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Abstract

In this paper, we apply the tan(�/2) expansion and the Kudryashov general
approaches to the time fractional perturbed Radhakrishnan-Kundu -Lakshmanan
(RKL) equation. These integration schemes provide a number of optical soliton
solutions of the model. The solutions registered with constraint conditions on the
parameters that follow their existence criteria. To the constraint conditions, the
solutions offer various transmission signals through optical fibres, such as double
periodic optical solitons, combo optical periodic and rogue waves, combo peri-
odic and shock waves, combo periodic and solitons, and combo double singular
solitons. Moreover, after interaction of rogue and periodic waves, it is shown that
the rogue waves are going to diminish after a certain time keeping periodic na-
ture of the interaction. In fact, interaction of periodic and rogue waves produces
periodic rogue type breather waves, that indicates the amplitude of the rogue
waves gradually decreases, and vanishes after a certain time. Some dynamical
signals are plotted in the graphs by picking suitable values on the parameters.

Keywords The time fractional perturbed Radhakrishnan-Kundu -Lakshmanan (RKL)
equation; the tan(�/2) expansion method; the Kudryashov general method; optical
soliton; Rogue waves.

1 Introduction

An exciting subclass of nonlinear evolution equations (NLEEs) can be expressed com-
plex nonlinear dynamical phenomena, and provide deep quantitative insight into the
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dynamical systems under examination. The nonlinear Schrodinger type NLEEs are fa-
mous examples of such special subclass that facilitate deeper conceptual understanding
of complex nonlinear physical aspects such as quantum electronics, photonics, electro-
magnetism, plasma physics and fluid dynamics [1, 2, 3, 4]. In fact, they are exactly
solvable dynamical equations, they offer an interesting area of research in the theory of
optical solitons to investigate soliton transmission through optical fibres, and in multi-
dimensional applications in mathematical physics [5, 6].
Recently, a lot of efforts have been devoted to relate the topic of optical solitons in view
point of nonlinear signals in communication sciences [7, 8, 9, 10, 11, 12, 13, 14]. The
models: Lakshmanan-Porsezian-Daniel model, complex Ginzburg-Landau equation,
Kundu-Eckhaus equation, Fokas-Ienells equation, Kaup-Newll model, Radhkrishnan-
Kundu-Lakshmanan equation, resonant nonlinear Schrodinger’s equation and the ref-
erences therein, were successfully addressed dynamical transmission solitons solutions
[10, 11, 12, 15, 16, 17, 18].
A systematic approach for obtaining the solutions of various type of NLEEs was intro-
duced in [2, 14, 19, 20, 21, 22, 23, 24]. However, our aim is to examine combo optical
soliton and rogue wave solutions of the dimensionless form of the conformable time
fractional perturbed Radhkrishnan-Kundu-Lakshmanan equation [25]. It is based on
the tan(�/2) expansion and the proposed Kudryashov general approaches [13, 24]. The
nonlinear combo optical solitons often lead to combo double singular solitons, combo
rogue and periodic solitons, double periodic optical solitons and optical double soli-
tons. The nature of these solitons is still unknown to the time fractional perturbed
RKL model.

2 The description of the tan(�/2) expansion and the
Kudryashov general methods

In the section, we briefly review the tan(�/2) expansion approach and the proposed
Kudrayashov general approaches to solve the nonlinear evoluton equations (NLEEs)
[13, 14, 24, 26]. These methods are highly effective and algebraic schemes to drive the
combo optical solitons, periodic double solitons and rogue waves, and to deep study
the nonlinear properties of the NLEEs. ,
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2.1 The tan(�/2) expansion approach

This method has been extensively used to obtain a number of exact solutions for a class
of NLEEs [13, 14] . The main procedure of the approach is as follows:
Step 1. Let us consider the general form of a nonlinear evolution equation as:

Γ(uxx, uxt, utt, ut, un, . . . .) = 0, (2.1)

where u(x, t) is an unknown function, Γ is a polynomial of u(x, t) and its derivatives.
The NLEE (2.1) can be converted to the following ordinary differential equation via
the travelling variable transformation form ζ = kx− ωt as

H(Ψ,Ψ′,Ψ′′, . . . ) = 0. (2.2)

The constants k and ω indicate the wave number and speed of the wave respectively.
Step 2. One considers the general form of a trail solution [13] of (2.2) is

Ψ(�) =
n∑
r=0
Lr tanr(�2 ), (2.3)

where Lr are free constants to be later calculated, such that Ln 6= 0, and the � is a
function of ζ, which satisfies the condition,

d�
dζ

= λ sin(�(ζ)) + µ cos(�(ζ)) + ν. (2.4)

The condition (2.4) leads to the following nineteen solutions:

Set 1: If Λ = λ2+µ2−ν2 < 0, and µ−ν 6= 0, then�(ζ) = 2 tan−1
[

λ
µ−ν −

√
−Λ
µ−ν tan(

√
−Λ
2 ζ̄)

]
.

Set 2: If Λ = λ2+µ2−ν2 > 0, and µ−ν 6= 0, then�(ζ) = 2 tan−1
[

λ
µ−ν +

√
Λ

µ−ν tanh(
√

Λ
2 ζ̄)

]
.

Set 3: If Λ = λ2 + µ2 − ν2 > 0, and µ 6= 0 and ν = 0, then
�(ζ) = 2 tan−1

[
λ
µ

+
√
λ2+µ2

µ
tanh(

√
λ2+µ2

2 ζ̄)
]
.

Set 4: If Λ = λ2 + µ2 − ν2 < 0, and µ = 0 and ν 6= 0, then
�(ζ) = 2 tan−1

[
−λ
ν

+
√
ν2−λ2

ν
tan(

√
ν2−λ2

2 ζ̄)
]
.

Set 5: If Λ = λ2 + µ2 − ν2 > 0, and µ− ν 6= 0 and λ = 0, then
�(ζ) = 2 tan−1

[√
µ+ν
µ−ν tanh(

√
µ2−ν2

2 ζ̄)
]
.

Set 6: If λ = 0, and ν = 0, then �(ζ) = tan−1
[
e2µζ̄−1
e2µζ̄+1 ,

2eµζ̄
e2µζ̄+1

]
.
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Set 7: If λ = 0, and ν = 0, then �(ζ) = tan−1
[

e2µζ̄

e2µζ̄+1 ,
2eµζ̄−1
e2µζ̄+1

]
.

Set 8: If λ2 + µ2 = ν2, then �(ζ) = 2 tan−1
[
λζ̄+2

(µ−ν)ζ̄

]
.

Set 9: If λ = µ = ν = kλ, then �(ζ) = 2 tan−1
[
ekλζ̄ − 1

]
.

Set 10: If λ = ν = kλ and µ = −λk, then �(ζ) = −2 tan−1
[

ekλζ̄

ekλζ̄−1

]
.

Set 11: If ν = λ, then �(ζ) = −2 tan−1
[

(λ+µ)eµζ̄−1
(λ−µ)eµζ̄−1

]
.

Set 12: If λ = ν, then �(ζ) = 2 tan−1
[

(µ+ν)eµζ̄+1
(µ−ν)eµζ̄−1

]
.

Set 13: If ν = −λ, then �(ζ) = 2 tan−1
[
eµζ̄+µ−λ
eµζ̄−µ−λ

]
.

Set 14: If µ = −ν, then �(ζ) = 2 tan−1
[

λeλζ̄

1−νeλζ̄

]
.

Set 15: If µ = 0 and λ = ν, then �(ζ) = −2 tan−1
[
νζ̄+2
νζ̄

]
.

Set 16: If λ = 0 and µ = ν, then �(ζ) = 2 tan−1
[
νζ̄
]
.

Set 17: If λ = 0 and µ = −ν, then �(ζ) = −2 tan−1
[

1
νζ̄

]
.

Set 18: If λ = 0 and µ = 0, then �(ζ) = νζ +K.

Set 19: If µ = ν, then �(ζ) = 2 tan−1
[
eλζ̄−ν
λ

]
,

where ζ̄ = ζ +K.
Step 3. Inserting the above solutions into (2.3) together with (2.4) and substituting
into (2.2), then we obtain a system of algebraic equations. After a direct computation
of such system of algebraic equations, the calculation provides the constraints L0,Lr
and ω. Finally, putting the constraints into (2.3) with the above set of solutions, they
lead to the exact solutions of the NLEEs (2.1).

2.2 The Kudryashov general approach

The Kudryashov approach is a unique method to obtain the generalized periodic double
solitons and rogue waves of the NLEEs [24, 26]. We extend this method to a general
quadratic nonlinear Riccati equation. The algorithm of the KG method is as follows:
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We first construct the ODE (2.2) from the NLEEs (2.1) to similar algorithm of the
Step 1 in the section 2.1. Consider a series solutions of (2.2) [24, 26],

Ψ(ζ) =
n∑
r=0
Lr(F (ζ))r, (2.5)

where Lr are constants to be later calculated with Ln 6= 0. The function F (ζ) satisfies
a general form of the Ricatti equation,

F ′(ζ) = A+BF (ζ) + CF 2(ζ), (2.6)

which leads to twenty seven solutions of four different clusters as follows:
Cluster 1. For Λ = B2 − 4AC > 0 and BC 6= 0 or AC 6= 0, the solutions of (2.6)
leads to :

F1 = −1
2C

{
B +

√
Λ tanh

(√
Λ

2 ζ

)}
,

F2 = −1
2C

{
B +

√
Λ coth

(√
Λ

2 ζ

)}
,

F3 = −1
2C

{
B +

√
Λ
[
tanh

(√
Λζ
)
± i sech(

√
Λζ)

]}
,

F4 = −1
2C

{
B +

√
Λ
[
coth

(√
Λζ
)
± csch(

√
Λζ)

]}
,

F5 = −1
4C

{
2B +

√
Λ
[
tanh

(√
Λ

4 ζ

)
+ coth

(√
Λ

4 ζ

)]}
,

F6 = 1
2C

−B +

√
(M2 +N2)(Λ)−M

√
Λ cosh(

√
Λζ)

M sinh(
√

Λζ) +N

 ,

F7 = 1
2C

−B −
√

(N2 −M2)(Λ) +M
√

Λ sinh(
√

Λζ)
M cosh(

√
Λζ) +N

 ,
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where M and N are two non-zero constants with N2 −M2 > 0.

F8 =
2A cosh

(√
Λ

2 ζ
)

√
Λ sinh

(√
Λ

2 ζ
)
−B cosh

(√
Λ

2 ζ
) ,

F9 =
−2A sinh

(√
Λ

2 ζ
)

B sinh
(√

Λ
2 ζ

)
−
√

Λ cosh
(√

Λ
2 ζ

) ,
F10 =

2A cosh
(√

Λζ
)

√
Λ sinh

(√
Λζ
)
−B cosh

(√
Λζ
)
± i
√

Λ
,

F11 =
2A sinh

(√
Λζ
)

√
Λ cosh

(√
Λζ
)
−B sinh

(√
Λζ
)
±
√

Λ
,

F12 =
4A sinh

(√
Λ

4 ζ
)

cosh
(√

Λ
4 ζ

)
−2B sinh

(√
Λ

4 ζ
)

cosh
(√

Λ
4 ζ

)
+ 2
√

Λ cosh2
(√

Λ
4 ζ

)
−
√

Λ
.

Cluster 2. For Λ = B2 − 4AC < 0 and BC 6= 0 or AC 6= 0, the solutions of (2.6)
leads to :

F13 = 1
2C

{
−B +

√
−Λ tan

(√
−Λ
2 ζ

)}
,

F14 = −1
2C

{
B +

√
−Λ cot

(√
−Λ
2 ζ

)}
,

F15 = 1
2C

{
−B +

√
−Λ

[
tanh

(√
−Λζ

)
± sec(

√
−Λζ)

]}
,

F16 = −1
2C

{
B +

√
−Λ

[
cot

(√
−Λζ

)
± csc(

√
−Λζ)

]}
,

F17 = 1
4C

{
−2B +

√
−Λ

[
tan

(√
−Λ
4 ζ

)
+ cot

(√
−Λ
4 ζ

)]}
,

F18 = 1
2C

−B +
±
√

(M2 +N2)(−Λ)−M
√
−Λ cos(

√
−Λζ)

M sin(
√
−Λζ) +N

 ,
F19 = 1

2C

−B − ±
√

(N2 −M2)(−Λ) +M
√
−Λ sin(

√
−Λζ)

M cos(
√
−Λζ) +N

 ,
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where M and N are two non-zero constants with N2 −M2 > 0.

F20 =
−2A cos

(√
−Λ
2 ζ

)
√
−Λ sin

(√
−Λ
2 ζ

)
+B cos

(√
−Λ
2 ζ

) ,
F21 =

2A sin
(√
−Λ
2 ζ

)
−B sin

(√
−Λ
2 ζ

)
+
√
−Λ cos

(√
−Λ
2 ζ

) ,
F22 =

−2A cos
(√
−Λζ

)
√
−Λ sin

(√
−Λζ

)
+B cos

(√
−Λζ

)
± i
√
−Λ

,

F23 =
2A sin

(√
−Λζ

)
√
−Λ cos

(√
−Λζ

)
−B sin

(√
−Λζ

)
±
√
−Λ

,

F24 =
4A sin

(√
−Λ
4 ζ

)
cos

(√
−Λ
4 ζ

)
−2B sin

(√
−Λ
4 ζ

)
cos

(√
−Λ
4 ζ

)
+ 2
√
−Λ cos2

(√
−Λ
4 ζ

)
−
√
−Λ

,

Cluster 3. For A = 0 and BC 6= 0, the solutions of (2.6) leads to :

F25 = −BM1

C{M1 + cosh(Bζ)− sinh(Bζ)} ,

F26 = −B{cosh(Bζ) + sinh(Bζ)}
C{M1 + cosh(Bζ) + sinh(Bζ)} ,

where M1 is an arbitrary constant.
Cluster 4. For C 6= 0, B = 0 and A = 0, the solutions of (2.6) leads to :

F27 = −1
Cζ +N1

,

where N1 is an arbitrary constant. In addition, for the particular cases on the auxiliary
equation (2.6), gives the results:
Case 1. For A = 0, B = −1 and C = 1,

F (ζ) = 1
1 + heζ

,

Case 2. For B = 0 and C = 1,

F (ζ) = −
√
−A tanh(

√
−Aζ), A < 0,

F (ζ) = −
√
−A coth(

√
−Aζ), A < 0,

F (ζ) =
√
A tan(

√
Aζ), A > 0,

F (ζ) = −
√
A cot(

√
Aζ), A > 0,

F (ζ) = −1
ζ
, A = 0.
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3 The time fractional perturbed Radhakrishnan-
Kundu-Lakshmanan equation

In this article, to apply the tan(�/2) expansion and the Kudryashov general meth-
ods, we consider the dimensionless time fractional perturbed Radhakrishnan-Kundu-
Lakshmanan equation (RKLE) [25]. The RKL model is as follows:

iDq
tV + αVxx + β|V|2V − iγVx − iδ(|V|2V)x − iε(|V|2)xV − iρVxxx = 0, 0 < q ≤ 1.(3.1)

The complex valued function V(x, t) in the model (3.1) represents the wave profile
of solitons. The fractional time-based progration can be formed in terms of Dq

tV .
The coefficients α is the GVD, β the nonlinearity, δ the spatio-temporal third order
dispersion, and γ the effect of self-steepening, and ε, ρ the effect of dispersions [16].
The time fractional perturbed RLK equation coincides to the original RKL model for
the value q = 1 [7, 8, 9, 16]. The conformable fractional derivative Tq(G) of a function
G : (0,∞)→ R of order q is defined by [27],

Tq(G)(t) = lim
ε→0

G(t+ εt1−q)− G(t)
ε

, t > 0, 0 < q < 1. (3.2)

The fractional derivative Tq(G) satisfies the following properties [27]:

i. Tq(l1G1 + l2G2) = l1Tq(G1) + l2Tq(G2), l1, l2 ∈ R,

ii. Tq(tp) = ptp−q, p ∈ R,

iii. Tq(hG) = GTq(h) + hTq(G),

iv. Tq(Gh ) = hTq(G)−GTq(h)
h2 ,

v. If G is differentiable, then Tq(G)(t) = t1−q dG
dt
.

This model considered here could have wider applicability and other aspects as opti-
cal double solitons, periodic solitons and rogue type wave solutions to scrutinise via
the tan(�/2) expansion and the Kudryashov general methods. These methods make
the RKL equation to be highly interesting. In this section, we apply the complex
transformation variable with fractional time to (2.1).
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3.1 The ODE form of the time fractional perturbed RKL
equation

One considers the transformation complex variable with time fraction [25] as

V(x, t) = H(ζ)eiφ(x,t), (3.3)

whereH(ζ) is the amplitude portion with ζ = σ(x−τ tq
q

), the phase component φ(x, t) =
−κx + w tq

q
+ ς, and the constants τ, ε, w, κ are respectively, the soliton velocity, the

phase constant, the wave number and the frequency of the soliton. Inserting (3.3) into
(2.1), the calculations lead to the following ordinary differential equations,

σ2(α + 3κρ)H′′ + (β − κδ)H3 − (w + γκ+ ακ2 + ρκ3)H = 0, (3.4)
σ2ρH′′′ − (τ + 2ακ+ γ + 3κ2ρ)H′ − (3δ + 2ε)H2H′ = 0, (3.5)

from real and imaginary parts. Now integrating (3.5) once, it gives [25],

3σ2ρH′′ − 3(τ + 2ακ+ γ + 3κ2ρ)H− (3δ + 2ε)H3 = 0. (3.6)

As both (3.6) and (3.4) are satisfied by H, so it provides the following relations,

κ = −3βρ+ 2αε+ 3αδ
6ρ(δ + ε) , (3.7)

τ = ρ(w + γκ+ ακ2 + ρκ3)
α + 3κρ − (3ρκ2 + 2ακ+ γ). (3.8)

4 Applications

In this section, we examine the nature of the soliton solutions and the dynamical
phenomena of the time fractional perturbed RKL equation (3.1). To construct the
significant soliton solutions, we apply the tan(�/2) expansion and the Kudryashov
general methods to the corresponding differential equation (3.6) of (3.1).

4.1 Application of the tan(�/2) method to the time fractional
perturbed RKL equation

We now compute the balance number of (3.6), which leads to n = 1. Then the trail
solution (2.3) for the tan(�/2) expansion approach takes the form,

Ψ(�) = L0 + L1 tan(�2 ). (4.1)
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Putting (4.1) into (3.6) along with (2.4), we attain a polynomial of sin(ζ) and cos(ζ)
functions, and then after equating coefficients, lead to a system of equations. The
solutions of the system of equations via symbolic computation, yield the following
constraints:

σ = ±

√√√√−6κ2ρ+ 4ακ+ 2γ + 2τ
ρ(λ2 + µ2 − ν2) ,

L0 = ∓iλ

√√√√ 3(3κ2ρ+ 2ακ+ γ + τ)
(3δ + 2ε)(λ2 + µ2 − ν2) ,

L1 = ±i(µ− ν)

√√√√ 3(3κ2ρ+ 2ακ+ γ + τ)
(3δ + 2ε)(λ2 + µ2 − ν2) . (4.2)

Now if we combine the above constraints in (4.1), and substituting into (3.3), then the
solutions Set [1-19] of (2.4) provide the following thirteen valid exact soliton solutions
under the conditions on the constraints to the model (3.1):
V1,1(x, t) = i

√
3(3κ2ρ+2ακ+γ+τ)
(3δ+2ε)(λ2+µ2−ν2)

{
∓λ± (µ− ν)

[
λ

µ−ν −
√
−Λ
µ−ν tan(

√
−Λ
2 ζ̄)

]}
ei(−κx+w t

q

q
+ς),

V1,2(x, t) = i
√

3(3κ2ρ+2ακ+γ+τ)
(3δ+2ε)(λ2+µ2−ν2)

{
∓λ± (µ− ν)

[
λ

µ−ν +
√

Λ
µ−ν tanh(

√
Λ

2 ζ̄)
]}
ei(−κx+w t

q

q
+ς),

V1,3(x, t) = i
√

3(3κ2ρ+2ακ+γ+τ)
(3δ+2ε)(λ2+µ2)

{
∓λ± µ

[
λ
µ

+
√
λ2+µ2

µ
tanh(

√
λ2+µ2

2 ζ̄)
]}
ei(−κx+w t

q

q
+ς),

V1,4(x, t) = i
√

3(3κ2ρ+2ακ+γ+τ)
(3δ+2ε)(λ2−ν2)

{
∓λ∓ ν

[
−λ
ν

+
√
ν2−λ2

ν
tan(

√
ν2−λ2

2 ζ̄)
]}
ei(−κx+w t

q

q
+ς),

V1,5(x, t) = i
√

3(3κ2ρ+2ακ+γ+τ)
(3δ+2ε)(µ2−ν2)

{
±(µ− ν)

[√
µ+ν
µ−ν tanh(

√
µ2−ν2

2 ζ̄)
]}
ei(−κx+w t

q

q
+ς),

V1,6(x, t) = i
√

3(3κ2ρ+2ακ+γ+τ)
(3δ+2ε)µ2

{
±µ tan

(
1
2 tan−1

[
2eµζ̄
e2µζ̄+1

])}
ei(−κx+w t

q

q
+ς),

V1,7(x, t) = i
√

3(3κ2ρ+2ακ+γ+τ)
(3δ+2ε)µ2

{
±µ tan

(
1
2 tan−1

[
e2µζ̄−1
e2µζ̄+1

])}
ei(−κx+w t

q

q
+ς),

V1,8(x, t) = i
√

3(3κ2ρ+2ακ+γ+τ)
(3δ+2ε)k2λ2

{
∓kλ∓ 2kλ

[
tan

(
− tan−1

[
ekλζ

ekλζ−1

])]}
ei(−κx+w t

q

q
+ς),

V1,9(x, t) = i
√

3(3κ2ρ+2ακ+γ+τ)
(3δ+2ε)µ2

{
∓λ± (µ− λ)

[
tan

(
− tan−1 (λ+µ)eµζ̄−1

(λ−µ)eµζ̄−1

)]}
ei(−κx+w t

q

q
+ς),

V1,10(x, t) = i
√

3(3κ2ρ+2ακ+γ+τ)
(3δ+2ε)µ2

{
∓ν ± (µ− ν)

[
(µ+ν)eµζ̄+1
(µ−ν)eµζ̄−1

]}
ei(−κx+w t

q

q
+ς),

V1,11(x, t) = i
√

3(3κ2ρ+2ακ+γ+τ)
(3δ+2ε)µ2

{
∓λ± (µ+ λ)

[
eµζ̄+µ−λ
eµζ̄−µ−λ

]}
ei(−κx+w t

q

q
+ς),

V1,12(x, t) = i
√

3(3κ2ρ+2ακ+γ+τ)
(3δ+2ε)λ2

{
∓λ∓ 2ν

[
λeλζ̄

1−νeλζ̄

]}
ei(−κx+w t

q

q
+ς)

V1,13(x, t) =
√

3(3κ2ρ+2ακ+γ+τ)
(3δ+2ε)ν2

{
∓ν tan

[
νζ+K

2

]}
ei(−κx+w t

q

q
+ς),

where ζ =
√

2(3κ2ρ+2ακ+γ+τ)
(4AC−B2)ρ (x− τ tq

q
).

The graphical description, it is shown that V1,1(x, t), V1,4(x, t) and V1,13(x, t) solutions
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provide double period optical solitons. In particular, we present the 3D and 2D graphs
in Figure 1 for the solution V1,1(x, t). The figure 1 shows that amplitude of the wave
start from zero and gradually increases for time goes on. Again, for choosing suitable
values of the parameters, the solution V1,13(x, t) presents an interaction of rogue and
periodic waves, that produce periodic rogue waves. Moreover, it is clear that the
rogue waves are going to diminish after a certain time, keeping periodic nature of the
interaction.
The solutions V1,2(x, t), V1,3(x, t) and V1,5(x, t), represent interaction of periodic and
shock waves, which produce an optical double solitons. We present graphs of the
solution V1,2(x, t) in Figure 3
The rest of the solutions V1,6(x, t), V1,7(x, t), V1,8(x, t), V1,9(x, t), V1,10(x, t), V1,11(x, t)
and V1,12(x, t) provide to similar interaction of periodic and rogue waves that produces
periodic rogue type breather waves. We plot the graphs in Figure 4 for solution V1,6(x, t)
and it shows that the amplitude of the rogue waves gradually decreases along the
parallax and after a certain time it will be vanished. In addition, the 3D and contour
plots of V1,10(x, t) also display orthogonally interacted with periodic waves and periodic
rogue waves in Figure 5. Thus all such signal type optical solitons are interested to use
in optical fibre communications.

4.2 Application of the Kudryashov general method to the time
fractional perturbed RKL equation

After computing the balance number n = 1 of (3.6), the series solution (2.5) takes the
form,

Ψ(ζ) = L0 + L1F (ζ). (4.3)

Insetting (4.3) into (3.6) along with (2.6), we obtain a polynomial functions of F (ζ).
After equating the coefficients of F (ζ), it leads to a system of equations, and their
algebraic solutions provide the following constraints:

σ =

√√√√2(3κ2ρ+ 2ακ+ γ + τ)
(4AC −B2)ρ ,

L0 = ±B

√√√√3(3κ2ρ+ 2ακ+ γ + τ)
(3δ + 2ε)(4AC −B2) ,

L1 = ±C

√√√√12(3κ2ρ+ 2ακ+ γ + τ)
(3δ + 2ε)(4AC −B2) . (4.4)
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Combining the constraints (4.3), (4.4), (3.3) and the Cluster 1, Cluster 2 and Cluster 3,
the calculations provide the following valid exact soliton solutions of the NLEEs (2.1):

Cluster 1. For Λ = B2 − 4AC > 0 and BC 6= 0 or AC 6= 0, the solutions of (2.6)
leads to :

V2,1(x, t) =
[
±B ∓

{
B +

√
Λ tanh

(√
Λ

2 ζ

)}]
Γ1e

iφ(x,t),

V2,2(x, t) =
[
±B ∓

{
B +

√
Λ coth

(√
Λ

2 ζ

)}]
Γ1e

iφ(x,t),

V2,3(x, t) =
[
±B ∓

{
B +

√
Λ
[
tanh

(√
Λζ
)
± i sech(

√
Λζ)

]}]
Γ1e

iφ(x,t),

V2,4(x, t) =
[
±B ∓

{
B +

√
Λ
[
coth

(√
Λζ
)
± csch(

√
Λζ)

]}]
Γ1e

iφ(x,t),

V2,5(x, t) =
[
±B ∓ 1

2

{
2B +

√
Λ
[
tanh

(√
Λ

4 ζ

)
+ coth

(√
Λ

4 ζ

)]}]
Γ1e

iφ(x,t),

V2,6(x, t) =
±B ±

−B +

√
(M2 +N2)(Λ)−M

√
Λ cosh(

√
Λζ)

M sinh(
√

Λζ) +N


Γ1e

iφ(x,t),

V2,7(x, t) =
±B ±

−B −
√

(N2 −M2)(Λ) +M
√

Λ sinh(
√

Λζ)
M cosh(

√
Λζ) +N


Γ1e

iφ(x,t),

where M and N are two non-zero constants with N2 −M2 > 0.

V2,8(x, t) =
±B ± 4AC cosh

(√
Λ

2 ζ
)

√
Λ sinh

(√
Λ

2 ζ
)
−B cosh

(√
Λ

2 ζ
)
Γ1e

iφ(x,t),

V2,9(x, t) =
±B ∓ 4AC sinh

(√
Λ

2 ζ
)

B sinh
(√

Λ
2 ζ

)
−
√

Λ cosh
(√

Λ
2 ζ

)
Γ1e

iφ(x,t),

V2,10(x, t) =
±B ± 4AC cosh

(√
Λζ
)

√
Λ sinh

(√
Λζ
)
−B cosh

(√
Λζ
)
± i
√

Λ

Γ1e
iφ(x,t),

V2,11(x, t) =
±B ± 4AC sinh

(√
Λζ
)

√
Λ cosh

(√
Λζ
)
−B sinh

(√
Λζ
)
±
√

Λ

Γ1e
iφ(x,t),

V2,12(x, t) =
±B ± 8AC sinh

(√
Λ

4 ζ
)

cosh
(√

Λ
4 ζ

)
−2B sinh

(√
Λ

4 ζ
)

cosh
(√

Λ
4 ζ

)
+ 2
√

Λ cosh2
(√

Λ
4 ζ

)
−
√

Λ

Γ1e
iφ(x,t).
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Cluster 2. For Λ = B2 − 4AC < 0 and BC 6= 0 or AC 6= 0, the solutions of (2.6)
leads to :

V2,13(x, t) =
[
±B ±

{
−B +

√
−Λ tan

(√
−Λ
2 ζ

)}]
Γ1e

iφ(x,t),

V2,14(x, t) =
[
±B ∓

{
B +

√
−Λ cot

(√
−Λ
2 ζ

)}]
Γ1e

iφ(x,t),

V2,15(x, t) =
[
±B ±

{
−B +

√
−Λ

[
tan

(√
−Λζ

)
± sec(

√
−Λζ)

]}]
Γ1e

iφ(x,t),

V2,16(x, t) =
[
±B ∓

{
B +

√
−Λ

[
cot

(√
−Λζ

)
± csc(

√
−Λζ)

]}]
Γ1e

iφ(x,t),

V2,17(x, t) =
[
±B ± 1

2

{
−2B +

√
−Λ

[
tan

(√
−Λ
4 ζ

)
+ cot

(√
−Λ
4 ζ

)]}]
Γ1e

iφ(x,t),

V2,18(x, t) =
±B ±

−B +
±
√

(M2 +N2)(−Λ)−M
√
−Λ cos(

√
−Λζ)

M sin(
√
−Λζ) +N


Γ1e

iφ(x,t),

V2,19(x, t) =
±B ±

−B − ±
√

(N2 −M2)(−Λ) +M
√
−Λ sin(

√
−Λζ)

M cos(
√
−Λζ) +N


Γ1e

iφ(x,t),

where M and N are two non-zero constants with N2 −M2 > 0.

V2,20(x, t) =
±B ∓ 4AC cos

(√
−Λ
2 ζ

)
√
−Λ sin

(√
−Λ
2 ζ

)
+B cos

(√
−Λ
2 ζ

)
Γ1e

iφ(x,t),

V2,21(x, t) =
±B ± 4AC sin

(√
−Λ
2 ζ

)
−B sin

(√
−Λ
2 ζ

)
+
√
−Λ cos

(√
−Λ
2 ζ

)
Γ1e

iφ(x,t),

V2,22(x, t) =
±B ∓ 4AC cos

(√
−Λζ

)
√
−Λ sin

(√
−Λζ

)
+B cos

(√
−Λζ

)
± i
√
−Λ

Γ1e
iφ(x,t),

V2,23(x, t) =
±B ± 4AC sin

(√
−Λζ

)
√
−Λ cos

(√
−Λζ

)
−B sin

(√
−Λζ

)
±
√
−Λ

Γ1e
iφ(x,t),

V2,24(x, t) =
±B ± 8AC sin

(√
−Λ
4 ζ

)
cos

(√
−Λ
4 ζ

)
−2B sin

(√
−Λ
4 ζ

)
cos

(√
−Λ
4 ζ

)
+ 2
√
−Λ cos2

(√
−Λ
4 ζ

)
−
√
−Λ

Γ1e
iφ(x,t).

Cluster 3. For A = 0 and BC 6= 0, the solutions of (2.6) leads to :

V2,25(x, t) =
[
±B ∓ 2BM1

M1 + cosh(Bζ)− sinh(Bζ)

]
Γ1e

iφ(x,t).

V2,26(x, t) =
[
±B ∓ 2B{cosh(Bζ) + sinh(Bζ)}

M1 + cosh(Bζ) + sinh(Bζ)

]
Γ1e

iφ(x,t),
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whereM1 is an arbitrary constant, Γ1 =
√

3(3κ2ρ+2ακ+γ+τ)
(3δ+2ε)(4AC−B2) , ζ =

√
2(3κ2ρ+2ακ+γ+τ)

(4AC−B2)ρ (x−τ tq
q

)
and φ(x, t) = −κx+w tq

q
+ς. The additional solutions for the particular values of A,B,C

are:
Case 1. For A = 0, B = −1 and C = 1,

V3,1(x, t) = ±i

√√√√3(3κ2ρ+ 2ακ+ γ + τ)
(3δ + 2ε)

1
1 + heζ

ei(−κx+w t
q

q
+ς),

Case 2. For B = 0 and C = 1,

V3,2(x, t) = ±

√√√√3(3κ2ρ+ 2ακ+ γ + τ)
(3δ + 2ε)A

√
−A tanh(

√
−Aζ)ei(−κx+w t

q

q
+ς), A < 0,

V3,3(x, t) = ±

√√√√3(3κ2ρ+ 2ακ+ γ + τ)
(3δ + 2ε)A

√
−A coth(

√
−Aζ)ei(−κx+w t

q

q
+ς), A < 0,

V3,4(x, t) = ±

√√√√3(3κ2ρ+ 2ακ+ γ + τ)
(3δ + 2ε)A

√
A tan(

√
Aζ)ei(−κx+w t

q

q
+ς), A > 0,

V3,5(x, t) = ±

√√√√3(3κ2ρ+ 2ακ+ γ + τ)
(3δ + 2ε)A

√
A cot(

√
Aζ)ei(−κx+w t

q

q
+ς), A > 0,

where ζ =
√

2(3κ2ρ+2ακ+γ+τ)
(4AC−B2)ρ (x− τ tq

q
).

The method presents mainly double periodic soliton, combo periodic and solitons,
combo double singular solitons and combo rogue and periodic soliton solutions. We
graphically present some graphs of the solutions for particular cases only in Figures 6,
7 and 8.

5 Conclusion

The main results of this paper is the determination of families of optical solitons through
the optical fibres of the time fractional perturbed RKL equation. To obtain the optical
soliton solutions, we apply the integration schemes tan(�/2) expansion and Kudryashov
general methods. The soliton solutions registered with constraint conditions on pa-
rameters that follow their existence criteria. The families of solutions display various
transmission signals such as double periodic optical solitons, combo optical periodic and
rogue waves, combo periodic and shock waves, combo periodic and solitons, and combo
double singular solitons. One interesting feature of these solitons that interaction of
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rogue and periodic waves produces the rogue waves which diminish after a certain time
keeping periodic nature of the interaction. Moreover, interaction of periodic and rogue
waves displays periodic rogue type breather waves, that indicates the amplitude of the
rogue waves gradually decreases and vanishes after a certain time. The dynamical sig-
nals are plotted in the figures by setting suitable values on the parameters. Let us
point out the model could be investigated to get multi-solitons and multi-rogue waves
by other existing schemes, in particular, Hirota bilinear approach[19, 20] and Darboux
transformation [21].
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Figure 1: The 3D and 2D double periodic solitons of V1,1(x, t), from the real part with
α = β = w = 1, ε = 1 + i, λ = 3, µ = 2, ν = 4, ρ = γ = δ = ϑ = −1, ς = 2, q = 3.7

4 .

Figure 2: The 3D and contour plot periodic solitons and rogue waves of V1,13(x, t),
from the complex part with α = β = w = 1, ε = 1 + 2i, λ = 0, µ = 0, ν = 2,
γ = δ = ρ = ϑ = −1, ς = 2, q = 3.7

4 .
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Figure 3: The 3D and 2D periodic solitons and shock waves of V1,2(x, t), from the real
part with α = β = ρ = w = 1, ε = 2, λ = 3, µ = 2, ν = 1, γ = δ = ϑ = −1, ς = 2,
q = 3.7

4 .

Figure 4: The 3D and contour plots combo periodic solitons and rogue waves of
V1,6(x, t), from the real part with α = β = w = 1, ε = 1 + 2i, λ = 0, µ = 2, ν = 0,
γ = δ = ρ = ϑ = −1, ς = 2, q = 3.7

4 .
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Figure 5: The 3D and contour plots combo periodic solitons and rogue waves of
V1,6(x, t), from the real part with α = β = µ = w = 1, γ = −1 + i, ε = 1 + 2i,
λ = ν = 2, δ = ρ = ϑ = −1, ς = 2, q = 3.7

4 .

Figure 6: The 3D and 2D combo rogue waves and periodic solitons of V3,1(x, t), from
the real part with α = β = ν = γ = 1, δ = 1 ε = w = ρ = 1, ς = 0, A = 0 C = h = 1,
B = −1, q = 3

4 .

Figure 7: The 3D and 2D double periodic solitons of V3,2(x, t), for the real part of
V3,2(x, t) with α = β = ν = γ = 1, δ = −1 ε = w = ρ = 2, ς = 0, A = −1 C = h = 1,
B = 0, q = 3

4 .
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Figure 8: The 3D and 2D double periodic solitons of V3,5(x, t), for the real part of
V3,5(x, t) with ρ = α = β = ν = δ = ε = 1, γ = w = 2, ς = 0, A = C = h = 1, B = 0,
q = 3

4 .

21


