − 1 is positive on the set
W := {(p, x) : 0 ≤ x < p} and H is continuous on W .

Proof. We will �nd another recursive formula for Lnc1Gc1 . For 0 ≤ y ≤ p <∞ we denote

M1(p, y) :=
1

Γ(1− α)

∫ p

y

(1− p−
2
αµ

2
α )−αdµ. (89)

Then, we may write

(Lc1h)(y) =

∫ c1

y

M1(p, y)h(p)dp.

Further, we obtain

(L2
c1
Gc1)(y) =

∫ c1

y

M1(p, y)(Lc1Gc1)(p)dp =

∫ c1

y

∫ r

y

M1(p, y)M1(r, p)dpGc1(r)dr.

Thus, if we denote

M2(r, y) :=

∫ r

y

M1(p, y)M1(r, p)dp (90)

then,

(L2
c1
Gc1)(y) =

∫ c1

y

M2(p, y)Gc1(p)dp.

By induction we obtain

(Lnc1Gc1)(y) =

∫ c1

y

Mn(p, y)Gc1(p)dp for n ≥ 1 (91)

where we set

Mn(p, y) :=

∫ p

y

M1(a, y)Mn−1(p, a)da for n ≥ 2. (92)
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Now, we shall obtain the estimate for Mn. By (75) we get

M1(p, y) ≤
Γ(1 + α

2
)

Γ(1− α
2
)
p. (93)

Then,

M2(p, y) ≤
[

Γ(1 + α
2
)

Γ(1− α
2
)

]2

p

∫ p

y

ada ≤
[

Γ(1 + α
2
)

Γ(1− α
2
)
p

]2

(Iy1)(p).

We prove by induction that

Mn(p, y) ≤
[

Γ(1 + α
2
)

Γ(1− α
2
)
p

]n
(In−1
y 1)(p), n ≥ 2. (94)

Indeed, if

Mk(p, y) ≤
[

Γ(1 + α
2
)

Γ(1− α
2
)
p

]k
(Ik−1
y 1)(p),

then by (93) we obtain

Mk+1(p, y) ≤
[

Γ(1 + α
2
)

Γ(1− α
2
)
p

]k ∫ p

y

Γ(1 + α
2
)

Γ(1− α
2
)
a(Ik−1

a 1)(p)da

≤
[

Γ(1 + α
2
)

Γ(1− α
2
)
p

]k+1 ∫ p

y

(Ik−1
a 1)(p)da =

[
Γ(1 + α

2
)

Γ(1− α
2
)
p

]k+1

(Iky 1)(p)

hence, we arrive at (94). Applying (78) in (94) we get the following estimate

Mn(p, y) ≤
[

Γ(1 + α
2
)

Γ(1− α
2
)
p

]n
pn−1

(n− 1)!
for n ≥ 2. (95)

Let us de�ne

N(p, y) :=
∞∑
n=1

Mn(p, y), 0 ≤ y ≤ p <∞. (96)

If R > 0, then by (95) the series converges uniformly on the set

WR = {(p, y) : 0 ≤ y ≤ p ≤ R}. (97)

In particular, N is continuous, non-negative and bounded on WR for each R positive.
If we sum over n the sides of (91), then we get

∞∑
n=1

Lnc1Gc1(y) =

∫ c1

y

N(p, y)Gc1(p)dp. (98)

Therefore, we have∫ c1

xt−
α
2

∞∑
n=0

(Lnc1Gc1(y))dy =

∫ c1

xt−
α
2

Gc1(y)dy +

∫ c1

xt−
α
2

∫ c1

y

N(p, y)Gc1(p)dpdy.
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If we denote

H(p, x) := 1 +

∫ p

x

N(p, y)dy for 0 ≤ x ≤ p, (99)

then after applying Fubini theorem we obtain (88).

Now, we shall investigate the dependence of the self-similar solution obtained in Corol-
lary 4 from the parameter c1. For this purpose we apply the representation given by
Proposition 5 and we denote

Fc1(x) =

∫ c1

x

H(p, x)Gc1(p)dp, (100)

Recall, that the function H is continuous and bounded. We examine the continuity of the
mapping

c1 7→ Fc1(x) =

∫ c1

x

H(p, x)Gc1(p)dp. (101)

The precise formulation is stated below.

Proposition 6. Assume that c1 is positive. Then for every x ∈ [0, c1]

lim
c1↘c1

Fc1(x) = Fc1(x). (102)

Moreover, we have
lim
c1↘0

Fc1(0) = 0 (103)

and
lim
c1↗∞

Fc1(0) =∞. (104)

Furthermore, if γ > 0, then there exists positive c1 such that

Fc1(0) =

∫ c1

0

H(p, 0)Gc1(p)dp = γ. (105)

Proof. Let us �x x ∈ [0, c1] and assume that c1 > c1. Then by formula (100) we get

Fc1(x)− Fc1(x) =

∫ c1

c1

H(p, x)Gc1(p)dp+

∫ c1

x

H(p, x)[Gc1(p)−Gc1(p)]dp.

We note that H is bounded on {(p, x) : 0 ≤ x ≤ p ≤ c1} and

|Gc1(p)| ≤
Γ(1 + α

2
)

Γ(1− α
2
)
c1

hence, the �rst integral converges to zero, if c1 ↘ c1. Next, we write

Gc1(p)−Gc1(p) =
α

2Γ(1− α)

(c1 − c1)

∫ 1

c
− 2
α

1 p
2
α

(1− w)−αw
α
2
−1dw + c1

∫ c
− 2
α

1 p
2
α

c
− 2
α

1 p
2
α

(1− w)−αw
α
2
−1dw

 .
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The �rst integral is uniformly bounded by B(1− α, α
2
) hence, the �rst term converges to

zero, if c1 ↘ c1. The second integral also converges to zero because

∫ c
− 2
α

1 p
2
α

c
− 2
α

1 p
2
α

(1− w)−αw
α
2
−1dw ≤ sup

W⊂[0,1],|W |≤(
c1
c1

)
2
α−1

∫
W

(1− w)−αw
α
2
−1dw → 0,

if c1 ↘ c1. Therefore, we obtained (102).
To get (103) we note that

Fc1(0) =

∫ c1

0

H(p, 0)Gc1(p)dp ≤ ‖H‖L∞(Wc1 )

Γ(1 + α
2
)

Γ(1− α
2
)
c1 → 0,

if c1 ↘ 0.
Recall that N is non-negative, thus we have

Fc1(0) ≥
∫ c1

0

Gc1(p)dp =
α

2Γ(1− α)
c1

∫ c1

0

∫ 1

c
− 2
α

1 p
2
α

(1− w)−αw
α
2
−1dwdp

≥ α

2Γ(1− α)
c1

∫ c1

0

∫ 1

c
− 2
α

1 p
2
α

(1− w)−αdwdp =
α

2Γ(2− α)
c1

∫ c1

0

(1− c−
2
α

1 p
2
α )1−αdp

=

(
α
2

)2
c2

1

Γ(2− α)
B(2− α, α

2
) =

αΓ(1 + α
2
)

2Γ(2− α
2
)
c2

1 →∞ as c1 →∞

and we proved (104)
Finally, it remains to prove that for each γ ∈ (0,∞) there exists c1 ∈ (0,∞) such that

Fc1(0) = γ.

From (102) we deduce the continuity of (0,∞) 3 c1 7→ Fc1(0). Applying the Darboux
property together with (103), (104) we deduce that this map is onto (0,∞).

To prove Theorem 2, it remains to collect the obtained results.

Proof of Theorem 2. The result is a direct consequence of Corollary 4, Corollary 5, Propo-
sition 5 and Proposition 6.

Proof of Corollary 1. We note that Corollary 1 is a simple consequence of Theorem 2.
Indeed, from the formula (24) we obtain that

ux(0, t) = −t−
α
2

[
c1

Γ(1 + α
2
)

Γ(1− α
2
)

+

∫ c1

0

N(p, 0)Gc1(p)dp

]
=: −t−

α
2 g(c1).

Since N is continuous and bounded on WR for every R > 0 and Gc1 is continuous
with respect to c1, we obtain that g is continuous as well. Furthermore, g(0) = 0 and
limc1→∞ g(c1) =∞. Thus, Corollary 1 follows from the Darboux property.
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