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Abstract. Cyclooctane is mainly used in the synthesis of cyclooctanone, cyclooctanol, caprolactam

and octanoic acid. At the same time, it can also be used as an intermediate in organic synthesis and a

chemical reagent. By discussing the resistance distance between any two points of cyclooctane derivative

Tn(C8), some invariants about resistance distance are obtained, such as Kirchhoff index, multiplicative

degree-Kirchhoff index, and additive degree-Kirchhoff index. Topological index can help scholars better

understand some physical and chemical properties of compounds, and we obtain the closed expressions

of valency-based topological indices for Tn(C8), such as ABC index, GA index, etc.

Keywords: Valency-based topological index, Resistance distance, Kirchhoff index, (multiplicative

/additive)Degree-Kirchhoff index.

1. Introduction

Topological descriptor is a numerical constant related to the composition of chemical structure,

physical properties, chemical reactions and other biological activities. QSAR model is a regression or

classification model, which is often used in chemistry and control system engineering. Historically, QSAR

model was first used to predict the boiling point of compounds. In organic chemistry, we view atoms

as vertices and covalent bonds between atoms as edges. Chemical graph theory is a topological branch

of mathematical chemistry. Graph theory is usually applied to the mathematical modeling of chemical

phenomena. Suppose the graph G is a simple connected graph. Vertex set and edge set are V (G) and

E(G), respectively. If there is an edge between two vertices i, j, we say it is adjacent, and this edge is

represented as ij. Take |V (G)| = n, |E(G)| = m, and let di be recorded as the degree of vertex i. For

terms in the text, please refer to [1]. The shortest length of path between vertices i and j is recorded

as d(i, j) [2] in the graph G. If each side of the graph G is replaced by unit resistor, then simple graph

G can be transformed into a circuit diagram in physics. Using Ohm’s law, and the Kirchhoff’s law, the

resistance distance between any two vertices can be obtained. The resistance distance between any two

vertices i and j is defined as rij , also called effective resistance [3]. It is a tool to measure distance driven

by point network and chemical Applications. It has been proved to be of significant help in the study of

graph structure and chemistry. It has been proved to be of significant help in the study of graph structure

and chemistry.

The specific expression of Kirchhoff index Kf(G) [3]is

Kf(G) =
1

2

∑
i,j∈V (G)

rij .

The Kirchhoff index is a relatively successful topological descriptor. For its specific applications, you can

refer to [4–7].

Chen and Zhang [8] proposed multiplicative degree-Kirchhoff index,

Kf∗(G) =
∑

i,j∈V (G)

di · djrij .
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The additive degree-Kirchhoff index [9] is proposed by Gutman and recorded as

Kf+(G) =
∑

i,j∈V (G)

(di + dj)rij .

From the definitions of Kirchhoff index, multiplicative degree-Kirchhoff index, and additive degree-

Kirchhoff index, it can be seen that these three invariants are all functions of resistance distance rij . For

their applications in other aspects, please refer to [10–15].

In addition to the Kirchhoff index, there are other successful indices. These indices are about valency-

based topological indices. The geometric-arithmetic index GA(G) [16] is defined as

GA(G) =
∑

ij∈E(G)

2
√
di · dj

di + dj
.

Gutman puts forward the second multiplication Zagreb index [17], and the expression is

π2(G) =
∏

ij∈E(G)

di · dj .

The atom-bond connectivity index was proposed by Estrada [18] and defined as

ABC(G) =
∑

ij∈E(G)

√
di + dj − 2

di · dj
.

For more extensive applications of M2(G), you can refer to [20,21].

The most successful index is the Randić index [22], which is defined as

R(G) =
∑

ij∈E(G)

1√
di · dj

.

The general Randić [23] is regarded as

Rα(G) =
∑

ij∈E(G)

[di · dj ]α;α = 1,−1,−1

2
,

1

2
.

In addition, when α = 1
2 , andα = 1 is used in this paper, it is called reciprocal Randić index [24] and

the second Zagreb index [19], abbreviated as RR(G) and M2(G).

It is widely used in physical chemistry and mathematics [25,26]. The topological indices used in other

papers as shown in Table 1. As everyone knows, New Corona virus has swept the world in recent years.

It poses a great threat to the safety of people’s lives and property all over the world. The topological

index provides the possibility of selecting drugs for the treatment of New Corona virus. By calculating

the topological index of drugs, it can better understand the physical, chemical and biological activities

of drugs [27–29].

Inspired by reference [30], this paper naturally came up with the idea of calculating the resistance

distance of any two points in a new cyclic compounds Tn(C8), as shown in Fig. 1, so as to obtain the

invariant of Tn(C8) about the resistance distance and some related indices based on the degree of this

compound.

For the rest of the paper, the second section mainly makes some preparations and introduces some

Lemmas and theorems. The third section is main results. The last section is a general conclusion.
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Figure 1: The cyclooctane derivatives Tn(C8).

Table 1: The rest of valency-based topological indices in this paper.

Topological indices Mathematical expressions
hyper Zagreb HM(G) =

∑
ij∈E(G)(di + dj)

2

harmonic H(G) =
∑
ij∈E(G)

2
di+dj

reduced reciprocal Randić RRR(G) =
∑
ij∈E(G)

√
(di − 1) · (dj − 1)

modified first-multiplicative Zagreb π∗1(G) =
∏
ij∈E(G)(di + dj)

general sum-connectivity χα(G) =
∏
ij∈E(G)(di + dj)

α

reduced second Zagreb RM2(G) =
∏
ij∈E(G)((di − 1) + (dj − 1))

augmented Zagreb AZ(G) =
∏
ij∈E(G)(

di·dj
di+dj−2 )3

sum-connectivity SC(G) =
∏
ij∈E(G)

1√
di+dj

2. Preliminaries

The resistance distance we derive mainly depends on the definition. The graph is divided into subgraphs

with n vertices. On the hand, the resistance distance of the subgraphs is calculated, and on the other

hand the resistance distance of the whole graph is calculated.

2.1. N-division of Graphs

Definition 2.1. [31]The graph T is divided into two subgraphs T1 and T2 by n-separation, then

(a.)V (T ) = V (T1)
⋃
V (T2).

(b.)|V (T1)
⋂
V (T2)| = n.

(c.)E(T ) = E(T1)
⋃
E(T2).

(d.)E(T1)
⋂
E(T2) = ∅.

The set V (T1)
⋂
V (T2) = {t1, t2...tn} is known as n-separation of T .

Lemma 2.1. [31] Suppose G is a 1-separation graph with vertex j ∈ V (T ), and G is divided into T1 and

T2 subgraphs through vertex j. If a ∈ V (T1), and b ∈ V (T2),

rT (a, b) = rT1
(a, j) + rT2

(j, b).

Lemma 2.2. [31] Suppose T is a 2-separation graph with two vertices u, v ∈ V (T ), and T is divided into

T1 and T2 subgraphs through vertices u, v. If a, b ∈ V (T1),

rT (a, b) = rT1
(a, b)− [rT1(a, u) + rT1(b, u)− rT1(a, v)− rT1(b, u)]2

4[rT1
(u, v) + rT2

(u, v)]
.
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2.2. Cyclooctane Derivatives

In this paper, the cyclic compound we consider is composed of a cyclic graph with a base graph of 8

vertices C8.

Definition 2.2. [32] A class of cyclooctane derivatives, defined as Tn(C8), is to copy n subgraphs and

paste ad−1 vertex from each subgraph. Subgraphs Gd and Gd−1 share ai−1 vertex, while Gd and Gd+1

are connected by a vertices. The set I is the common vertices of each base graph, I = {a1, a2, ...an}.
Definition 2.3. Let T = C8, take any two vertices i, j from this circle and construct it in the way

shown in the figure below. The shorter path between vertices i, j is D1 and the longer path is D2. The

set of O represents other vertices excluding vertices i and j in the base graph(C8). Take p = d(i, j).

Theorem 2.1 Let Tn(G) = Tn(C8) be cyclooctane derivatives with i, j in different (C8), and i ∈ V (T1).

Take f be the number of base graphs between vertices i and j inclusive, and j ∈ V (Tf ). Let vertices a, b

be the connecting vertices of graphs Tt−1Tt and TtTt+1, respectively. Then

rTn(G)(i, j) = rT (i, b) + rT (j, a) + (f − 2)rT (a, b)

− [rT (i, a) + rT (j, b)− rT (i, y)− rT (j, a)− 2(f − 1)rT (a, b)]2

4nrT (a, b)
.

If i, j in the same base graphs,

rTn(G)(i, j) = rT (i, j)− [rT (i, a) + rT (j, b)− rT (i, b)− rT (j, a)]2

4nrT (a, b)
.

Proof. We derive i, j in different base graphs T , i.e set i ∈ V (T1), j ∈ V (Tf ). Let Tn(C8) be the

cyclooctane derivatives with the 2-separation u, v, and i, j ∈ Tn(C8). Take i = u, j = v. Let T1 be the

graph where vertices i and j are located, and the remaining graph is T2. (As shown in Figure 1.) Using

Lemma 2.1, where we have

rT1
(i, j) = rT (i, v) + (f − 2)rT (u, v) + rT (u, j),

rT1(i, u) = rT (i, a), rT1(j, v) = rT (j, b).

Similarly,

rT1(i, v) = rT (i, b) + (f − 1)rT (a, b),

rT1
(j, u) = rT (j, a) + (f − 1)rT (a, b),

rT1
(u, v) = frT (a, b), and rT2

(u, v) = (n− f)rT (a, b).

Substitute the results of the above formulas into Lemma 2.2,

rTn(G)(i, j) = rT (i, b) + rT (j, a) + (f − 2)rT (a, b)

− [rT (i, a) + rT (j, b)− rT (i, b)− (f − 1)rT (a, b)− rT (j, a)− (f − 1)rT (a, b)]2

4[frT (a, b) + (n− f)rT (a, b)]

= rG(i, b) + rG(j, a) + (f − 2)rG(a, b)

− [rT (i, a) + rT (j, b)− rT (i, b)− rT (j, a)− 2(f − 1)rT (a, b)]2

4nrT (a, b)
.

In another case, when i, j ∈ T , one has

rT1
(u, v) + rT2

(u, v) = nrT (a, b),

as desired.
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3. Main results

In this section, we mainly derive the degree Kirchhoff index and its topological indices of cyclooctane

derivatives Tn(C8), as shown in Table 1.

3.1. Resistance Distance

Theorem 3.1. Let C8 be represented as a cyclic graph with 8 vertices. In this circle, the formulas of

the rC8(i, j) between any i, j are

rC8(i, j) =
(8− d(i, j))d(i, j)

8
,

where d(i, j) is the distance between vertices i, j. The results can be easily verified by reference [4].

Theorem 3.2. Let G be cyclooctane derivatives Tn(C8). If i ∈ Cmp
, j ∈ Cmq

, p 6= q, then

rG(i, j) =
(pi + a)(8− pi − a) + b(8− b) + pi(8− pi)(d− 2)

8

− [pj(8− pj − 2b) + pi(8− pi − 2a)− 2dpi(8− pi)]2

32npi(8− pi)
.

If i, j ∈ Cmp
, one has

rG(i, j) =

{
(b−a)(8−b+a)

8 − pi(b−a)2
8n(8−pi) ; i, j ∈ Dp

(b+a)(8−b−a)
8 − [p2i+pi(2a−8)+pj(8−2b−pj)]

2

32npi(8−pi) ; i ∈ Dp, j ∈ Dq and p 6= q
,

where, d represents the number of base graph between vertices i and j, inclusive, pi is the path length

between ut and vt without vertex i, pj is the path length between ui and vi without vertex j, a is the

distance from vertex u to vertex i containing i, b is the distance from vertex u to vertex j containing j.

If i, j ∈ I, replace the distance between vertices x, y in the base graph with pi. If pi = pj , at this point,

note that b ≥ a.

Proof. In the first case, if i ∈ C8p, j ∈ C8q, set p = 1, q = d. According to Theorem 3.1 has

rC8(i, y) =
pi + a

8− pi − a
, rC8(j, x) =

a(8− a)

8
,

rC8
(j, y) =

pj + b

8− pj − b
, rC8

(i, x) =
b(8− b)

8
, rC8

(x, y) =
pi(8− pi)

8
,

by substituting these equations into Theorem 2.1, specific results can be obtained.

Next, we consider that i and j are in the same C8. In the first case, if i, j ∈ C8, and b ≥ a, the path

length between vertices i, j is b − a, substitute it into Theorem 2.1 and simplify it rC8
(i, j) = (b−a)

8−b+a .

This contains pi = pj . One can get the desired results.

Another case, if i ∈ Dp, j ∈ Dq, and d(i, j) = a + b, similarly, rC8
(i, j) = (a+b)(8−b−a)

8 . Using

Theorem 2.1, we can get the desired results.

3.2. The Kirchhoff Index

Theorem 3.3. The Kirchhoff index of cyclooctane derivatives Tn(C8) is

Kf(Tn(C8)) =
1

48
(915n3 + 2304n2 − 1343n+ 496).
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Proof. Our purpose is to derive the resistance distance between any two points i, j in the Tn(C8).

Therefore, it is discussed in detail in the following six cases.

Case 1. i, j in the different base graphs, and i, j ∈ D1,

Figure 2: The Tn(C8) is divided into two subgraphs G1 and G2, in the Case 1.

Kf1(Tn(C8)) = n

n∑
d=2

2∑
a=0

2∑
b=0

(k(8− b) + (3− a)(5 + a) + 15(d− 2)

8
− 5(b− a+ 3(d− 1))2

24n

)
.

Case 2. i, j in the different base graphs, and i, j ∈ D2,

Figure 3: The Tn(C8) is divided into two subgraphs G1 and G2, in the Case 2.

Kf2(Tn(C8)) = n

n∑
d=2

4∑
a=1

4∑
b=1

( (3 + a)(5− a) + b(8− b) + 15(d− 2)

8
− 3(a− b+ 8 + 3(d− 1)− 8d)2

24n

)
.

Case 3. i, j in the different base graph, and i ∈ D2, j ∈ D1,

Kf3(Tn(C8)) = n

n∑
d=2

4∑
a=1

3∑
b=1

( (3 + a)(5− a) + b(8− b) + 15(d− 2)

8
− (9(d− 1) + 3(a+ b+ 8− 8d)− 8b)2

120n

)
.

Case 4. i, j in the same base graph, and i, j ∈ D1,

Kf4(Tn(C8)) = n

n∑
a=2

2∑
b=a+1

( (b− a)(8− b+ a)

8
− 5(b− a)2

120n

)
.
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Figure 4: The Tn(C8) is divided into two subgraphs G1 and G2, in the Case 3.

Figure 5: The Tn(C8) is divided into two subgraphs G1 and G2, in the Case 4.

Figure 6: The Tn(C8) is divided into two subgraphs G1 and G2, in the Case 5.
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Case 5. i, j in the same base graph, and i ∈ D2, j ∈ D1,

Kf5(Tn(C8)) = n

4∑
a=1

3∑
b=l

( (b+ a)(8− b− a)

8
− (3(b+ a)− 8b)2

120n

)
.

Case 6. i, j in the same base graph, and i, j ∈ D2

Figure 7: The Tn(C8) is divided into two subgraphs G1 and G2, in the Case 6.

Kf6(Tn(C8)) = n

4∑
a=1

4∑
b=a+1

( (b− a)(8− b+ a)

8
− 3(b− a)2

40n

)
.

Thus,

Kf(Tn(C8)) =
1

2
(Kf1(Fn(C8)) +Kf2(Fn(C8)) + 2Kf3(Fn(C8))

+2Kf4(Fn(C8)) + 2Kf5(Fn(C8)) + 2Kf6(Fn(C8)))

=
1

48
(915n3 + 2304n2 − 1343n+ 496).

3.3. The degree-Kirchhoff index

Theorem 3.4. The expressions of multiplicative degree-Kirchhoff index and additive degree-Kirchhoff

index of a class of cyclooctane derivatives Tn(C8) are expressed as

Kf+(Tn(C8)) = = 2n(−13 + 90n+ 35n2),

Kf∗(Tn(C8)) = =
16n

3
(−5 + 36n+ 15n2).

Proof. Let G be the cyclooctane derivatives Tn(C8). The degree-Kirchhoff index is calculated by using

a similar method to calculate Kirchhoff index. If i ∈ F, di = 4. Otherwise, di = 2.

Case 1. i, j in the different base graphs, i, j ∈ D1, and this case just includes that i or j belongs to set

I,

Kf+1 (G) = (4 + 2) · 2n ·
n∑
d=2

2∑
b=a

(b(8− b) + 15(d− 1)

8
− 5[b+ 3(d− 1)]2

24n

)
.
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Similarly,

Kf∗1 (G) = 4 ∗ 2 · 2n ·
n∑
d=2

2∑
b=a

(b(8− b) + 15(d− 1)

8
− 5[b+ 3(d− 1)]2

24n

)
.

Case 2. i, j in the different base graphs, and i, j ∈ I,

Kf+2 (G) = (4 + 4) · n ·
n∑
d=2

2∑
b=1

(15(n− d+ a)(d− 1)

8

)
.

Similarly,

Kf∗2 (G) = 4 ∗ 4 · n ·
n∑
d=2

2∑
b=1

(15(n− d+ 1)(d− 1)

8

)
.

Case 3. i, j in the different base graphs, i, j ∈ O, and i, j ∈ D1,

Kf+3 (G) = (2 + 2) · n ·
n∑
d=2

2∑
a=1

2∑
b=a

(b(8− b) + (3− a)(5 + a) + 15(d− 2)

8
− 5[b− a+ 3(d− 1)]2

24n

)
.

Similarly,

Kf∗3 (G) = 2 ∗ 2 · n ·
n∑
d=2

2∑
a=1

2∑
b=1

(b(8− b) + (3− a)(5 + a) + 15(d− 2)

8
− 5[b− a+ 3(d− 1)]2

24n

)
.

Case 4. i, j in the different base graphs, i, j ∈ O, and i, j ∈ D2,

Kf+4 (G) = (2 + 2) · n ·
n∑
d=2

4∑
a=1

4∑
b=1

(b(8− b) + (3 + a)(5− a) + 15(d− 2)

8
− 3[a− b+ 8 + 3(d− 1)− 8d]2

40n

)
.

Similarly,

Kf∗4 (G) = 2 ∗ 2 · n ·
n∑
d=2

4∑
a=1

4∑
b=1

(b(8− b) + (3 + a)(5− a) + 15(d− 2)

8
− 3[a− b+ 8 + 3(d− 1)− 8d]2

40n

)
.

Case 5. i, j in the different base graphs, j ∈ I, and i ∈ D1,

Kf+5 (G) = (4 + 2) · 2n ·
n∑
d=2

4∑
a=1

( (3 + a)(5− a) + 15(d− 1)

8
− 3[a+ 5d]2

40n

)
.

Similarly,

Kf∗5 (G) = 4 ∗ 2 · 2n ·
n∑
d=2

4∑
a=1

( (3 + a)(5− a) + 15(d− 1)

8
− 3[a+ 5d]2

40n

)
.
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Case 6. i, j in the different base graphs, j ∈ D1, and i ∈ D2,

Kf+6 (G) = (2 + 2) · 2n ·
n∑
d=2

4∑
a=1

2∑
b=1

( (3 + a)(5− a) + b(8− b) + 15(d− 2)

8

− [9(d− 1) + 3(b+ a− 8− 8d)− 8k]2

120n

)
.

Similarly,

Kf∗6 (G) = 2 ∗ 2 · 2n ·
n∑
d=2

4∑
a=1

2∑
b=1

( (3 + a)(5− a) + b(8− b) + 15(d− 2)

8

− [9(d− 1) + 3(b+ a− 8− 8d)− 8k]2

120n

)
.

Case 7. i, j in the same base graphs, i, j ∈ D1, and i ∈ I,

Kf+7 (G) = (2 + 4) · 2n ·
2∑
b=1

(b(8− b)
8

− 5b2

24n

)
.

Similarly,

Kf∗7 (G) = 2 ∗ 4 · 2n ·
2∑
b=1

(b(8− b)
8

− 5b2

24n

)
.

Case 8. i, j in the same base graphs, i, j ∈ D1, and i, j ∈ O,

Kf+8 (G) = (2 + 2) · 2n ·
2∑
a=1

2∑
b=a+1

( (b− a)(8− b+ a)

8
− 5(b− a)2

24n

)
.

Similarly,

Kf∗8 (G) = 2 ∗ 2 · 2n ·
2∑
a=1

2∑
b=a+1

( (b− l)(8− b+ a)

8
− 5(b− a)2

24n

)
.

Case 9. i, j in the same base graphs, i ∈ D2, and j ∈ I,

Kf+9 (G) = (2 + 4) · 2n ·
4∑
a=1

( (3 + a)(5− a)

8
− 3(5− a)2

40n

)
.

Similarly,

Kf∗9 (G) = 2 ∗ 4 · 2n ·
4∑
a=1

( (3 + a)(5− a)

8
− 3(5− a)2

40n

)
.
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Case 10. i, j in the same base graphs, i ∈ D2, j ∈ D1, and i, j ∈ O,

Kf+10(G) = (2 + 2) · 2n ·
4∑
a=1

2∑
b=1

( (b+ a)(8− b− a)

8
− [3(b+ a)− 8b]2

120n

)
.

Similarly,

Kf∗10(G) = 2 ∗ 2 · 2n ·
4∑
a=1

2∑
b=1

( (b+ a)(8− b− a)

8
− [3(b+ l)− 8b]2

120n

)
.

Case 11. i, j in the same base graphs, i, j ∈ D2, and i, j ∈ O,

Kf+11(G) = (2 + 2) · 2n ·
4∑
a=1

4∑
b=1

( (b− a)(8− b+ a)

8
− 3(b− a)2

40n

)
.

Similarly,

Kf∗11(G) = 2 ∗ 2 · 2n ·
4∑
a=1

4∑
b=1

( (b− a)(8− b+ a)

8
− 3(b− l)2

40n

)
.

Thus,

Kf+(G) = Kf+1 (G) +Kf+2 (G) +Kf+3 (G)...+Kf+11(G)

= 2n(−13 + 90n+ 35n2),

as desired.

Similarly,

Kf∗(G) = Kf∗1 (G) +Kf∗2 (G) +Kf∗3 (G) + ...+Kf∗11(G)

=
16n

3
(−5 + 36n+ 15n2).

The proof is completed.

Figure 8: The function images of the (degree) Kirchhoff index in Tn(C8).
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Table 2: Vertex partition of Tn(C8) degree-based on vertices.

(du, dv) (4,2) (2,2)
number of edges 4n 4n

3.4. Others topological indices

Theorem 3.5. Suppose G is a cyclooctane derivatives, then its related topological indices are

(1)GA(G) = (
8
√

2

3
+ 4)n.

(2)ABC(G) = 4
√

2n.

(3)HM(G) = 208n

(4)H(G) =
10

3
n.

(5)R(G) = (2 +
√

2)n.

(6)Rα(G) = 4n(4α + 8α).

(7)RR(G) = (
√

2 + 1)8n.

(8)RRR(G) = (
√

3 + 1)4n.

(9)M2(G) = 48n.

(10)π2(G) = (32)4n.

(11)π∗1(G) = (24)4n.

(12)χα(G) = (24)4nα

(13)RM2(G) = (2)8n.

(14)AZ(G) = (8)8n.

(15)SC(G) = (

√
6

12
)4n.

Proof. Let G be a kind of Cyclooctane derivatives. It’s easy to know that V (G) = 7n, and E(G) = 8n.

If vertex i ∈ I, di = 4, else di = 2. According to the degree of vertices, we can get the results shown in

Table 2. Combined with the topological descriptor formula, we have

GA(G) =
∑

ij∈E(G)

2
√
di · dj

di + dj

= 4n ∗ 2 ∗
√

4 ∗ 2

4 + 2
+ 4n ∗ 2 ∗

√
2 ∗ 2

2 + 2

= (
8
√

2

3
+ 4)n.

12



ABC(G) =
∑

ij∈E(G)

√
di + dj − 2

di · dj

= 4n ∗
√

4 + 2− 2

4 ∗ 2
+ 4n ∗

√
2 + 2− 2

2 ∗ 2

= 4
√

2n.

HM(G) =
∑

ij∈E(G)

(di + dj)
2

= 4n ∗ (4 + 2)2 + 4n ∗ (2 + 2)2

= 208n.

H(G) =
∑

ij∈E(G)

2

di + dj

= 4n ∗ 2

4 + 2
+ 4n ∗ 2

2 + 2

=
10

3
n.

R(G) =
∑

ij∈E(G)

1√
di · dj

= 4n ∗ 1√
4 + 2

+ 4n ∗ 1√
2 + 2

= (2 +
√

2)n.

Rα(G) =
∑

ij∈E(G)

[di · dj ]α

= 4n ∗ 8α + 4n ∗ 4α

= 4n(4α + 8α).

RR(G) =
∑

ij∈E(G)

√
di · dj

= 4n ∗
√

4 ∗ 2 + 4n ∗
√

2 ∗ 2

= (
√

2 + 1)8n.

RRR(G) =
∑

ij∈E(G)

√
(di − 1) · (dj − 1)

= 4n ∗
√

(4− 1) · (2− 1) + 4n ∗
√

(2− 1) · (2− 1)

= (
√

3 + 1)4n.

13



M2(G) =
∑

ij∈E(G)

di · dj

= 4n ∗ 4 ∗ 2 + 4n ∗ 2 ∗ 2

= 48n.

π2(G) =
∏

ij∈E(G)

di · dj

= (4 ∗ 2)4n · (2 · 2)4n

= (32)4n.

π∗1(G) =
∏

ij∈E(G)

(di + dj)

= (4 + 2)4n · (2 + 2)4n

= (24)4n.

χα(G) =
∏

ij∈E(G)

(di + dj)
α

= (4 + 2)α
4n · (2 + 2)α

4n

= (24)4nα.

RM2(G) =
∏

ij∈E(G)

((di − 1) + (dj − 1))

= [(4− 1) + (2− 1)]4n · [(2− 1) + (2− 1)]4n

= (2)8n.

AZ(G) =
∏

ij∈E(G)

(
di · dj

di + dj − 2
)3

= [(
4 ∗ 2

4 + 2− 2
)3]4n · [( 2 ∗ 2

2 + 2− 2
)3]4n

= (8)8n.

14



SC(G) =
∏

ij∈E(G)

1√
di + dj

= [
1√

4 + 2
]4n · [ 1√

2 + 2
]4n

= (

√
6

12
)4n.

Finally, in order to intuitively see the change trend of several indexes,we draw the curves of several

indices in the same coordinate. From the Figure 9, we can clearly see that the change of M2(G) is

significantly higher than that of other indices.

Figure 9: Variation trend of several indices of Tn(C8).

4. Conclusion

In this paper, we mainly define a cyclic compound Tn(C8), which can also be called cyclic network.

We mainly derive the resistance distance between any two vertices of Tn(C8), and obtain its Kirchhoff

expression. Using its vertex degree distribution, its (degree) Kirchhoff index and other related topolog-

ical indexes are calculated. Using these invariants, we can predict some physical or properties of this

compound, and provide some references for others to study this compound.
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