References
  1. He, J-H., The simplest approach to nonlinear oscillators. Results in Physics, 2019; 15: 102546. 
  2. He JH. The simpler, the better: Analytical methods for nonlinear oscillators and fractional oscillators. Journal of Low Frequency Noise, Vibration and Active Control, 2019; 38(3-4): 1252-1260.
  3. J.H. He, F.Y. Ji. Taylor series solution for Lane-Emden equation. Journal of Mathematical Chemistry, 2019; 57(8): 1932-1934.
  4. H.Hu. Solution of a Duffing-harmonic oscillator by an iteration procedure. J. Sound Vibration, 2006; 298: 446-452.
  5. H.Hu, J.H.Tang. Solution of a Duffing-harmonic oscillator by the method of harmonic balance. J. Sound Vibration, 2006; 298: 637-639.
  6. Zhao-ling Tao. Frequency-amplitude relationship of the Duffing-harmonic oscillator. Topological methods in nonlinear analysis, 2008; 31: 279-285.
  7. Beléndez A, A. Hernández, T. Beléndez, E. Fernández, M. L. Álvarez and C. Neipp. Application of He’s Homotopy Perturbation Method to the Duffing-Harmonic Oscillator. International Journal of Non-linear Sciences and Numerical Simulation, 2007; 8: 79-88.
  8. J.H. He, F.Y. Ji. Two-scale mathematics and fractional calculus for thermodynamics. Thermal Science, 2019; 23 (4): 2131-2133.
  9. Ain, Q.T., He, J.H. On two-scale dimension and its applications. Thermal Science, 2019; 23(3B): 1707-1712.
  10. J.H.He. Some asymptotic methods for strongly nonlinear equations. Int. J. Mod. Phys. B, 2006; 20 (10): 1141-1199.
  11. He, J.H. Homotopy Perturbation Method with an Auxiliary Term. Abstract and Applied Analysis, 2012: 857612.
  12. He, J.H. Homotopy perturbation method with two expanding parameters. Indian Journal of Physics, 2014; 88: 193-196.
  13. J.H.He An improved Amplitude-frequency formulation for nonlinear oscillators. International journal of nonlinear sciences and numerical simulation, 2008; 9(2): 211-212.
  14. Zhong-fu Ren, Gui-fang Hu. He’s frequency-amplitude formulation with average residuals for nonlinear oscillators. Journal of Low Frequency Noise, Vibration and Active Control, 2019; 38(3-4): 1050-1059.
  15. Zhong-Fu Ren, Jin-Bin Wu. He’s frequency–amplitude formulation for nonlinear oscillator with damping. Journal of Low Frequency Noise, Vibration and Active Control, 2019; 38(3-4):1045-1049.
  16. Qingli Wang, Xiangyang Shi, Zhengbiao Li. A short remark on Ren–Hu’s modification of He’s frequency–amplitude formulation and the temperature oscillation in a polar bear hair. Journal of Low Frequency Noise, Vibration and Active Control, 2019; 38(3-4):1374-1377.
  17. Zhong-Fu Ren, Gui-Fang Hu. Discussion on the accuracies of He’s frequency–amplitude formulation and its modification with average residuals. Journal of Low Frequency Noise, Vibration and Active Control, 2019; 38(3-4):1713-1715.
  18. Zhao-Ling Tao, Guo-Hua Chen, Kai Xian Bai. Approximate frequency–amplitude relationship for a singular oscillator. Journal of Low Frequency Noise, Vibration and Active Control, 2019; 38(3-4):1036-1040.
  19. Gui-Fang Hu, Shu-Xian Deng. Ren’s frequency–amplitude formulation for nonlinear oscillators. Journal of Low Frequency Noise, Vibration and Active Control, 2019; 38(3-4):1681-1686.
  20. Chun-Hui He, Jian-Hong Wang, Shao-wen Yao. A complement to period/frequency estimation of a nonlinear oscillator. Journal of Low Frequency Noise, Vibration and Active Control, 2019; 38(3-4): 992-995.
  21. Dan Tian, Zhi Liu. Period/frequency estimation of a nonlinear oscillator. Journal of Low Frequency Noise, Vibration and Active Control, 2019; 38(3-4): 1629-1634.
  22. Zhao-Ling Tao, Guo-Hua Chen, Yan-Mei Xue. Frequency and solution of an oscillator with a damping. Journal of Low Frequency Noise, Vibration and Active Control, 2019; 38(3-4): 1699-1702.
  23. Naveed Anjum, He JH. Laplace transform: Making the variational iteration method easier, Applied Mathematics Letters, 2019, 92(1): 134-138
  24. Xiao-Xia Li, Chun-Hui He. Homotopy perturbation method coupled with the enhanced perturbation method. Journal of Low Frequency Noise, Vibration and Active Control, 2019; 38(3-4):1399-1403.
  25. Dan-Ni Yu, Ji-Huan He, Andres G Garcıa. Homotopy perturbation method with an auxiliary parameter for nonlinear oscillators. Journal of Low Frequency Noise, Vibration and Active Control, 2019; 38(3-4):1540-1554.
  26. Adamu, M.Y., Ogenyi, P. New approach to parameterized homotopy perturbation method. Thermal Science, 2018; 22(4): 1865-1870.
  27. Liu, Z.J., Adamu, M.Y., Suleiman, E. Hybridization of homotopy perturbation method and Laplace transformation for the partial differential equations. Thermal Science, 2017; 21: 1843-1846.
  28. Wu Y., He, J.H. Homotopy perturbation method for nonlinear oscillators with coordinate dependent mass. Results in Physics, 2018; 10: 270–271.
  29. Yasir Nawaz, Muhammad Shoaib Arif, Mairaj Bibi, Mehvish Naz, Rabia Fayyaz. An effective modification of He’s variational approach to a nonlinear oscillator. Journal of Low Frequency Noise, Vibration and Active Control, 2019; 38(3-4):1013-1022.
  30. J.H. He. A modified Li-He’s variational principle for plasma, International Journal of Numerical Methods for Heat and Fluid Flow, (2019) DOI: 10.1108/HFF-06-2019-0523
  31. J.H. He, Lagrange Crisis and Generalized Variational Principle for 3D unsteady flow, International Journal of Numerical Methods for Heat and Fluid Flow, 2020; 30(3):1189-1196.