REFERENCES
- Acuña, L., Hamadat, S., Corbalán, N.S., González-Lizárraga, F.,
Dos-Santos-Pereira, M., Rocca, J., Díaz, J.S., Del-Bel, E.,
Papy-García, D., Chehín, R.N., Michel, P.P., Raisman-Vozari, R., 2019.
Rifampicin and Its Derivative Rifampicin Quinone Reduce Microglial
Inflammatory Responses and Neurodegeneration Induced In Vitro by
α-Synuclein Fibrillary Aggregates. Cells. 8(8):776. doi:
10.3390/cells8080776.
- Aminov, R.I., 2013. Biotic acts of antibiotics. Front.Microbiol 4:241
10.3389/fmicb.2013.00241.
doi:
10.3389/fmicb.2013.00241.
- Amor, S., Puentes, F., Baker, D., van der Valk, P., 2010. Inflammation
in neurodegenerative diseases. Immunology. 129(2): 154‐169.
doi:10.1111/j.1365-2567.2009.03225.x.
- Amor. S., Peferoen, L.A ., Vogel, D.Y., Breur, M., van der Valk, P.,
Baker, D., van Noort, J.M., 2014. Inflammation in neurodegenerative
diseases–an update. Immunology. 142(2): 151‐166.
doi:10.1111/imm.12233.
- Anderson, J.M., Hughes, J.D., Gonzalez, Rothi. L.J., Crucian, G.P.,
Heilman, K.M., 1999. Developmental stuttering and Parkinson’s disease:
The effects of levodopa treatment. Journal of Neurology Neurosurgery
and Psychiatry. 66(6):776-8. doi: 10.1136/jnnp.66.6.776.
- Andersson, H., Alestig, K., 1976. The penetration of doxycycline into
CSF. Scand J Infect Dis Suppl. (9):17-9.
- Annese, V., Herrero, M.T., Di Pentima, M., Gomez, A., Lombardi, L.,
Ros, C.M., De Pablos, V., Fernandez-Villalba, E., De Stefano, M.E.,
2015. Metalloproteinase-9 contributes to inflammatory glia activation
and nigrostriatal pathway degeneration in both mouse and monkey models
of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced
Parkinsonism. Brain Structure and Function. 220(2): 703-727. doi:
10.1007/s00429-014-0718-8.
- Antonio, R.C., Ceron, C.S., Rizzi, E., Coelho, E.B., Tanus-Santos,
J.E., Gerlach, R.F., 2014. Antioxidant effect of doxycycline decreases
MMP activity and blood pressure in SHR. Molecular and Cellular
Biochemistry. 386(1-2): 99-105. doi: 10.1007/s11010-013-1848-7.
- Aquino, C.C., Fox, S.H., 2015. Clinical spectrum of levodopa-induced
complications. Mov Disord. 30(1):80-9. doi: 10.1002/mds.26125.
- Aron Badin, R., Spinnewyn, B., Gaillard, M.C., Jan, C., Malgorn, C.,
van Camp, N., et al., 2013. IRC-082451, a Novel Multitargeting
Molecule, Reduces L-DOPA-Induced Dyskinesias in MPTP Parkinsonian
Primates. PLoS ONE. 8(1): e52680. doi: 10.1371/journal.pone.0052680.
- Bahrami, F.L., Morris, D.H., Pourgholami, M., 2011. Tetracyclines:
Drugs with Huge Therapeutic Potential. Mini-Reviews in Medicinal
Chemistry. 12: 44-52. doi: 10.2174/138955712798868977.
- Barcia, C., Fernández Barreiro, A., Poza, M., Herrero, M.T., 2003.
Parkinson’s disease and inflammatory changes. Neurotox Res.
5(6):411-8. doi: 10.1007/BF03033170.
- Barnum, C.J., Eskow, K.L., Dupre, K., Blandino, P.Jr., Deak, T.,
Bishop, C., 2008. Exogenous corticosterone reduces L-DOPA-induced
dyskinesia in the hemi-parkinsonian rat: role for IL-1beta.
Neuroscience. 156(1): 30-41. doi: 10.1016/j.neuroscience.2008.07.016.
- Bartels, A.L., Leenders, K.L., 2007. Neuroinflammation in the
pathophysiology of Parkinson’s disease: evidence from animal models to
human in vivo studies with [11C]-PK11195 PET. Mov Disord.
22(13):1852-6. doi: 10.1002/mds.21552.
- Bartlett, J.G., Bustetter, L.A., Gorbach, S.L., Onderdonk, A.B., 1975.
Comparative effect of tetracycline and doxycycline on the occurrence
of resistant Escherichia coli in the fecal flora. Antimicrob Agents
Chemother. 7: 55–57. doi: 10.1128/aac.7.1.55.
- Barza, M., Brown, R.B., Shanks, C., Gamble, C., Weinstein L., 1975.
Relation between lipophilicity and pharmacological behavior of
minocycline, doxycycline, tetracycline, and oxytetracycline in dogs.
Antimicrob Agents Chemother. 8(6):713-20. doi: 10.1128/aac.8.6.713.
- Bassani, T.B., Vital, M.A., Rauh, L.K., 2015. Neuroinflammation in the
pathophysiology of Parkinson’s disease and therapeutic evidence of
anti-inflammatory drugs. Arq Neuropsiquiatr. 73:616–623. doi:
10.1590/0004-282X20150057.
- Ben Haim, L., Carrillo-de Sauvage, M.A., Ceyzériat, K., and Escartin,
C., 2015. Elusive roles for reactive astrocytes in neurodegenerative
diseases. Front. Cell. Neurosci. 9:278. doi: 10.3389/fncel.2015.00278.
eCollection 2015.
- Berke, J.D., Paletzki, R.F., Aronson, G.J., Hyman, S.E., Gerfen, C.R.,
1998. J Neurosci. A complex program of striatal gene expression
induced by dopaminergic stimulation. 18(14):5301-10. doi:
10.1523/JNEUROSCI.18-14-05301.1998.
- Blanchet, P.J., Konitsiotis, S., Chase, T.N., 1998. Amantadine reduces
levodopa-induced dyskinesias in parkinsonian monkeys. Mov Disord.
13(5):798-802.
- Boi, L., Pisanu, A., Greig, N.H., Scerba, M.T., Tweedie, D., Mulas,
G., Fenu, S., Carboni, E., Spiga, S., Carta, A.R., 2019.
Immunomodulatory drugs alleviate l-dopa-induced dyskinesia in a rat
model of Parkinson’s disease. Mov Disord. 34(12):1818-1830. doi:
10.1002/mds.27799.
- Borgkvist, A., Lieberman, O.J., Sulzer, D., 2018. Synaptic plasticity
may underlie l-DOPA induced dyskinesia. Curr Opin Neurobiol. 48:71-78.
doi: 10.1016/j.conb.2017.10.021.
- Bortolanza, M., Cavalcanti-Kiwiatkoski. R., Padovan-Neto, F.E.,
da-Silva, C.A., Mitkovski, M., Raisman-Vozari R., Del-Bel, E., 2015.
Glial activation is associated with l-DOPA induced dyskinesia and
blocked by a nitric oxide synthase inhibitor in a rat model of
Parkinson’s disease. Neurobiology of Disease. 73:377-87. doi:
10.1016/j.nbd.2014.10.017.
- Bortolanza, M., Nascimento, G.C., Socias, S.B., Ploper, D., Chehín,
R.N., Raisman-Vozari, R., Del-Bel, E., 2018. Tetracycline repurposing
in neurodegeneration: focus on Parkinson’s disease. Journal of Neural
Transmission. 125(10):1403-1415. doi: 10.1007/s00702-018-1913-1.
- Bortolanza, M., Padovan-Neto, F.E., Cavalcanti-Kiwiatkoski, R., Dos
Santos-Pereira, M., Mitkovski, M., Raisman-Vozari, R., Del-Bel, E.,
2015. Are cyclooxygenase-2 and nitric oxide involved in the dyskinesia
of parkinson’s disease induced by L-DOPA? Philosophical Transactions
of the Royal Society B: Biological Sciences. 370(1672): 20140190. doi:
10.1098/rstb.2014.0190.
- Braak, H., Del Tredici, K., 2008. Invited Article: Nervous system
pathology in sporadic Parkinson disease. Neurology. 70(20): 1916-1625.
doi: 10.1212/01.wnl.0000312279.49272.9f.
- Bradford, M.M., 1976. A rapid and sensitive method for the
quantitation of microgram quantities of protein utilizing the
principle of protein-dye binding. Anal Biochem. 72: 248–254. doi:
10.1006/abio.1976.9999.
- Bredberg, E., Lennernäs, H., Paalzow, L., 1994. Pharmacokinetics of
levodopa and carbidopa in rats following different routes of
administration. Pharm Res. 11(4):549‐555. doi:10.1023/a:1018970617104.
- Calabresi, P., Ghiglieri, V., Mazzocchetti, P., Corbelli, I., Picconi,
B., 2015. Levodopa-induced plasticity: a double-edged sword in
Parkinson’s disease? Philos Trans R Soc Lond B Biol Sci. 370(1672):
20140184. doi: 10.1098/rstb.2014.0184.
- Carta, A.R., Mulas, G., Bortolanza, M., Duarte, T., Pillai, E.,
Fisone, G., Vozari, R.R., Del-Bel, E., 2017. l-DOPA-induced dyskinesia
and neuroinflammation: do microglia and astrocytes play a role? Eur J
Neurosci. 45(1):73-91. doi: 10.1111/ejn.13482.
- Castro, M.M., Rizzi, E., Rodrigues, G.J., Ceron, C.S., Bendhack, L.M.,
Gerlach, R.F., et al., 2009. Antioxidant treatment reduces matrix
metalloproteinase-2-induced vascular changes in renovascular
hypertension. Free Radical Biology and Medicine. 160(1): 77–87. doi:
10.1111/j.1476-5381.2010.00678. x.
- Cenci, M.A., 2007. L-DOPA-induced dyskinesia: cellular mechanisms and
approaches to treatment. Parkinsonism Relat Disord. 13 Suppl 3:
S263-7. doi: 10.1016/S1353-8020(08)70014-2.
- Cenci, M.A., 2014. Presynaptic Mechanisms of l-DOPA-Induced
Dyskinesia: The Findings, the Debate, and the Therapeutic
Implications. Front Neurol. 5:242. doi: 10.3389/fneur.2014.00242.
- Cenci, M.A., Crossman, A.R., 2018. Animal models of l-dopa-induced
dyskinesia in Parkinson’s disease. Mov Disord. 33(6):889-899. doi:
10.1002/mds.27337.
- Cenci, M.A., Lee, C.S., Björklund, A., 1998. L-DOPA-induced dyskinesia
in the rat is associated with striatal overexpression of prodynorphin-
and glutamic acid decarboxylase mRNA. European Journal of
Neuroscience. 10(8):2694-706
- Cenci, M.A., Lundblad, M., 2007. Ratings of L-DOPA-induced dyskinesia
in the unilateral 6-OHDA lesion model of Parkinson’s disease in rats
and mice. Curr Protoc Neurosci. Chapter 9:Unit 9.25. doi:
10.1002/0471142301.ns0925s41.
- Cenci, M.A., Olanow, C.W., 2017. Translating scientific advances into
disease-modifying therapies for Parkinson’s Disease. Exp Neurol.
298(Pt B):135-136. doi: 10.1016/j.expneurol.2017.10.011.
- Cenci, M.A., Riggare, S., Pahwa, R., Eidelberg, D., Hauser, R.A.,
2020. Dyskinesia matters. Mov Disord. 35(3):392-396.
- Champagne-Jorgensen et al., 2019. Antibiotics and the nervous system:
More than just the microbes? Brain Behav Immun. 77:7-15. doi:
10.1016/j.bbi.2018.12.014.
- Chang, J.W., Wachtel, S.R., Young, D., Kang, U.J., 1999. Biochemical
and anatomical characterization of forepaw adjusting steps in rat
models of Parkinson’s disease: studies on medial forebrain bundle and
striatal lesions. Neuroscience. 88(2):617-28. doi:
10.1016/s0306-4522(98)00217-6.
- Charvin, D., Medori, R., Hauser, R. et al., 2018. Therapeutic
strategies for Parkinson disease: beyond dopaminergic drugs. Nat Rev
Drug Discov. 17, 804–822. doi: 10.1038/nrd.2018.136.
- Chen, X., Gumina, G., Virga, K.G., 2019. “Recent Advances in Drug
Repurposing for Parkinson’s Disease”, Current Medicinal Chemistry.
26: 5340.
- Choi, D.H., Kim, J.H., Seo, J.H., Lee, J., Choi, W.S., Kim, Y.S.,
2014. Matrix metalloproteinase-3 causes dopaminergic neuronal death
through nox1-regenerated oxidative stress. PLoS ONE. 9(12):e115954.
doi: 10.1371/journal.pone.0115954.
- Choi, D.H., Kim, Y.J., Kim, Y.G., Joh, T.H., Beal, M.F., Kim, Y.S.,
2011. Role of matrix metalloproteinase 3-mediated α-synuclein cleavage
in dopaminergic cell death. Journal of Biological Chemistry.
286(16):14168-77. doi: 10.1074/jbc.M111.222430.
- Chotibut, T., Davis, R.W., Arnold, J.C., et al., 2014. Ceftriaxone
increases glutamate uptake and reduces striatal tyrosine hydroxylase
loss in 6-OHDA Parkinson’s model. Mol Neurobiol. 49: 1282-1292. doi:
10.1007/s12035-013-8598-0.
- Chotibut, T., Meadows, S., Kasanga, E.A., McInnis, T., Cantu, M.A.,
Bishop, C., Salvatore, M.F., 2017. Ceftriaxone reduces L-dopa-induced
dyskinesia severity in 6-hydroxydopamine parkinson’s disease model.
Mov Disord. 32(11):1547-1556. doi: 10.1002/mds.27077.
- Chung, Y.C., Kim, Y.S., Bok, E, et al., 2013. MMP-3 contributes to
nigrostriatal dopaminergic neuronal loss, BBB damage, and
neuroinflammation in an MPTP mouse model of Parkinson’s disease.
Mediators Inflamm. 2013: 370526. doi: 10.1155/2013/370526.
- Conti, M.M., Chambers, N., Bishop, C.A., 2018. New outlook on
cholinergic interneurons in Parkinson’s disease and L-DOPA-induced
dyskinesia. Neurosci Biobehav Rev. 92:67-82. doi:
10.1016/j.neubiorev.2018.05.021.
- De Meira Santos Lima, M., Reksidler, M.A.B., Zanata, S.M., Bueno, H.,
Machado, S., Tufik, M.A., 2006. Vital Different parkinsonism models
produce a time-dependent induction of COX-2 in the substantia nigra of
rats Brain Res. 1101:117-125. doi: 10.1016/j.brainres.2006.05.016
- De Stefano, M.E., Herrero, M.T., 2017. The multifaceted role of
metalloproteinases in physiological and pathological conditions in
embryonic and adult brains. Prog Neurobiol. 155:36-56. doi:
10.1016/j.pneurobio.2016.08.002
- Del-Bel, E., Bortolanza, M., Dos-Santos-Pereira, M., Bariotto, K.,
Raisman-Vozari, R., 2016. lDOPA-induced dyskinesia in Parkinson’s
disease: Are neuroinflammation and astrocytes key elements? Synapse.
70(12):479-500. doi: 10.1002/syn.21941
- dos-Santos-Pereira, M., da-Silva, C.A., Guimarães, F.S., Del-Bel, E.,
2016. Co-administration of cannabidiol and capsazepine reduces
L-DOPA-induced dyskinesia in mice: Possible mechanism of action.
Neurobiology of Disease. 94:179-95. doi: 10.1016/j.nbd.2016.06.013.
- Du, Y., Ma, Z., Lin, S., Dodel, R.C., Gao, F., Bales, K.R., et al.,
2001. Minocycline prevents nigrostriatal dopaminergic
neurodegeneration in the MPTP model of Parkinson’s disease.
Proceedings of the National Academy of Sciences of the United States
of America. 98(25):14669-74. doi: 10.1073/pnas.251341998.
- Edan, R.A., Luqmani, Y.A., Masocha, W., 2013. COL-3, a chemically
modified tetracycline, inhibits lipopolysaccharide-induced microglia
activation and cytokine expression in the brain. PLoS One. 8(2):
e57827. doi:10.1371/journal.pone.0057827.
- Egeberg, A., Hansen, P.R., Gislason, G.H., Thyssen, J.P., 2016.
Exploring the association between rosacea and Parkinson disease: A
Danish nationwide cohort study. JAMA Neurology. 73(5):529-34. doi:
10.1001/jamaneurol.2016.0022.
- Espadas, I., Keifman, E., Palomo-Garo, C., Burgaz, S., García, C.,
Fernández-Ruiz, J., Moratalla, R., 2020. Beneficial effects of the
phytocannabinoid Δ9-THCV in L-DOPA-induced dyskinesia in Parkinson’s
disease. Neurobiol Dis. 141:104892. doi: 10.1016/j.nbd.2020.104892.
- Espay, A.J., Morgante, F., Merola, A., Fasano, A., Marsili, L., Fox,
S.H., Bezard, E., Picconi, B., Calabresi, P., Lang, A.E., 2018.
Levodopa-induced dyskinesia in Parkinson disease: Current and evolving
concepts. Ann Neurol. 84(6):797-811. doi: 10.1002/ana.25364.
- Fahn, S., Oakes, D., Shoulson, I., Kieburtz, K., Rudolph, A., Lang,
A., Olanow, C.W., Tanner, C., Marek, K., 2004. Parkinson Study Group.
Levodopa and the progression of Parkinson’s disease. N Engl J Med.
351(24):2498-508. doi: 10.1056/NEJMoa033447.
- Fernández, R.A.R., Pereira, Y.C.L., Iyomasa. D.M., Calzzani, R.A.,
Leite-Panissi, C.R.A., Iyomasa, M.M., et al., 2018. Metabolic and
vascular pattern in medial pterygoid muscle is altered by chronic
stress in an animal model of hypodontia. Physiology and Behavior. 185:
70-78. doi: 10.1016/j.physbeh.2017.12.026.
- Galis, Z.S., Sukhova, G.K., Libby, P., 1995. Microscopic localization
of active proteases by in situ zymography: detection of matrix
metalloproteinase activity in vascular tissue. FASEBJ. 9: 974‐980.
doi: 10.1096/fasebj.9.10.7615167.
- Garcia-Martinez, E.M., Sanz-Blasco, S., Karachitos, A., Bandez, M.J.,
Fernandez-Gomez, F.J., Perez-Alvarez, S., et al., 2010. Mitochondria
and calcium flux as targets of neuroprotection caused by minocycline
in cerebellar granule cells. Biochemical Pharmacology. 79(2):239-50.
doi: 10.1016/j.bcp.2009.07.028.
- Gearing, P. Beckett, M. Christodoulou, M. Churchill, J.M. Clements, M.
Crimmin, A.H. Davidson, A.H. Drummond, W.A. Galloway, R. Gilbert, et
al., 1995. Matrix metalloproteinases and processing of pro-TNF-alpha
J. Leukoc. Biol. 57:74-777. doi: 10.1002/jlb.57.5.774.
- Gerhard, A., Pavese, N., Hotton, G., Turkheimer, F., Es, M., Hammers,
A., Eggert, K., Oertel, W., Banati, R.B., Brooks, D.J., 2006. In vivo
imaging of microglial activation with [11C](R)-PK11195 PET in
idiopathic Parkinson’s disease. Neurobiol Dis. 21:404–412. doi:
10.1016/j.nbd.2005.08.002.
- Giocanti-Auregan, A., Vacca, O., Bénard, R., Cao, S., Siqueiros, L.,
Montañez, C., Paques, M., Sahel, J.A., Sennlaub, F., Guillonneau, X.,
Rendon, A., Tadayoni, R., 2016. Altered astrocyte morphology and
vascular development in dystrophin-Dp71-null mice. Glia. 64(5):716-29.
doi: 10.1002/glia.22956
- Gomes, M.Z., Del Bel, E.A., 2003. Effects of electrolytic and
6-hydroxydopamine lesions of rat nigrostriatal pathway on nitric oxide
synthase and nicotinamide adenine dinucleotide phosphate diaphorase.
Brain Res Bull. 62(2):107-15. doi: 10.1016/j.brainresbull.2003.08.010.
- Gomes, M.Z., Raisman-Vozari, R., Del Bel, E.A., 2008. A nitric oxide
synthase inhibitor decreases 6-hydroxydopamine effects on tyrosine
hydroxylase and neuronal nitric oxide synthase in the rat
nigrostriatal pathway. Brain Research. 1203: 160-169. doi:
10.1016/j.brainres.2008.01.088.
- Gompels, L.L., Smith, A., Charles, P.J., Rogers, W., Soon-Shiong, J.,
Mitchell, A., et al., 2006. Single-blind randomized trial of
combination antibiotic therapy in rheumatoid arthritis. J Rheumatol.
33(2):224–7.
- González-Lizárraga, F., Socías, S.B., Ávila, C.L., Torres-Bugeau,
C.M., Barbosa, L.R., Binolfi, A., Sepúlveda-Díaz, J.E., Del-Bel, E.,
Fernandez, C.O., Papy-Garcia, D., Itri, R., Raisman-Vozari, R.,
Chehín, R.N., 2017. Repurposing doxycycline for synucleinopathies:
remodelling of α-synuclein oligomers towards non-toxic parallel
beta-sheet structured species. Sci Rep. 7:41755. doi:
10.1038/srep41755
- Gottschall, P.E., Yu, X., 1995. Cytokines regulate gelatinase A and B
(matrix metalloproteinase 2 and 9) activity in cultured rat astrocytes
Journal of Neurochemistry. 64(4): 1513–1520. doi:
10.1046/j.1471-4159.1995.64041513. x.
- Hsieh, M.H., Meng, W.Y., Liao, W.C., Weng, J.C., Li, H.H., Su, H.L.,
Lin, C.L., Hung, C.S., Ho, Y.J., 2017. Ceftriaxone reverses deficits
of behavior and neurogenesis in an MPTP-induced rat model of
Parkinson’s disease dementia. Brain Res Bull. 132: 129-138. doi:
10.1016/j.brainresbull.2017.05.015.
- Hsu, C.Y., Hung, C.S., Chang, H.M., Liao, W.C., Ho, S.C., Ho, Y.J.,
2015. Ceftriaxone prevents and reverses behavioral and neuronal
deficits in an MPTP-induced animal model of Parkinson’s disease
dementia. Neuropharmacology. 91:43-56. doi:
10.1016/j.neuropharm.2014.11.023.
- Huang, C.K., Chang, Y.T., Amstislavskaya, T.G., Tikhonova, M.A., Lin,
C.L., Hung, C.S., Lai, T.J., Ho, Y.J., 2015. Synergistic effects of
ceftriaxone and erythropoietin on neuronal and behavioral deficits in
an MPTP-induced animal model of Parkinson’s disease dementia. Behav
Brain Res. 294: 198-207. doi: 10.1016/j.bbr.2015.08.011.
- Huot, P., Johnston, T.H., Koprich, J.B., Fox, S.H., Brotchie, J.M.,
2013. The pharmacology of L-DOPA-induced dyskinesia in Parkinson’s
disease. Pharmacol Rev. 65(1):171-222. doi: 10.1124/pr.111.005678.
- Itoh, H. Nagase, I.B. Thogersen, J.J. Enghild, Y. Sasaguri, Y. M.,
1996. Degradation of interleukin 1beta by matrix metalloproteinases J.
Biol. Chem. 271:14657-14660. doi: 10.1074/jbc.271.25.14657.
- Janelidze, S., Lindqvist, D., Francardo, V., Hall, S., Zetterberg, H.,
Blennow, K., Adler, C.H., Beach, T.G., Serrano, G.E., van Westen, D.,
Londos, E., Cenci, M.A., Hansson, O., 2015. Increased CSF biomarkers
of angiogenesis in Parkinson disease. Neurology. 85(21):1834-42. doi:
10.1212/WNL.0000000000002151.
- Jenner, P., 2008. Molecular mechanisms of L-DOPA-induced dyskinesia.
Nat Rev Neurosci. 9(9):665-77. doi: 10.1038/nrn2471.
- Jenner, P., Olanow, C.W., 1996. Oxidative stress and the pathogenesis
of Parkinson’s disease. Neurology. 47(6 Suppl 3): S161‐S170.
doi:10.1212/wnl.47.6_suppl_3.161s.
- Johnston, T.H., Lacoste, A.M.B., Visanji, N.P., Lang, A.E., Fox, S.H.,
Brotchie, J.M., 2019. Repurposing drugs to treat l-DOPA-induced
dyskinesia in Parkinson’s disease. Neuropharmacology. 147:11-27. doi:
10.1016/j.neuropharm.2018.05.035.
- Johnston, T.H., Versi, E., Howson, P.A., Ravenscroft, P., Fox, S.H.,
Hill, M.P., Reidenberg, B.E., Corey. R., Brotchie, J.M., 2018.
DPI-289, a novel mixed delta opioid agonist / mu opioid antagonist
(DAMA), has L-DOPA-sparing potential in Parkinson’s disease.
Neuropharmacology. 131:116-127. doi:
10.1016/j.neuropharm.2017.11.046..
- Kelsey, J.E., Neville C., 2014. The effects of the β-lactam
antibiotic, ceftriaxone, on forepaw stepping and l-DOPA-induced
dyskinesia in a rodent model of Parkinson’s disease.
Psychopharmacology. 231(12):2405-15. doi: 10.1007/s00213-013-3400-6.
- Kettenmann, H., Hanisch, U.K., Noda, M., Verkhratsky, A., 2011.
Physiology of microglia. Physiol Rev. 91(2):461-553. doi:
10.1152/physrev.00011.2010.
- Kim, E.M., Shin, E.J., Choi, J.H., Son, H.J., Park, I.S., Joh, T.H.,
Hwang, O., 2010. Matrix metalloproteinase-3 is increased and
participates in neuronal apoptotic signaling downstream of caspase- 12
during endoplasmic reticulum stress. J. Biol. Chem. 285:16444-52. doi:
10.1074/jbc.M109.093799.
- Kim, J.H., Lee, H.W., Hwang, J., Kim, J., Lee, M., Han, H., Lee, W.,
Suk, K., 2012. Microglia-inhibiting activity of Parkinson’s disease
drug amantadine. Neurobiol Aging. 33(9): 2145‐2159. doi:
10.1016/j.neurobiolaging.2011.08.011.
- Kim, Y.S., Choi, D.H., Block, M.L., Lorenzl, S., Yang, L., Kim, Y.J.,
et al., 2007. A pivotal role of matrix metalloproteinase-3 activity in
dopaminergic neuronal degeneration via microglial activation. FASEB J.
21:179–87. doi: 10.1096/fj.06-5865com.
- Kirik, D., Rosenblad, C., Björklund A., 1998. Characterization of
behavioral and neurodegenerative changes following partial lesions of
the nigrostriatal dopamine system induced by intrastriatal
6-hydroxydopamine in the rat. Exp Neurol. 152(2):259-77. doi:
10.1006/exnr.1998.6848.
- Klein, N.C., Cunha, B.A., 1995. Tetracyclines. Med Clin North Am.
79(4):789-801. doi: 10.1016/s0025-7125(16)30039-6.
- Knott, C., Stern, G., Wilkin, G.P., 2000. Inflammatory regulators in
Parkinson’s disease: iNOS, lipocortin-1, and cyclooxygenases-1 and -2.
Molecular and Cellular Neuroscience. 16: 724-739. doi:
10.1006/mcne.2000.0914.
- Koli, K., Myllärniemi, M., Keski-Oja, J., Kinnula, V.L., 2008.
“Transforming growth factor-β activation in the lung: focus on
fibrosis and reactive oxygen species Antioxidants and Redox Signaling.
10 (2) 333–342. doi: 10.1089/ars.2007.1914.
- Kurlan, R., Rothfield, K.P., Woodward, W.R., Nutt, J.G., Miller, C.,
Lichter, D., Shoulson, I., 1988. Erratic gastric emptying of levodopa
may cause ”random” fluctuations of parkinsonian mobility. Neurology.
38(3): 419‐421. doi:10.1212/wnl.38.3.419.
- Langevitz, P., Bank, I., Zemer, D., Book, M., Pras, M., 1992.
Treatment of resistant rheumatoid arthritis with minocycline: an open
study. J Rheumatol. 19(10):1502–4.
- Lanza, K., Perkins, A.E., Deak, T., Bishop, C., 2019. Late
aging-associated increases in L-DOPA-induced dyskinesia are
accompanied by heightened neuroinflammation in the hemi-parkinsonian
rat. Neurobiol Aging. 81:190-199. doi:
10.1016/j.neuroscience.2008.07.016.
- Lazzarini, M., Martin, S., Mitkovski, M., Vozari, R.R., Stühmer, W.,
Bel Del, E., 2013. Doxycycline restrains glia and confers
neuroprotection in a 6-OHDA Parkinson model. GLIA. 61(7):1084-100.
doi: 10.1002/glia.22496.
- Lerner, R.P., Francardo, V., Fujita, K., Bimpisidis, Z., Jourdain, V.A.,
Tang, C.C., Dewey, S.L., Chaly, T., Cenci, M.A., Eidelberg, D., 2017.
Levodopa-induced abnormal involuntary movements correlate with altered
permeability of the blood-brain-barrier in the basal ganglia. Sci Rep.
7(1):16005. doi: 10.1038/s41598-017-16228-1.
- Liang, Y., Zhou, T., Chen, Y., Lin, D., Jing, X., Peng, S., Zheng, D.,
Zeng, Z., Lei, M., Wu, X., Huang, K., Yang, L., Xiao, S., Liu, J.,
Tao, E., 2017. Rifampicin inhibits rotenone-induced microglial
inflammation via enhancement of autophagy. Neurotoxicology.
63:137-145. doi: 10.1053/j.ajkd.2016.01.020.
- Lin, D., Jing, X., Chen, Y., Liang, Y., Lei, M., Peng, S., Zhou, T.,
Zheng, D., Zeng, Z., Wu, X., Yang, L., Xiao, S., Liu, J., Tao, E.,
2017. Rifampicin pre-treatment inhibits the toxicity of
rotenone-induced PC12 cells by enhancing sumoylation modification of
α-synuclein. Biochem Biophys Res Commun. 485(1): 23-29. doi:
10.1016/j.bbrc.2017.01.100.
- Lindgren, H.S., Rylander, D., Iderberg, H., Andersson, M., O’Sullivan,
S.S., Williams, D.R., Lees, A.J., Cenci, M.A., 2011. Putaminal
upregulation of FosB/ΔFosB-like immunoreactivity in Parkinson’s
disease patients with dyskinesia. J Parkinsons Dis. 1(4):347-57. doi:
10.3233/JPD-2011-11068.
- Liu, B., Teschemacher, A.G., Kasparov, S., 2017. Neuroprotective
potential of astroglia. J Neurosci Res. 95(11):2126-2139. doi:
10.1002/jnr.24140.
- Liu, Y., Ramamurthy, N., Marecek, J., Lee, H.M., Chen, J.L., et al.,
2001. The Lipophilicity, Pharmacokinetics, and Cellular Uptake of
Different Chemically-Modified Tetracyclines (CMTs). Curr Med Chem. 8:
243–252. doi: 10.2174/0929867013373525.
- Lorenzl, S., Albers, D.S., Narr, S., Chirichigno, J., Beal, M.F.,
2002. Expression of MMP-2, MMP9, and MMP-1 and their endogenous
counterregulators TIMP-1 and TIMP-2 in postmortem brain tissue of
Parkinson’s disease. Experimental Neurology. 178(1):13-20. doi:
10.1006/exnr.2002.8019.
- Lorenzl, S., Calingasan, N., Yang, L., Albers, D.S., Shugama, S.,
Gregorio, J., Krell, H.W., Chirichigno, J., Joh, T., Beal, M.F., 2004.
Matrix metalloproteinase-9 is elevated in
1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced parkinsonism in
mice. Neuromolecular Med. 5(2):119-32. doi: 10.1385/NMM:5:2:119.
- Lundblad, M., Andersson, M., Winkler, C., Kirik, D., Wierup, N.,
Cenci, M.A., 2002. Pharmacological validation of behavioural measures
of akinesia and dyskinesia in a rat model of Parkinson’s disease.
European Journal of Neuroscience. 15(1):120-32. doi:
10.1046/j.0953-816x.2001.01843. x.
- Lundblad, M., Picconi, B., Lindgren, H., Cenci, M.A., 2004. A model of
L-DOPA-induced dyskinesia in 6-hydroxydopamine lesioned mice: relation
to motor and cellular parameters of nigrostriatal function. Neurobiol
Dis. 16(1):110-23. doi: 10.1016/j.nbd.2004.01.007.
- Mansson, R., Hansson, M.J., Morota, S., Uchino, H., Ekdahl, C.T.,
Elme´r, E., 2007. Re-evaluation of mitochondrial permeability
transition as a primary neuroprotective target of minocycline.
Neurobiol Dis. 25(1):198–205. doi: 10.1016/j.nbd.2006.09.008.
- Mattappalil, A., Mergenhagen, K.A., 2014. Neurotoxicity with
antimicrobials in the elderly: a review. Clin Ther.
36(11):1489-1511.e4. doi: 10.1016/j.clinthera.2014.09.020
- McGeer, P.L., Schwab, C., Parent, A., Doudet, D., 2003. Presence of
reactive microglia in monkey substantia nigra years after
1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine administration. Ann
Neurol. 54(5):599-604. doi: 10.1002/ana.10728.
- Monte, A.S., Greicy, C.S., Roger, S.M., Joanna, K.S., Júnia, V.S.,
Rafaela, C.C., Bruna, M.M., Ribeiro, D.F., Silvânia M.M., 2013.
Prevention and reversal of ketamine-induced schizophrenia related
behavior by minocycline in mice: possible involvement of antioxidant
and nitrergic pathway J. Psychopharmacol. 11:1032-1043. doi:
10.1177/0269881113503506.
- Morrison, B.E., Marcondes, M.C.G., Nomura, D.K., Sanchez-Alavez, M.,
Sanchez-Gonzalez, A., Saar, I., et al., 2012. Cutting Edge: IL-13R 1
Expression in Dopaminergic Neurons Contributes to Their Oxidative
Stress-Mediated Loss following Chronic Peripheral Treatment with
Lipopolysaccharide. The Journal of Immunology. 189: 5498-5502. doi:
10.4049/jimmunol.1102150.
- Muir, E.M., Adcock, K.H., Morgenstern, D.A., Clayton, R., von
Stillfried, N., Rhodes, K., Ellis, C., Fawcett, J.W., Rogers, J.H.,
2002. Matrix metalloproteases and their inhibitors are produced by
overlapping populations of activated astrocytes. Brain Res Mol Brain
Res. 100(1–2): 103–117. doi: 10.1016/s0169-328x(02)00132-8.
- Mulas, G., Espa, E., Fenu, S., Spiga, S., Cossu, G., Pillai, E., et
al., 2016. Differential induction of dyskinesia and neuroinflammation
by pulsatile versus continuous L-DOPA delivery in the 6-OHDA model of
Parkinson’s disease. Experimental Neurology. 286: 83-92. doi:
10.1016/j.expneurol.2016.09.013.
- Muñoz, A., Garrido-Gil, P., Dominguez-Meijide, A., Labandeira-Garcia,
J.L., 2014. Angiotensin type 1 receptor blockage reduces
l-dopa-induced dyskinesia in the 6-OHDA model of Parkinson’s disease.
Involvement of vascular endothelial growth factor and interleukin-1β.
Experimental Neurology. 261: 720-432. doi:
10.1016/j.expneurol.2014.08.019.
- Munzar, P., Li, H., Nicholson, K.L., Wiley, J.L., Balster, R.L., 2002.
Enhancement of the discriminative stimulus effects of phencyclidine by
the tetracycline antibiotics doxycycline and minocycline in rats.
Psychopharmacology (Berl). 160(3):331–6. doi:
10.1007/s00213-001-0989-7.
- Nascimento, G.C., Rizzi, E., Gerlach, R.F., Leite-Panissi, C.R.A.,
2013. Expression of MMP-2 and MMP-9 in the rat trigeminal ganglion
during the development of temporomandibular joint inflammation.
Brazilian Journal of Medical and Biological Research. 46(11):956-967.
doi: 10.1590/1414-431X20133138
- Ndlovu, B.C., Daniels, W.M.U., Mabandla, M.V., 2016. Amelioration of
l-Dopa-Associated Dyskinesias with Triterpenoic Acid in a Parkinsonian
Rat Model. Neurotoxicity Research. 29(1): 126-134. doi:
10.1007/s12640-015-9567-3.
- Nikodemova, M., Duncan, I.D., Watters, J.J., 2006. Minocycline exerts
inhibitory effects on multiple mitogen-activated protein kinases and
IκBα degradation in a stimulus specific manner in microglia. Journal
of Neurochemistry. 96(2):314-23. doi: 10.1111/j.1471-4159.2005.03520.
x.
- NINDS NET-PD Investigators. 2006. A randomized, double-blind, futility
clinical trial of creatine and minocycline in early Parkinson disease.
Neurology. 66(5):664-71. doi: 10.1212/01.wnl.0000201252. 57661.e1.
- Ogier, C., Bernard, A., Chollet, A.M., Le Diguardher, T., Hanessian,
S., Charton, G., Khrestchatisky, M., Rivera, S., 2006. Matrix
metalloproteinase-2 (MMP-2) regulates astrocyte motility in connection
with the actin cytoskeleton and integrins. Glia. 54(4):272–284. doi:
10.1002/glia.20349.
- Ohlin, K.E., Francardo, V., Lindgren, H.S., Sillivan, S.E.,
O’Sullivan, S.S., Luksik, A.S., Vassoler, F.M., Lees, A.J., Konradi,
C., Cenci, M.A., 2011. Vascular endothelial growth factor is
upregulated by L-dopa in the parkinsonian brain: implications for the
development of dyskinesia. Brain. 134(Pt 8):2339-57. doi:
10.1093/brain/awr165.
- Ohlin, K.E., Sebastianutto, I., Adkins, C.E., Lundblad, C., Lockman,
P.R., Cenci, M.A., 2012. Impact of L-DOPA treatment on regional
cerebral blood flow and metabolism in the basal ganglia in a rat model
of Parkinson’s disease. Neuroimage. 61(1):228-39. doi:
10.1016/j.neuroimage.2012.02.066.
- Olanow, C.W., Agid, Y., Mizuno, Y., Albanese, A., Bonuccelli, U.,
Damier, P., De Yebenes, J., Gershanik, O., Guttman, M., Grandas, F.,
Hallett, M., Hornykiewicz, O., Jenner, P., Katzenschlager, R.,
Langston, W.J., LeWitt, P., Melamed, E., Mena, M.A., Michel, P.P.,
Mytilineou, C., Obeso, J.A., Poewe, W., Quinn, N., Raisman-Vozari, R.,
Rajput, A.H., Rascol, O., Sampaio, C., Stocchi, F., 2004. Levodopa in
the treatment of Parkinson’s disease: current controversies. Mov
Disord. 19(9):997-1005. doi: 10.1002/mds.20243.
- Olsson, M., Nikkhah, G., Bentlage, C., Björklund, A., 1995. Forelimb
akinesia in the rat Parkinson model: differential effects of dopamine
agonists and nigral transplants as assessed by a new stepping test. J
Neurosci. 15(5 Pt 2):3863-75. doi: 10.1523/JNEUROSCI.15-05-03863.1995.
- Ouchi, Y., Yoshikawa, E., Sekine, Y., Futatsubashi, M., Kanno, T.,
Ogusu, T., Torizuka, T., 2005. Microglial activation and dopamine
terminal loss in early Parkinson’s disease. Ann Neurol. 57(2):168-75.
doi: 10.1002/ana.20338.
- Padovan-Neto, F.E., Cavalcanti-Kiwiatkoviski, R., Carolino, R.O.G.,
Anselmo-Franci, J., Del Bel, E., 2015. Effects of prolonged neuronal
nitric oxide synthase inhibition on the development and expression of
l-DOPA-induced dyskinesia in 6-OHDA-lesioned rats. Neuropharmacology.
89: 87-97. doi: 10.1016/j.neuropharm.2014.08.019 0028-3908.
- Padovan-Neto, F.E., Echeverry, M.B., Tumas, V., Del-Bel, E.A., 2009.
Nitric oxide synthase inhibition attenuates l-DOPA-induced dyskinesias
in a rodent model of Parkinson’s disease. Neuroscience. 159(3):927-35.
doi: 10.1016/j.neuroscience.2009.01.034.
- Paxinos, G., Watson, C., 2004. The Rat Brain in Stereotaxic
Coordinates - The New Coronal Set. Elsevier.
- Payne, J.B., Golub, L.M., Stoner, J.A., Lee, H.M., Reinhardt, R.A.,
Sorsa, T., Slepian, M.J., 2011. The effect of
subantimicrobial-dose-doxycycline periodontal therapy on serum
biomarkers of systemic inflammation: a randomized, double-masked,
placebo-controlled clinical trial. J Am Dent Assoc. 142(3):262-73.
doi: 10.14219/jada.archive.2011.0165.
- Picconi, B., Bagetta, V., Ghiglieri, V., Paillè, V., Di Filippo, M.,
Pendolino, V., Tozzi, A., Giampà, C., Fusco, F.R., Sgobio, C.,
Calabresi, P., 2011. Inhibition of phosphodiesterases rescues striatal
long-term depression and reduces levodopa-induced dyskinesia. Brain.
134(Pt 2):375-87. doi: 10.1093/brain/awq342.
- Picconi, B., Centonze, D., Håkansson, K., Bernardi, G., 2003.
Greengard P, Fisone G, Cenci MA, Calabresi P. Loss of bidirectional
striatal synaptic plasticity in L-DOPA-induced dyskinesia. Nat
Neurosci. 6(5):501-6. doi: 10.1038/nn1040.
- Ramírez-García, G., Palafox-Sánchez, V., Limón, I.D., 2015.
Nitrosative and cognitive effects of chronic L-DOPA administration in
rats with intra-nigral 6-OHDA lesion. Neuroscience. 290:492-508. doi:
10.1016/j.neuroscience.2015.01.047.
- Reglodi, D., Renaud, J., Tamas, A., Tizabi, Y., Socías, S.B., Del-Bel,
E., Raisman-Vozari R., 2017. Novel tactics for neuroprotection in
Parkinson’s disease: Role of antibiotics, polyphenols and
neuropeptides. Progress in Neurobiology. 155:120-148. doi:
10.1016/j.pneurobio.2015.10.004.
- Robinson, T.E., Becker, J.B., 1983. The rotational behavior model:
asymmetry in the effects of unilateral 6-OHDA lesions of the
substantia nigra in rats. Brain Res. 28;264(1):127-31. doi:
10.1016/0006-8993(83)91129-0.
- Röhl, C., Lucius, R., Sievers, J., 200. The effect of activated
microglia on astrogliosis parameters in astrocyte cultures. Brain
Research. 238(1): 64-70. doi: 10.1016/j.brainres.2006.10.057.
- Santa-Cecília, F.V., Leite, C.A., Del-Bel, E., Raisman-Vozari, R.,
2019. The Neuroprotective Effect of Doxycycline on Neurodegenerative
Diseases. Neurotox Res. 35(4):981-986. doi: 10.3389/fphar.2019.00738
- Schlesinger, F.K. Krampfl, G., Haeseler, R., Dengler, J., 2004. Bufler
Competitive and open channel block of recombinant nAChR channels by
different antibiotics Neuromuscul. Disord. 14:307-312. doi:
10.1213/00000539-200004000-00036.
- Sian, J., Dexter, D.T., Lees, A.J., Daniel, S., Agid, Y., Javoy-Agid,
F., et al., 1994. Alterations in glutathione levels in Parkinson’s
disease and other neurodegenerative disorders affecting basal ganglia.
Annals of Neurology. 36(3):348-55. doi: 10.1002/ana.410360305.
- Sidoryk-Wegrzynowicz, M., Wegrzynowicz, M., Lee, E., Bowman, A. B., &
Aschner, M. 2011. Role of astrocytes in brain function and disease.
Toxicologic Pathology. 39:115–123. doi: 10.1177/0192623310385254.
- Socias, S.B., González-Lizárraga, F., Avila, C.L., Vera, C., Acuña,
L., Sepulveda-Diaz, J.E., Del-Bel, E., Raisman-Vozari, R., Chehin,
R.N., 2018. Exploiting the therapeutic potential of ready-to-use
drugs: Repurposing antibiotics against amyloid aggregation in
neurodegenerative diseases. Prog Neurobiol. 162:17-36. doi:
10.1016/j.pneurobio.2017.12.002.
- Sofroniew, M.V., Vinters, H.V., 2010. Astrocytes: Biology and
pathology. Acta Neuropathol. 119: 7–35. doi:
10.1007/s00401-009-0619-8.
- Solís, O., Espadas, I., Del-Bel, E.A., Moratalla, R., 2015. Nitric
oxide synthase inhibition decreases l-DOPA-induced dyskinesia and the
expression of striatal molecular markers in Pitx3-/- aphakia mice.
Neurobiology of Disease. 73:49-59. doi: 10.1016/j.nbd.2014.09.010.
- Somogyi, P., Takagi, H., 1982. A note on the use of picric
acid-paraformaldehydeglutaraldehyde fixative for correlated light and
electron microscopic immunocytochemistry. Neuroscience. 7: 1779-1783.
doi: 10.1016/0306-4522(82)90035-5.
- Spinnewyn, B., Mautino, G., Marin, J.G., Rocher, M.N., Grandoulier,
A.S., Ferrandis, E., et al., 2011. BN82451 attenuates l-dopa-induced
dyskinesia in 6-OHDA-lesioned rat model of Parkison’s disease.
Neuropharmacology. 60(4): 692-700. doi:
10.1016/j.neuropharm.2010.11.019.
- Stephenson, J., Nutma, E., van der Valk, P., Amor, S., 2018.
Inflammation in CNS neurodegenerative diseases. Immunology.
154(2):204-219. doi: 10.1111/imm.12922
- Stoilova, T., Colombo, L., Forloni, G., Tagliavini, F., Salmona, M.,
2013. A new face for old antibiotics: tetracyclines in treatment of
amyloidoses. J Med Chem. 56(15):5987-6006. doi: 10.1021/jm400161p.
- Tansey, M.G., McCoy, M.K., Frank-Cannon, T.C., 2007. Neuroinflammatory
mechanisms in Parkinson’s disease: potential environmental triggers,
pathways, and targets for early therapeutic intervention. Exp Neurol.
208(1):1-25. doi: 10.1016/j.expneurol.2007.07.004.
- Teema, A.M., Zaitone, S.A., Moustafa, Y.M., 2016. Ibuprofen or
piroxicam protects nigral neurons and delays the development of l-dopa
induced dyskinesia in rats with experimental Parkinsonism: Influence
on angiogenesis. Neuropharmacology. 107: 432-450. doi:
10.1016/j.neuropharm.2016.03.034.
- Teismann, P., Tieu, K., Choi, D.K., Wu. D.C., Naini, A., Hunot, S., et
al., 2003. Cyclooxygenase-2 is instrumental in Parkinson’s disease
neurodegeneration. Proceedings of the National Academy of Sciences.
100(9):5473-5478. doi: 10.1073/pnas.0837397100.
- Tekumalla, P.K., Calon, F., Rahman, Z., Birdi, S., Rajput, A.H.,
Hornykiewicz, O., Di Paolo, T., Bédard, P.J., Nestler, E.J., 2001.
Elevated levels of DeltaFosB and RGS9 in striatum in Parkinson’s
disease. Biol Psychiatry. 15;50(10):813-6. doi:
10.1016/s0006-3223(01)01234-3.
- Ungerstedt, U., Arbuthnott, G.W., 1970. Quantitative recording of
rotational behavior in rats after 6-hydroxy-dopamine lesions of the
nigrostriatal dopamine system. Brain Res. 18;24(3):485-93. doi:
10.1016/0006-8993(70)90187-3.
- Vijayakumar, D., Jankovic, J., 2016. Drug-Induced Dyskinesia, Part 1:
Treatment of Levodopa-Induced Dyskinesia. Drugs. 76(7):759-77. doi:
10.1007/s40265-016-0566-3.
- Weng, J.C., Tikhonova, M.A., Chen, J.H., Shen, M.S., Meng, W.Y.,
Chang, Y.T., Chen, K.H., Liang, K.C., Hung, C.S., Amstislavskaya,
T.G., Ho. Y.J., 2016. Ceftriaxone prevents the neurodegeneration and
decreased neurogenesis seen in a Parkinson’s disease rat model: An
immunohistochemical and MRI study. Behav Brain Res. 05:126-39. doi:
10.1016/j.bbr.2016.02.034.
- Winkler, C., Kirik, D., Björklund, A., Cenci, M.A., 2002.
L-DOPA-induced dyskinesia in the intrastriatal 6-hydroxydopamine model
of Parkinson’s disease: Relation to motor and cellular parameters of
nigrostriatal function. Neurobiology of Disease. 10(2):165-86. doi:
10.1006/nbdi.2002.0499.
- Wolf, S.A., Boddeke, H.W., Kettenmann, H., 2017. Microglia in
Physiology and Disease. Annu Rev Physiol. 79:619-643. doi:
10.1146/annurev-physiol-022516-034406.
- Worlitzer, M.M..A, Viel, T., Jacobs, A.H., Schwamborn, J.C., 2013. The
majority of newly generated cells in the adult mouse substantia nigra
express low levels of Doublecortin, but their proliferation is
unaffected by 6-OHDA-induced nigral lesion or Minocycline-mediated
inhibition of neuroinflammation. European Journal of Neuroscience.
38(5):2684-92. doi: 10.1111/ejn.12269.
- Wu, D.C., Teismann, P., Tieu, K., Vila, M., Jackson-Lewis, V.,
Ischiropoulos, H., et al., 2003. NADPH oxidase mediates oxidative
stress in the 1-methyl-4-phenyl-1,2,3,6- tetrahydropyridine model of
Parkinson’s disease. Proceedings of the National Academy of Sciences.
100(10):6145-50. doi: 10.1073/pnas.0937239100
- Wu, X., Liang, Y., Jing, X., Lin, D., Chen, Y., Zhou, T., Peng, S.,
Zheng, D., Zeng, Z., Lei, M., Huang, K., Tao, E., 2018. Rifampicin
Prevents SH-SY5Y Cells from Rotenone-Induced Apoptosis via the
PI3K/Akt/GSK-3β/CREB Signaling Pathway. Neurochem Res. 43(4):886-893.
doi: 10.1007/s11064-018-2494-y.
- Yimer, E.M., Hishe, H.Z., Tuem, K.B., 2019. Repurposing of the
β-Lactam Antibiotic, Ceftriaxone for Neurological Disorders: A Review.
Front Neurosci. 13:236. doi: 10.3389/fnins.2019.00236.
- You, H., Mariani, L.L., Mangone, G., Le Febvre de Nailly, D.,
Charbonnier-Beaupel, F., Corvol, J.C., 2018. Molecular basis of
dopamine replacement therapy and its side effects in Parkinson’s
disease. Cell Tissue Res. 373(1):111-135. doi:
10.1007/s00441-018-2813-2.
- Yuhas, Y., Berent, E., Cohen, R., Ashkenazi, S., 2009. Role of
NF-kappaB activation and peroxisome proliferator-activated receptor
gamma inhibition in the effect of rifampin on inducible nitric oxide
synthase transcription in human lung epithelial cells. Antimicrob.
Agents Chemother. 53: 1539–1545. doi: 10.1128/AAC.00961-08.
- Yulug, B., Hanoglu, L., Kilic, E., Schabitz, W.R., 2014. RIFAMPICIN:
an antibiotic with brain protective function. Brain Res Bull. 107:
37-42. doi: 10.1016/j.brainresbull.2014.05.007.
- Zhang, G.B., Feng, Y.H., Wang, P.Q., Song, J.H., Wang, P., Wang, S.A.,
2015. A study on the protective role of doxycycline upon dopaminergic
neuron of LPS-PD rat model rat. European Review for Medical and
Pharmacological Sciences. 19(18):3468-74.
- Zhang, L., Shirayama, Y., Shimizu, E., Iyo, M., Hashimoto, K., 2006.
Protective effects of minocycline on
3,4-methylenedioxymethamphetamine-induced neurotoxicity in
serotonergic and dopaminergic neurons of mouse brain. Eur J Pharmacol.
544(1-3):1-9. doi: 10.1016/j.ejphar.2006.05.047.
- Zhou, C., Huang, Y., Przedborski, S., 2008. Oxidative stress in
Parkinson’s disease: a mechanism of pathogenic and therapeutic
significance. Ann N Y Acad Sci. 1147: 93‐104.
doi:10.1196/annals.1427.023.
Supplementary Table 1 – Open Field Data a