REFERENCES
Aguirre, A., & Gallo, V. (2004). Postnatal neurogenesis and gliogenesis
in the olfactory bulb from NG2-expressing progenitors of the
subventricular zone. The Journal of neuroscience : the official journal
of the Society for Neuroscience, 24(46), 10530–10541.
doi:
10.1523/JNEUROSCI.3572-04.2004.
Aguirre, A., Rubio, M. E., & Gallo, V. (2010). Notch and EGFR pathway
interaction regulates neural stem cell number and self-renewal. Nature,
467(7313), 323–327. doi:
10.1038/nature09347.
Anderson, J. M., Hughes, J. D., Gonzalez, Rothi. L. J., Crucian, G.P.,
Heilman, K.M. (1999). Developmental stuttering and Parkinson’s disease:
The effects of levodopa treatment. Journal of Neurology Neurosurgery and
Psychiatry, 66, 776-778. doi: 10.1136/jnnp.66.6.776.
Arnett, H. A., Mason, J., Marino, M., Suzuki, K., Matsushima, G. K.,
Ting, J. P. (2001). TNF alpha promotes proliferation of oligodendrocyte
progenitors and remyelination. Nature Neuroscience, 4, 1116-22. doi:
10.1038/nn738.
Aron Badin, R., Spinnewyn, B., Gaillard, M.C., Jan, C., Malgorn, C., van
Camp, N., et al. (2013). IRC-082451, a Novel Multitargeting Molecule,
Reduces L-DOPA-Induced Dyskinesias in MPTP Parkinsonian Primates. PLoS
ONE, 8, e52680. doi: 10.1371/journal.pone.0052680.
Bankston, A. N., Mandler, M. D., Feng, Y. (2013). Oligodendroglia and
neurotrophic factors in neurodegeneration. Neurosci Bull, 29, 216-218.
doi: 10.1007/s12264-013-1321-3.
Baracskay, K. L., Kidd, G. J., Miller, R. H., Trapp, B. D. (2007).
NG2-positive cells generate A2B5-positive oligodendrocyte precursor
cells. Glia, 55, 1001-10. doi: 10.1002/glia.20519.
Barriola, S., Pérez-Cerdá, F., Matute, C., Bribián, A., &
López-Mascaraque, L. (2020). A Clonal NG2-Glia Cell Response in a Mouse
Model of Multiple Sclerosis. Cells, 9(5), 1279.
https://doi.org/10.3390/cells9051279Bedner, P., Jabs, R., Steinhäuser,
C. (2020). Properties of human astrocytes and NG2 glia. Glia,
68(4):756-767. 10.1002/glia.23725.
Belachew, S., Chittajallu, R., Aguirre, A. A., Yuan, X., Kirby, M.,
Anderson, S., & Gallo, V. (2003). Postnatal NG2 proteoglycan-expressing
progenitor cells are intrinsically multipotent and generate functional
neurons. The Journal of cell biology, 161(1), 169–186.
doi:
10.1083/jcb.200210110.
Bergles, D. E., Roberts, J. D. B., Somogyi, P., & Jahr, C. E. (2000).
Glutamatergic synapses on oligodendrocyte precursor cells in the
hippocampus. Nature, 405(6783), 187–191. https://doi.org/10.1038/
35012083;
Boi, L., Pisanu, A., Greig, N.H., Scerba, M.T., Tweedie, D., Mulas, G.,
Fenu, S., Carboni, E., Spiga, S., Carta, A.R., 2019. Immunomodulatory
drugs alleviate l-dopa-induced dyskinesia in a rat model of Parkinson’s
disease. Movement Disorders, 34, 1818-1830. doi: 10.1002/mds.27799.
Bortolanza, M., Cavalcanti-Kiwiatkoski, R., Padovan-Neto, F. E.,
da-Silva, C. A., Mitkovski, M., Raisman-Vozari, R., & Del-Bel, E.
(2015a). Glial activation is associated with l-DOPA induced dyskinesia
and blocked by a nitric oxide synthase inhibitor in a rat model of
Parkinson’s disease. Neurobiology of disease, 73, 377–387.
https://doi.org/10.1016/j.nbd.2014.10.017
Bortolanza, M., Nascimento, G.C., Raisman-Vozari, R., Del Bel, E.A.
(2020). Preprint- Doxycycline, an anti-inflammatory agent, alleviates
dyskinesia induced byL-DOPA in Parkinsonian Rats. June2020. doi:
10.22541.
Bortolanza, M., Padovan-Neto, F.E., Cavalcanti-Kiwiatkoski, R., Dos
Santos-Pereira, M., Mitkovski, M., Raisman-Vozari, R., Del-Bel, E.
(2015b). Are cyclooxygenase-2 and nitric oxide involved in the
dyskinesia of parkinson’s disease induced by L-DOPA? Philosophical
Transactions of the Royal Society B: Biological Sciences, 370, 20140190.
doi: 10.1098/rstb.2014.0190.
Bribian, A., Pérez-Cerdá, F., Matute, C., & López-Mascaraque, L.
(2018). Clonal Glial Response in a Multiple Sclerosis Mouse Model.
Frontiers in cellular neuroscience, 12, 375.
https://doi.org/10.3389/fncel.2018.00375
Buck, K., Voehringer, P., Ferger, B. (2010). The alpha(2) adrenoceptor
antagonist idazoxan alleviates L-DOPA-induced dyskinesia by reduction of
striatal dopamine levels: an in vivo microdialysis study in
6-hydroxydopamine-lesioned rats. Journal of Neurochemistry, 112, 444-52.
doi: 10.1111/j.1471-4159.2009.06482.x.
Butovsky, O., Jedrychowski, M. P., Moore, C. S., Cialic, R., Lanser, A.
J., Gabriely, G., Koeglsperger, T., Dake, B., Wu, P. M., Doykan, C. E.,
Fanek, Z., Liu, L., Chen, Z., Rothstein, J. D., Ransohoff, R. M., Gygi,
S. P., Antel, J. P., & Weiner, H. L. (2014). Identification of a unique
TGF-β-dependent molecular and functional signature in microglia. Nature
neuroscience, 17(1), 131–143.
doi: 10.1038/nn.3599.
Carta, A.R., Mulas, G., Bortolanza, M., Duarte, T., Pillai, E., Fisone,
G., Vozari, R.R., Del-Bel, E. (2017). l-DOPA-induced dyskinesia and
neuroinflammation: do microglia and astrocytes play a role? Euroupean
Journal of Neuroscience, 45, 73-91. doi: 10.1111/ejn.13482.
Cenci, M.A., Lee, C.S., Björklund, A. (1998). L-DOPA-induced dyskinesia
in the rat is associated with striatal overexpression of prodynorphin-
and glutamic acid decarboxylase mRNA. European Journal of Neuroscience,
10, 2694-2706. PMID: 9767399.
Cenci, M.A., Lundblad, M. (2007). Ratings of L-DOPA-induced dyskinesia
in the unilateral 6-OHDA lesion model of Parkinson’s disease in rats and
mice. Curr Protoc Neurosci. Chapter 9: Unit 9.25. doi:
10.1002/0471142301.ns0925s41.
Cenci, M.A., Riggare, S., Pahwa, R., Eidelberg, D., Hauser, R.A. (2020).
Dyskinesia matters. Movement Disorders, 35, 392-396. doi:
10.1002/mds.27959.
Chew, L. J., King, W. C., Kennedy, A., & Gallo, V. (2005).
Interferon-gamma inhibits cell cycle exit in differentiating
oligodendrocyte progenitor cells. Glia, 52(2), 127–143.
https://doi.org/10.1002/glia.20232.
Dauer W., Przedborski S. (2003). Parkinson’s disease: mechanisms and
models. Neuron 39, 889–90910.1016/S0896-6273(03)00568-3.
Del-Bel, E., Bortolanza, M., Dos-Santos-Pereira, M., Bariotto, K.,
Raisman-Vozari, R. (2016). L-DOPA-induced dyskinesia in Parkinson’s
disease: Are neuroinflammation and astrocytes key elements? Synapse, 70,
479-500. doi: 10.1002/syn.21941.
Dimou, L., & Götz, M. (2014). Glial cells as progenitors and stem
cells: new roles in the healthy and diseased brain. Physiological
reviews, 94(3), 709–737. https://doi.org/10.1152/physrev.00036.2013
Dimou, L., Simon, C., Kirchhoff, F., Takebayashi, H., & Götz, M.
(2008). Progeny of Olig2-expressing progenitors in the Gray and white
matter of the adult mouse cerebral cortex. Journal of Neuroscience,
28(41),10434–10442.
https://doi.org/10.1523/JNEUROSCI.2831-08.2008
dos-Santos-Pereira, M., da-Silva, C.A., Guimarães, F.S., Del-Bel, E.
(2016). Co-administration of cannabidiol and capsazepine reduces
L-DOPA-induced dyskinesia in mice: Possible mechanism of action.
Neurobiology of Disease, 94, 179-95. doi: 10.1016/j.nbd.2016.06.013.
Eder, C., Schilling, T., Heinemann, U., Haas, D., Hailer, N., & Nitsch,
R. (1999). Morphological, immunophenotypical and electrophysiological
properties of resting microglia in vitro. The European Journal of
Neuroscience, 11(12), 4251–4261. doi: 10.1046/j.1460-9568.1999.00852.x
Fahn, S., Oakes, D., Shoulson, I., Kieburtz, K., Rudolph, A., Lang, A.,
Olanow, C.W., Tanner, C., Marek, K. (2004). Parkinson Study Group.
Levodopa and the progression of Parkinson’s disease. New England Journal
of Medicine. 351, 2498-508. doi: 10.1056/NEJMoa033447.
Fiedorowicz, A., Figiel, I., Zaremba, M., Dzwonek, K., Oderfeld-Nowak,
B. (2008). The ameboid phenotype of NG2 (+) cells in the region of
apoptotic dentate granule neurons in trimethyltin intoxicated mice
shares antigen properties with microglia/macrophages. Glia, 56, 209-22.
doi: 10.1002/glia.20605.
Flaherty, A. W., & Graybiel, A. M. (1994). Input-output organization of
the sensorimotor striatum in the squirrel monkey. Journal of
Neuroscience, 14, 599–610. doi:
10.1523/JNEUROSCI.14-02-00599.1994.
Gibson, E. M., Purger, D., Mount, C. W., Goldstein, A. K., Lin, G. L.,
Wood, L. S., Inema, I., Miller, S. E., Bieri, G., Zuchero, J. B.,
Barres, B. A., Woo, P. J., Vogel, H., & Monje, M. (2014). Neuronal
activity promotes oligodendrogenesis and adaptive myelination in the
mammalian brain. Science 344(6183), 1252304. doi:
10.1126/science.1252304.
Gomes, M. Z., Del Bel, E. A. (2003). Effects of electrolytic and
6-hydroxydopamine lesions of rat nigrostriatal pathway on nitric oxide
synthase and nicotinamide adenine dinucleotide phosphate diaphorase.
Brain Research Bulletin, 62, 107-15. doi:
10.1016/j.brainresbull.2003.08.010.
Gomes, M. Z., Raisman-Vozari, R., Del Bel, E. A. (2008). A nitric oxide
synthase inhibitor decreases 6-hydroxydopamine effects on tyrosine
hydroxylase and neuronal nitric oxide synthase in the rat nigrostriatal
pathway. Brain Research. 1203, 160-169. doi:
10.1016/j.brainres.2008.01.088.
Haber, S. N., Fudge, J. L., & McFarland, N. R. (2000).
Striatonigrostriatal pathways in primates form an ascending spiral from
the shell to the dorsolateral striatum. The Journal of Neuroscience :
the official journal of the Society for Neuroscience, 20(6), 2369–2382.
doi:
10.1523/JNEUROSCI.20-06-02369.2000.
Hamilton, N., Vayro, S., Wigley, R., & Butt, A. M. (2010). Axons and
astrocytes release ATP and glutamate to evoke calcium signals in
NG2-glia. Glia, 58(1), 66–79. doi:10.1002/glia.20902
Hamilton, N., Vayro, S., Wigley, R., Butt, A. M. (2010). Axons and
astrocytes release ATP and glutamate to evoke calcium signals in
NG2-glia. Glia, 58, 66-79. doi: 10.1002/glia.20902. PMID: 19533604.
Heppner, F. L., Roth, K., Nitsch, R., & Hailer, N. P. (1998). Vitamin E
induces ramification and downregulation of adhesion molecules in
cultured microglial cells. Glia, 22(2), 180–188. PMID: 9537838.
Horner, P. J., Thallmair, M., & Gage, F. H. (2002). Defining the
NG2-expressing cell of the adult CNS. Journal of neurocytology, 31(6-7),
469–480. https://doi.org/10.1023/a:1025739630398
Hughes, E. G., Kang, S. H., Fukaya, M., & Bergles, D. E. (2013).
Oligodendrocyte progenitors balance growth with self-repulsion to
achieve homeostasis in the adult brain. Nature neuroscience, 16(6),
668–676. doi: 10.1038/nn.3390.
Ikemoto S. (2007). Dopamine reward circuitry: two projection systems
from the ventral midbrain to the nucleus accumbens-olfactory tubercle
complex. Brain Research reviews, 56(1), 27–78.
doi:
10.1016/j.brainresrev.2007.05.004.
Janelidze, S., Lindqvist, D., Francardo, V., Hall, S., Zetterberg, H.,
Blennow, K., Adler, C.H., Beach, T.G., Serrano, G.E., van Westen, D.,
Londos, E., Cenci, M.A., Hansson, O. (2015). Increased CSF biomarkers of
angiogenesis in Parkinson disease. Neurology, 85, 1834-42. doi:
10.1212/WNL.0000000000002151.
Jenner, P. (2008). Molecular mechanisms of L-DOPA-induced dyskinesia.
Nature Reviews Neuroscience, 9, 665-77. doi: 10.1038/nrn2471.
Jin, X., Riew, T. R., Kim, H. L., Choi, J. H., & Lee, M. Y. (2018).
Morphological characterization of NG2 glia and their association with
neuroglial cells in the 3-nitropropionic acid-lesioned striatum of rat.
Scientific Reports, 8(1), 5942. doi: 10.1038/s41598-018-24385-0.
Kang, S. H., Li, Y., Fukaya, M., Lorenzini, I., Cleveland, D. W.,
Ostrow, L. W., Rothstein, J. D., & Bergles, D. E. (2013). Degeneration
and impaired regeneration of gray matter oligodendrocytes in amyotrophic
lateral sclerosis. Nature Neuroscience, 16(5), 571–579.
doi: 10.1038/nn.3357.
Kirby, L., Jin, J., Cardona, J. G., Smith, M. D., Martin, K. A., Wang,
J., Strasburger, H., Herbst, L., Alexis, M., Karnell, J., Davidson, T.,
Dutta, R., Goverman, J., Bergles, D., & Calabresi, P. A. (2019).
Oligodendrocyte precursor cells present antigen and are cytotoxic
targets in inflammatory demyelination. Nature Communications, 10(1),
3887. doi: 10.1038/s41467-019-11638-3.
Kitamura, Y., Inden, M., Minamino, H., Abe, M., Takata, K., &
Taniguchi, T. (2010). The 6-hydroxydopamine-induced nigrostriatal
neurodegeneration produces microglia-like NG2 glial cells in the rat
substantia nigra. Glia, 58(14), 1686–1700.
doi: 10.1002/glia.21040.
Krasemann, S., Madore, C., Cialic, R., Baufeld, C., Calcagno, N., El
Fatimy, R., Beckers, L., O’Loughlin, E., Xu, Y., Fanek, Z., Greco, D.
J., Smith, S. T., Tweet, G., Humulock, Z., Zrzavy, T., Conde-Sanroman,
P., Gacias, M., Weng, Z., Chen, H., Tjon, E., … Butovsky, O.
(2017). The TREM2-APOE Pathway Drives the Transcriptional Phenotype of
Dysfunctional Microglia in Neurodegenerative Diseases. Immunity, 47(3),
566–581.e9. doi: 10.1016/j.immuni.2017.08.008.
Lazzarini, M., Martin, S., Mitkovski, M., Vozari, R.R., Stühmer, W., Bel
Del, E. (2013). Doxycycline restrains glia and confers neuroprotection
in a 6-OHDA Parkinson model. Glia, 61, 1084-100. doi:
10.1002/glia.22496.
Lerner, R.P., Francardo, V., Fujita, K., Bimpisidis, Z., Jourdain, V.A.,
Tang, C.C., Dewey, S.L., Chaly, T., Cenci, M.A., Eidelberg, D. (2017).
Levodopa-induced abnormal involuntary movements correlate with altered
permeability of the blood-brain-barrier in the basal ganglia. Scientific
Reports, 7, 16005. doi: 10.1038/s41598-017-16228-1.
Lerner, T. N., Shilyansky, C., Davidson, T. J., Evans, K. E., Beier, K.
T., Zalocusky, K. A., Crow, A. K., Malenka, R. C., Luo, L., Tomer, R.,
& Deisseroth, K. (2015). Intact-Brain Analyses Reveal Distinct
Information Carried by SNc Dopamine Subcircuits. Cell, 162(3), 635–647.
doi:
10.1016/j.cell.2015.07.014.
Levine J. (2016). The reactions and role of NG2 glia in spinal cord
injury. Brain Research, 1638(Pt B), 199–208.
doi: 10.1016/j.brainres.2015.07.026
Levine, J. M., Enquist, L. W., & Card, J. P. (1998). Reactions of
oligodendrocyte precursor cells to alpha herpesvirus infection of the
central nervous system. Glia, 23(4), 316–328. PMID: 9671962.
Lin, S., & Bergles, D. E. (2004). Synaptic signaling between GABAergic
interneurons and oligodendrocyte precursor cells in the hippocampus.
Nature Neuroscience. 7(1), 24–32.
doi: 10.1038/nn1162.
Liu, Y., & Aguzzi, A. (2020). NG2 glia are required for maintaining
microglia homeostatic state. Glia, 68, 345–355.
doi: 10.1002/glia.23721.
Lundblad, M., Andersson, M., Winkler, C., Kirik, D., Wierup, N., Cenci,
M.A. (2002). Pharmacological validation of behavioural measures of
akinesia and dyskinesia in a rat model of Parkinson’s disease. European
Journal of Neuroscience, 15, 120-32. doi:
10.1046/j.0953-816x.2001.01843. x.
Maldonado, P. P., & Angulo, M. C. (2015). Multiple Modes of
Communication between Neurons and Oligodendrocyte Precursor Cells. The
Neuroscientist 21(3), 266–276. doi:
10.1177/1073858414530784.
Martín-López, E., García-Marques, J., Núñez-Llaves, R., &
López-Mascaraque, L. (2013). Clonal astrocytic response to cortical
injury. PloS one, 8(9), e74039.
doi:
10.1371/journal.pone.0074039.
Meissner, W., Ravenscroft, P., Reese, R., Harnack, D., Morgenstern, R.,
Kupsch, A., Klitgaard, H., Bioulac, B., Gross, C. E., Bezard, E.,
Boraud, T. (2006). Increased slow oscillatory activity in substantia
nigra pars reticulata triggers abnormal involuntary movements in the
6-OHDA-lesioned rat in the presence of excessive extracellular striatal
dopamine. Neurobiology of Disease, 22, 586-98. doi:
10.1016/j.nbd.2006.01.009.
Mulas, G., Espa, E., Fenu, S., Spiga, S., Cossu, G., Pillai, E., et al.
(2016). Differential induction of dyskinesia and neuroinflammation by
pulsatile versus continuous L-DOPA delivery in the 6-OHDA model of
Parkinson’s disease. Experimental Neurology, 286, 83-92. doi:
10.1016/j.expneurol.2016.09.013.
Muñoz, A., Garrido-Gil, P., Dominguez-Meijide, A., Labandeira-Garcia,
J.L. (2014). Angiotensin type 1 receptor blockage reduces l-dopa-induced
dyskinesia in the 6-OHDA model of Parkinson’s disease. Involvement of
vascular endothelial growth factor and interleukin-1β. Experimental
Neurology, 261, 720-432. doi: 10.1016/j.expneurol.2014.08.019.
Nakano, M., Tamura, Y., Yamato, M., Kume, S., Eguchi, A., Takata, K.,
Watanabe, Y., & Kataoka, Y. (2017). NG2 glial cells regulate
neuroimmunological responses to maintain neuronal function and survival.
Scientific reports, 7, 42041. doi:
10.1038/srep42041.
Nielsen, H. M., Ek, D., Avdic, U., Orbjörn, C., Hansson, O., Netherlands
Brain Bank, Veerhuis, R., Rozemuller, A. J., Brun, A., Minthon, L., &
Wennström, M. (2013). NG2 cells, a new trail for Alzheimer’s disease
mechanisms?. Acta neuropathologica communications, 1(1), 7.
doi:
10.1186/2051-5960-1-7.
Nishiyama, A., Komitova, M., Suzuki, R., & Zhu, X. (2009).
Polydendrocytes (NG2 cells): multifunctional cells with lineage
plasticity. Nature reviews. Neuroscience, 10(1), 9–22.
doi: 10.1038/nrn2495
Nishiyama, A., Yu, M., Drazba, J. A., & Tuohy, V. K. (1997). Normal and
reactive NG2+ glial cells are distinct from resting and activated
microglia. Journal of neuroscience research, 48(4), 299–312. doi:
10.1002/(sici)1097-4547(19970515)48:4<299::aid-jnr2>3.0.co;2-6.
Nishiyama, A., Yu, M., Drazba, J. A., Tuohy, V. K. (1997). Normal and
reactive NG2+ glial cells are distinct from resting and activated
microglia. Journal of Neuroscience Research, 48, 299-312. doi:
10.1002/(sici)1097-4547(19970515)48:4<299::aid-jnr2>3.0.co;2-6.
Obeso, J. A., Olanow, C. W., Nutt, J.G. (2000). Levodopa motor
complications in Parkinson’s disease. Trends Neuroscience, 23, S2-7.
doi: 10.1016/s1471-1931(00)00031-8. PMID: 11052214.
Obeso, J. A., Stamelou, M., Goetz, C. G., Poewe, W., Lang, A. E.,
Weintraub, D., Burn, D., Halliday, G. M., Bezard, E., Przedborski, S.,
Lehericy, S., Brooks, D. J., Rothwell, J. C., Hallett, M., DeLong, M.
R., Marras, C., Tanner, C. M., Ross, G. W., Langston, J. W., Klein, C.,
… Stoessl, A. J. (2017). Past, present, and future of Parkinson’s
disease: A special essay on the 200th Anniversary of the Shaking Palsy.
Movement disorders : official journal of the Movement Disorder Society,
32(9), 1264–1310. https://doi.org/10.1002/mds.27115.
Ohlin, K. E., Francardo, V., Lindgren, H.S., Sillivan, S. E.,
O’Sullivan, S. S., Luksik, A. S., Vassoler, F. M., Lees, A. J., Konradi,
C., Cenci, M. A. (2011). Vascular endothelial growth factor is
upregulated by L-dopa in the parkinsonian brain: implications for the
development of dyskinesia. Brain. 134(Pt 8): 2339-57. doi:
10.1093/brain/awr165.
Ohlin, K. E., Sebastianutto, I., Adkins, C. E., Lundblad, C., Lockman,
P. R., Cenci, M. A. (2012). Impact of L-DOPA treatment on regional
cerebral blood flow and metabolism in the basal ganglia in a rat model
of Parkinson’s disease. Neuroimage, 61, 228-39. doi:
10.1016/j.neuroimage.2012.02.066.
Okada, S., Hara, M., Kobayakawa, K., Matsumoto, Y., Nakashima, Y.
(2018). Astrocyte reactivity and astrogliosis after spinal cord injury.
Neuroscience Research, 126, 39-43. doi: 10.1016/j.neures.2017.10.004.
Olanow, C. W., Agid, Y., Mizuno, Y., Albanese, A., Bonuccelli, U.,
Damier, P., De Yebenes, J., Gershanik, O., Guttman, M., Grandas, F.,
Hallett, M., Hornykiewicz, O., Jenner, P., Katzenschlager, R., Langston,
W.J., LeWitt, P., Melamed, E., Mena, M. A., Michel, P. P., Mytilineou,
C., Obeso, J. A., Poewe, W., Quinn, N., Raisman-Vozari, R., Rajput, A.
H., Rascol, O., Sampaio, C., Stocchi, F. (2004). Levodopa in the
treatment of Parkinson’s disease: current controversies. Movement
Disorders, 19, 997-1005. doi: 10.1002/mds.20243.
Padovan-Neto, F. E., Cavalcanti-Kiwiatkoviski, R., Carolino, R. O. G.,
Anselmo-Franci, J., Del Bel, E. (2015). Effects of prolonged neuronal
nitric oxide synthase inhibition on the development and expression of
l-DOPA-induced dyskinesia in 6-OHDA-lesioned rats. Neuropharmacology,
89, 87-97. doi: 10.1016/j.neuropharm.2014.08.019 0028-3908.
Padovan-Neto, F.E., Echeverry, M.B., Tumas, V., Del-Bel, E.A. (2009).
Nitric oxide synthase inhibition attenuates l-DOPA-induced dyskinesias
in a rodent model of Parkinson’s disease. Neuroscience, 159, 927-35.
doi: 10.1016/j.neuroscience.2009.01.034.
Paxinos, G., Watson, C. (2004). The Rat Brain in Stereotaxic Coordinates
- The New Coronal Set. Elsevier.
Peters A. (2004). A fourth type of neuroglial cell in the adult central
nervous system. Journal of neurocytology, 33(3), 345–357.
doi: 10.1023/B:NEUR.0000044195.64009.27.
Picconi, B., Bagetta, V., Ghiglieri, V., Paillè, V., Di Filippo, M.,
Pendolino, V., Tozzi, A., Giampà, C., Fusco, F.R., Sgobio, C.,
Calabresi, P. (2011). Inhibition of phosphodiesterases rescues striatal
long-term depression and reduces levodopa-induced dyskinesia. Brain,
134, 375-87. doi: 10.1093/brain/awq342.
Picconi, B., Centonze, D., Håkansson, K., Bernardi, G. (2003). Greengard
P, Fisone G, Cenci MA, Calabresi P. Loss of bidirectional striatal
synaptic plasticity in L-DOPA-induced dyskinesia. Nature Neuroscience,
6, 501-6. doi: 10.1038/nn1040.
Ramírez-García, G., Palafox-Sánchez, V., Limón, I.D. (2015). Nitrosative
and cognitive effects of chronic L-DOPA administration in rats with
intra-nigral 6-OHDA lesion. Neuroscience. 290, 492-508. doi:
10.1016/j.neuroscience.2015.01.047.
Richardson, W. D., Young, K. M., Tripathi, R. B., McKenzie, I. (2011).
NG2-glia as multipotent neural stem cells: fact or fantasy? Neuron, 70,
661-73. doi: 10.1016/j.neuron.2011.05.013.
Robelet, S., Melon, C., Guillet, B., Salin, P., Kerkerian-Le, G. L.
(2004). Chronic L-DOPA treatment increases extracellular glutamate
levels and GLT1 expression in the basal ganglia in a rat model of
Parkinson’s disease. European Journal of Neuroscience, 20,1255-66. doi:
10.1111/j.1460-9568.2004.03591.x.
Schilling, T., & Eder, C. (2015). Microglial K(+) channel expression in
young adult and aged mice. Glia, 63(4), 664–672.
doi: 10.1002/glia.22776
Schneider, C. A., Rasband, W. S., & Eliceiri, K. W. (2012). NIH Image
to ImageJ: 25 years of image analysis. Nature methods, 9(7), 671–675.
doi: 10.1038/nmeth.2089.
Smith, Y., Raju, D. V., Pare, J. F., Sidibe, M. (2004). The
thalamostriatal system: a highly specific network of the basal ganglia
circuitry. Trends Neuroscience, 27, 520-7. doi:
10.1016/j.tins.2004.07.004.
Spinnewyn, B., Charnet, C., Cornet, S., Roubert, V., Chabrier, P. E.,
Auguet, M. (2010). An improved model to investigate the efficacy of
antidyskinetic agents in hemiparkinsonian rats. Fundamental & Clinical
Pharmacology, 25, 608-18. doi: 10.1111/j.1472-8206.2010.00883.x.
Steiner, B., Winter, C., Hosman, K., Siebert, E., Kempermann, G.,
Petrus, D. S., & Kupsch, A. (2006). Enriched environment induces
cellular plasticity in the adult substantia nigra and improves motor
behavior function in the 6-OHDA rat model of Parkinson’s disease.
Experimental Neurology, 199(2), 291–300.
doi: 10.1016/j.expneurol.2005.11.004
Sypecka, J., & Sarnowska, A. (2014). The neuroprotective effect exerted
by oligodendroglial progenitors on ischemically impaired hippocampal
cells. Molecular Neurobiology, 49(2), 685–701.
doi: 10.1007/s12035-013-8549-9
Teema, A. M., Zaitone, S. A., Moustafa, Y. M. (2016). Ibuprofen or
piroxicam protects nigral neurons and delays the development of l-dopa
induced dyskinesia in rats with experimental Parkinsonism: Influence on
angiogenesis. Neuropharmacology, 107, 432-450. doi:
10.1016/j.neuropharm.2016.03.034.
Vaillancourt, D. E., & Lehericy, S. (2018). Illuminating basal ganglia
and beyond in Parkinson’s disease. Movement Disorders 33(9), 1373–1375.
doi: 10.1002/mds.27483
Valny, M., Honsa, P., Waloschkova, E., et al. (2018). A single-cell
analysis reveals multiple roles of oligodendroglial lineage cells during
post-ischemic regeneration. Glia, 66(5), 1068-1081. doi:
10.1002/glia.23301.
Wang, C., Zhang, C. J., Martin, B. N., Bulek, K., Kang, Z., Zhao, J.,
Bian, G., Carman, J. A., Gao, J., Dongre, A., Xue, H., Miller, S. D.,
Qian, Y., Hambardzumyan, D., Hamilton, T., Ransohoff, R. M., & Li, X.
(2017). IL-17 induced NOTCH1 activation in oligodendrocyte progenitor
cells enhances proliferation and inflammatory gene expression. Nature
Communications, 8, 15508. doi:
10.1038/ncomms15508
Wennström M, Hellsten J, Tingström A. (2004). Electroconvulsive seizures
induce proliferation of NG2-expressing glial cells in adult rat
amygdala. Biological Psychiatry, 55, 464-71. doi:
10.1016/j.biopsych.2003.11.011.
Winkler, C., Kirik, D., Björklund, A., & Cenci, M. A. (2002).
L-DOPA-induced dyskinesia in the intrastriatal 6-hydroxydopamine model
of parkinson’s disease: relation to motor and cellular parameters of
nigrostriatal function. Neurobiology of Disease, 10(2), 165–186.
doi: 10.1006/nbdi.2002.0499
Winkler, C., Kirik, D., Björklund, A., Cenci, M.A. (2002).
L-DOPA-induced dyskinesia in the intrastriatal 6-hydroxydopamine model
of Parkinson’s disease: Relation to motor and cellular parameters of
nigrostriatal function. Neurobiology of Disease, 10, 165-86. doi:
10.1006/nbdi.2002.0499.
Xu, G., Wang, W., & Zhou, M. (2014). Spatial organization of NG2 glial
cells and astrocytes in rat hippocampal CA1 region. Hippocampus, 24(4),
383–395. doi: 10.1002/hipo.22232
Zhang, S. Z., Wang, Q. Q., Yang, Q. Q., Gu, H. Y., Yin, Y. Q., Li, Y.
D., Hou, J. C., Chen, R., Sun, Q. Q., Sun, Y. F., Hu, G., & Zhou, J. W.
(2019). NG2 glia regulate brain innate immunity via TGF-β2/TGFBR2 axis.
BMC medicine, 17(1), 204.
doi:
10.1186/s12916-019-1439-x.
Zhu, X., Hill, R. A., Dietrich, D., Komitova, M., Suzuki, R., &
Nishiyama, A. (2011). Age-dependent fate and lineage restriction of
single NG2 cells. Development (Cambridge, England), 138(4), 745–753.
doi: 10.1242/dev.047951.