References
- He, J-H., The simplest approach to nonlinear oscillators. Results in
Physics, 2019; 15: 102546.
- He JH. The simpler, the better: Analytical methods for nonlinear
oscillators and fractional oscillators. Journal of Low Frequency
Noise, Vibration and Active Control, 2019; 38(3-4): 1252-1260.
- J.H. He, F.Y. Ji. Taylor series solution for Lane-Emden equation.
Journal of Mathematical Chemistry, 2019; 57(8): 1932-1934.
- H.Hu. Solution of a Duffing-harmonic oscillator by an iteration
procedure. J. Sound Vibration, 2006; 298: 446-452.
- H.Hu, J.H.Tang. Solution of a Duffing-harmonic oscillator by the
method of harmonic balance. J. Sound Vibration, 2006; 298: 637-639.
- Zhao-ling Tao. Frequency-amplitude relationship of the
Duffing-harmonic oscillator. Topological methods in nonlinear
analysis, 2008; 31: 279-285.
- Beléndez A, A. Hernández, T. Beléndez, E. Fernández, M. L. Álvarez and
C. Neipp. Application of He’s Homotopy Perturbation Method to the
Duffing-Harmonic Oscillator. International Journal of Non-linear
Sciences and Numerical Simulation, 2007; 8: 79-88.
- J.H. He, F.Y. Ji. Two-scale mathematics and fractional calculus for
thermodynamics. Thermal Science, 2019; 23 (4):
2131-2133.
- Ain, Q.T., He, J.H. On two-scale dimension and its applications.
Thermal Science, 2019; 23(3B): 1707-1712.
- J.H.He. Some asymptotic methods for strongly nonlinear equations. Int.
J. Mod. Phys. B, 2006; 20 (10): 1141-1199.
- He, J.H.
Homotopy Perturbation
Method with an Auxiliary Term. Abstract and Applied Analysis, 2012:
857612.
- He, J.H.
Homotopy perturbation
method with two expanding parameters. Indian Journal of Physics,
2014; 88: 193-196.
- J.H.He An improved Amplitude-frequency formulation for nonlinear
oscillators. International journal of nonlinear sciences and
numerical simulation, 2008; 9(2): 211-212.
- Zhong-fu Ren, Gui-fang Hu. He’s frequency-amplitude formulation with
average residuals for nonlinear oscillators. Journal of Low Frequency
Noise, Vibration and Active Control, 2019; 38(3-4): 1050-1059.
- Zhong-Fu Ren, Jin-Bin Wu. He’s frequency–amplitude formulation for
nonlinear oscillator with damping. Journal of Low Frequency Noise,
Vibration and Active Control, 2019; 38(3-4):1045-1049.
- Qingli Wang, Xiangyang Shi, Zhengbiao Li. A short remark on Ren–Hu’s
modification of He’s frequency–amplitude formulation and the
temperature oscillation in a polar bear hair. Journal of Low Frequency
Noise, Vibration and Active Control, 2019; 38(3-4):1374-1377.
- Zhong-Fu Ren, Gui-Fang Hu. Discussion on the accuracies of He’s
frequency–amplitude formulation and its modification with average
residuals. Journal of Low Frequency Noise, Vibration and Active
Control, 2019; 38(3-4):1713-1715.
- Zhao-Ling Tao, Guo-Hua Chen, Kai Xian Bai. Approximate
frequency–amplitude relationship for a singular oscillator. Journal
of Low Frequency Noise, Vibration and Active Control, 2019;
38(3-4):1036-1040.
- Gui-Fang Hu, Shu-Xian Deng. Ren’s frequency–amplitude formulation for
nonlinear oscillators. Journal of Low Frequency Noise, Vibration and
Active Control, 2019; 38(3-4):1681-1686.
- Chun-Hui He, Jian-Hong Wang, Shao-wen Yao. A complement to
period/frequency estimation of a nonlinear oscillator. Journal of Low
Frequency Noise, Vibration and Active Control, 2019; 38(3-4): 992-995.
- Dan Tian, Zhi Liu. Period/frequency estimation of a nonlinear
oscillator. Journal of Low Frequency Noise, Vibration and Active
Control, 2019; 38(3-4): 1629-1634.
- Zhao-Ling Tao, Guo-Hua Chen, Yan-Mei Xue. Frequency and solution of an
oscillator with a damping. Journal of Low Frequency Noise, Vibration
and Active Control, 2019; 38(3-4): 1699-1702.
- Naveed Anjum, He JH. Laplace transform: Making the variational
iteration method easier, Applied Mathematics Letters, 2019, 92(1):
134-138
- Xiao-Xia Li, Chun-Hui He. Homotopy perturbation method coupled with
the enhanced perturbation method. Journal of Low Frequency Noise,
Vibration and Active Control, 2019; 38(3-4):1399-1403.
- Dan-Ni Yu, Ji-Huan He, Andres G Garcıa. Homotopy perturbation method
with an auxiliary parameter for nonlinear oscillators. Journal of Low
Frequency Noise, Vibration and Active Control, 2019;
38(3-4):1540-1554.
- Adamu, M.Y., Ogenyi, P. New approach to parameterized homotopy
perturbation method. Thermal Science, 2018; 22(4): 1865-1870.
- Liu, Z.J., Adamu, M.Y., Suleiman, E. Hybridization of homotopy
perturbation method and Laplace transformation for the partial
differential equations. Thermal Science, 2017; 21: 1843-1846.
- Wu Y., He, J.H. Homotopy perturbation method for nonlinear oscillators
with coordinate dependent mass. Results in Physics, 2018; 10:
270–271.
- Yasir Nawaz, Muhammad Shoaib Arif, Mairaj Bibi, Mehvish Naz, Rabia
Fayyaz. An effective modification of He’s variational approach to a
nonlinear oscillator. Journal of Low Frequency Noise, Vibration and
Active Control, 2019; 38(3-4):1013-1022.
- J.H. He. A modified Li-He’s variational principle for plasma,
International Journal of Numerical Methods for Heat and Fluid Flow,
(2019) DOI:
10.1108/HFF-06-2019-0523
- J.H. He, Lagrange Crisis and Generalized Variational Principle for 3D
unsteady flow, International Journal of Numerical Methods for Heat and
Fluid Flow, 2020; 30(3):1189-1196.