REFERENCES
  1. Acuña, L., Hamadat, S., Corbalán, N.S., González-Lizárraga, F., Dos-Santos-Pereira, M., Rocca, J., Díaz, J.S., Del-Bel, E., Papy-García, D., Chehín, R.N., Michel, P.P., Raisman-Vozari, R., 2019. Rifampicin and Its Derivative Rifampicin Quinone Reduce Microglial Inflammatory Responses and Neurodegeneration Induced In Vitro by α-Synuclein Fibrillary Aggregates. Cells. 8(8):776. doi: 10.3390/cells8080776.
  2. Aminov, R.I., 2013. Biotic acts of antibiotics. Front.Microbiol 4:241 10.3389/fmicb.2013.00241. doi: 10.3389/fmicb.2013.00241.
  3. Amor, S., Puentes, F., Baker, D., van der Valk, P., 2010. Inflammation in neurodegenerative diseases. Immunology. 129(2): 154‐169. doi:10.1111/j.1365-2567.2009.03225.x.
  4. Amor. S., Peferoen, L.A ., Vogel, D.Y., Breur, M., van der Valk, P., Baker, D., van Noort, J.M., 2014. Inflammation in neurodegenerative diseases–an update. Immunology. 142(2): 151‐166. doi:10.1111/imm.12233.
  5. Anderson, J.M., Hughes, J.D., Gonzalez, Rothi. L.J., Crucian, G.P., Heilman, K.M., 1999. Developmental stuttering and Parkinson’s disease: The effects of levodopa treatment. Journal of Neurology Neurosurgery and Psychiatry. 66(6):776-8. doi: 10.1136/jnnp.66.6.776.
  6. Andersson, H., Alestig, K., 1976. The penetration of doxycycline into CSF. Scand J Infect Dis Suppl. (9):17-9.
  7. Annese, V., Herrero, M.T., Di Pentima, M., Gomez, A., Lombardi, L., Ros, C.M., De Pablos, V., Fernandez-Villalba, E., De Stefano, M.E., 2015. Metalloproteinase-9 contributes to inflammatory glia activation and nigrostriatal pathway degeneration in both mouse and monkey models of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinsonism. Brain Structure and Function. 220(2): 703-727. doi: 10.1007/s00429-014-0718-8.
  8. Antonio, R.C., Ceron, C.S., Rizzi, E., Coelho, E.B., Tanus-Santos, J.E., Gerlach, R.F., 2014. Antioxidant effect of doxycycline decreases MMP activity and blood pressure in SHR. Molecular and Cellular Biochemistry. 386(1-2): 99-105. doi: 10.1007/s11010-013-1848-7.
  9. Aquino, C.C., Fox, S.H., 2015. Clinical spectrum of levodopa-induced complications. Mov Disord. 30(1):80-9. doi: 10.1002/mds.26125.
  10. Aron Badin, R., Spinnewyn, B., Gaillard, M.C., Jan, C., Malgorn, C., van Camp, N., et al., 2013. IRC-082451, a Novel Multitargeting Molecule, Reduces L-DOPA-Induced Dyskinesias in MPTP Parkinsonian Primates. PLoS ONE. 8(1): e52680. doi: 10.1371/journal.pone.0052680.
  11. Bahrami, F.L., Morris, D.H., Pourgholami, M., 2011. Tetracyclines: Drugs with Huge Therapeutic Potential. Mini-Reviews in Medicinal Chemistry. 12: 44-52. doi: 10.2174/138955712798868977.
  12. Barcia, C., Fernández Barreiro, A., Poza, M., Herrero, M.T., 2003. Parkinson’s disease and inflammatory changes. Neurotox Res. 5(6):411-8. doi: 10.1007/BF03033170.
  13. Barnum, C.J., Eskow, K.L., Dupre, K., Blandino, P.Jr., Deak, T., Bishop, C., 2008. Exogenous corticosterone reduces L-DOPA-induced dyskinesia in the hemi-parkinsonian rat: role for IL-1beta. Neuroscience. 156(1): 30-41. doi: 10.1016/j.neuroscience.2008.07.016.
  14. Bartels, A.L., Leenders, K.L., 2007. Neuroinflammation in the pathophysiology of Parkinson’s disease: evidence from animal models to human in vivo studies with [11C]-PK11195 PET. Mov Disord. 22(13):1852-6. doi: 10.1002/mds.21552.
  15. Bartlett, J.G., Bustetter, L.A., Gorbach, S.L., Onderdonk, A.B., 1975. Comparative effect of tetracycline and doxycycline on the occurrence of resistant Escherichia coli in the fecal flora. Antimicrob Agents Chemother. 7: 55–57. doi: 10.1128/aac.7.1.55.
  16. Barza, M., Brown, R.B., Shanks, C., Gamble, C., Weinstein L., 1975. Relation between lipophilicity and pharmacological behavior of minocycline, doxycycline, tetracycline, and oxytetracycline in dogs. Antimicrob Agents Chemother. 8(6):713-20. doi: 10.1128/aac.8.6.713.
  17. Bassani, T.B., Vital, M.A., Rauh, L.K., 2015. Neuroinflammation in the pathophysiology of Parkinson’s disease and therapeutic evidence of anti-inflammatory drugs. Arq Neuropsiquiatr. 73:616–623. doi: 10.1590/0004-282X20150057.
  18. Ben Haim, L., Carrillo-de Sauvage, M.A., Ceyzériat, K., and Escartin, C., 2015. Elusive roles for reactive astrocytes in neurodegenerative diseases. Front. Cell. Neurosci. 9:278. doi: 10.3389/fncel.2015.00278. eCollection 2015.
  19. Berke, J.D., Paletzki, R.F., Aronson, G.J., Hyman, S.E., Gerfen, C.R., 1998. J Neurosci. A complex program of striatal gene expression induced by dopaminergic stimulation. 18(14):5301-10. doi: 10.1523/JNEUROSCI.18-14-05301.1998.
  20. Blanchet, P.J., Konitsiotis, S., Chase, T.N., 1998. Amantadine reduces levodopa-induced dyskinesias in parkinsonian monkeys. Mov Disord. 13(5):798-802.
  21. Boi, L., Pisanu, A., Greig, N.H., Scerba, M.T., Tweedie, D., Mulas, G., Fenu, S., Carboni, E., Spiga, S., Carta, A.R., 2019. Immunomodulatory drugs alleviate l-dopa-induced dyskinesia in a rat model of Parkinson’s disease. Mov Disord. 34(12):1818-1830. doi: 10.1002/mds.27799.
  22. Borgkvist, A., Lieberman, O.J., Sulzer, D., 2018. Synaptic plasticity may underlie l-DOPA induced dyskinesia. Curr Opin Neurobiol. 48:71-78. doi: 10.1016/j.conb.2017.10.021.
  23. Bortolanza, M., Cavalcanti-Kiwiatkoski. R., Padovan-Neto, F.E., da-Silva, C.A., Mitkovski, M., Raisman-Vozari R., Del-Bel, E., 2015. Glial activation is associated with l-DOPA induced dyskinesia and blocked by a nitric oxide synthase inhibitor in a rat model of Parkinson’s disease. Neurobiology of Disease. 73:377-87. doi: 10.1016/j.nbd.2014.10.017.
  24. Bortolanza, M., Nascimento, G.C., Socias, S.B., Ploper, D., Chehín, R.N., Raisman-Vozari, R., Del-Bel, E., 2018. Tetracycline repurposing in neurodegeneration: focus on Parkinson’s disease. Journal of Neural Transmission. 125(10):1403-1415. doi: 10.1007/s00702-018-1913-1.
  25. Bortolanza, M., Padovan-Neto, F.E., Cavalcanti-Kiwiatkoski, R., Dos Santos-Pereira, M., Mitkovski, M., Raisman-Vozari, R., Del-Bel, E., 2015. Are cyclooxygenase-2 and nitric oxide involved in the dyskinesia of parkinson’s disease induced by L-DOPA? Philosophical Transactions of the Royal Society B: Biological Sciences. 370(1672): 20140190. doi: 10.1098/rstb.2014.0190.
  26. Braak, H., Del Tredici, K., 2008. Invited Article: Nervous system pathology in sporadic Parkinson disease. Neurology. 70(20): 1916-1625. doi: 10.1212/01.wnl.0000312279.49272.9f.
  27. Bradford, M.M., 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 72: 248–254. doi: 10.1006/abio.1976.9999.
  28. Bredberg, E., Lennernäs, H., Paalzow, L., 1994. Pharmacokinetics of levodopa and carbidopa in rats following different routes of administration. Pharm Res. 11(4):549‐555. doi:10.1023/a:1018970617104.
  29. Calabresi, P., Ghiglieri, V., Mazzocchetti, P., Corbelli, I., Picconi, B., 2015. Levodopa-induced plasticity: a double-edged sword in Parkinson’s disease? Philos Trans R Soc Lond B Biol Sci. 370(1672): 20140184. doi: 10.1098/rstb.2014.0184.
  30. Carta, A.R., Mulas, G., Bortolanza, M., Duarte, T., Pillai, E., Fisone, G., Vozari, R.R., Del-Bel, E., 2017. l-DOPA-induced dyskinesia and neuroinflammation: do microglia and astrocytes play a role? Eur J Neurosci. 45(1):73-91. doi: 10.1111/ejn.13482.
  31. Castro, M.M., Rizzi, E., Rodrigues, G.J., Ceron, C.S., Bendhack, L.M., Gerlach, R.F., et al., 2009. Antioxidant treatment reduces matrix metalloproteinase-2-induced vascular changes in renovascular hypertension. Free Radical Biology and Medicine. 160(1): 77–87. doi: 10.1111/j.1476-5381.2010.00678. x.
  32. Cenci, M.A., 2007. L-DOPA-induced dyskinesia: cellular mechanisms and approaches to treatment. Parkinsonism Relat Disord. 13 Suppl 3: S263-7. doi: 10.1016/S1353-8020(08)70014-2.
  33. Cenci, M.A., 2014. Presynaptic Mechanisms of l-DOPA-Induced Dyskinesia: The Findings, the Debate, and the Therapeutic Implications. Front Neurol. 5:242. doi: 10.3389/fneur.2014.00242.
  34. Cenci, M.A., Crossman, A.R., 2018. Animal models of l-dopa-induced dyskinesia in Parkinson’s disease. Mov Disord. 33(6):889-899. doi: 10.1002/mds.27337.
  35. Cenci, M.A., Lee, C.S., Björklund, A., 1998. L-DOPA-induced dyskinesia in the rat is associated with striatal overexpression of prodynorphin- and glutamic acid decarboxylase mRNA. European Journal of Neuroscience. 10(8):2694-706
  36. Cenci, M.A., Lundblad, M., 2007. Ratings of L-DOPA-induced dyskinesia in the unilateral 6-OHDA lesion model of Parkinson’s disease in rats and mice. Curr Protoc Neurosci. Chapter 9:Unit 9.25. doi: 10.1002/0471142301.ns0925s41.
  37. Cenci, M.A., Olanow, C.W., 2017. Translating scientific advances into disease-modifying therapies for Parkinson’s Disease. Exp Neurol. 298(Pt B):135-136. doi: 10.1016/j.expneurol.2017.10.011.
  38. Cenci, M.A., Riggare, S., Pahwa, R., Eidelberg, D., Hauser, R.A., 2020. Dyskinesia matters. Mov Disord. 35(3):392-396.
  39. Champagne-Jorgensen et al., 2019. Antibiotics and the nervous system: More than just the microbes? Brain Behav Immun. 77:7-15. doi: 10.1016/j.bbi.2018.12.014.
  40. Chang, J.W., Wachtel, S.R., Young, D., Kang, U.J., 1999. Biochemical and anatomical characterization of forepaw adjusting steps in rat models of Parkinson’s disease: studies on medial forebrain bundle and striatal lesions. Neuroscience. 88(2):617-28. doi: 10.1016/s0306-4522(98)00217-6.
  41. Charvin, D., Medori, R., Hauser, R. et al., 2018. Therapeutic strategies for Parkinson disease: beyond dopaminergic drugs. Nat Rev Drug Discov. 17, 804–822. doi: 10.1038/nrd.2018.136.
  42. Chen, X., Gumina, G., Virga, K.G., 2019. “Recent Advances in Drug Repurposing for Parkinson’s Disease”, Current Medicinal Chemistry. 26: 5340.
  43. Choi, D.H., Kim, J.H., Seo, J.H., Lee, J., Choi, W.S., Kim, Y.S., 2014. Matrix metalloproteinase-3 causes dopaminergic neuronal death through nox1-regenerated oxidative stress. PLoS ONE. 9(12):e115954. doi: 10.1371/journal.pone.0115954.
  44. Choi, D.H., Kim, Y.J., Kim, Y.G., Joh, T.H., Beal, M.F., Kim, Y.S., 2011. Role of matrix metalloproteinase 3-mediated α-synuclein cleavage in dopaminergic cell death. Journal of Biological Chemistry. 286(16):14168-77. doi: 10.1074/jbc.M111.222430.
  45. Chotibut, T., Davis, R.W., Arnold, J.C., et al., 2014. Ceftriaxone increases glutamate uptake and reduces striatal tyrosine hydroxylase loss in 6-OHDA Parkinson’s model. Mol Neurobiol. 49: 1282-1292. doi: 10.1007/s12035-013-8598-0.
  46. Chotibut, T., Meadows, S., Kasanga, E.A., McInnis, T., Cantu, M.A., Bishop, C., Salvatore, M.F., 2017. Ceftriaxone reduces L-dopa-induced dyskinesia severity in 6-hydroxydopamine parkinson’s disease model. Mov Disord. 32(11):1547-1556. doi: 10.1002/mds.27077.
  47. Chung, Y.C., Kim, Y.S., Bok, E, et al., 2013. MMP-3 contributes to nigrostriatal dopaminergic neuronal loss, BBB damage, and neuroinflammation in an MPTP mouse model of Parkinson’s disease. Mediators Inflamm. 2013: 370526. doi: 10.1155/2013/370526.
  48. Conti, M.M., Chambers, N., Bishop, C.A., 2018. New outlook on cholinergic interneurons in Parkinson’s disease and L-DOPA-induced dyskinesia. Neurosci Biobehav Rev. 92:67-82. doi: 10.1016/j.neubiorev.2018.05.021.
  49. De Meira Santos Lima, M., Reksidler, M.A.B., Zanata, S.M., Bueno, H., Machado, S., Tufik, M.A., 2006. Vital Different parkinsonism models produce a time-dependent induction of COX-2 in the substantia nigra of rats Brain Res. 1101:117-125. doi: 10.1016/j.brainres.2006.05.016
  50. De Stefano, M.E., Herrero, M.T., 2017. The multifaceted role of metalloproteinases in physiological and pathological conditions in embryonic and adult brains. Prog Neurobiol. 155:36-56. doi: 10.1016/j.pneurobio.2016.08.002
  51. Del-Bel, E., Bortolanza, M., Dos-Santos-Pereira, M., Bariotto, K., Raisman-Vozari, R., 2016. lDOPA-induced dyskinesia in Parkinson’s disease: Are neuroinflammation and astrocytes key elements? Synapse. 70(12):479-500. doi: 10.1002/syn.21941
  52. dos-Santos-Pereira, M., da-Silva, C.A., Guimarães, F.S., Del-Bel, E., 2016. Co-administration of cannabidiol and capsazepine reduces L-DOPA-induced dyskinesia in mice: Possible mechanism of action. Neurobiology of Disease. 94:179-95. doi: 10.1016/j.nbd.2016.06.013.
  53. Du, Y., Ma, Z., Lin, S., Dodel, R.C., Gao, F., Bales, K.R., et al., 2001. Minocycline prevents nigrostriatal dopaminergic neurodegeneration in the MPTP model of Parkinson’s disease. Proceedings of the National Academy of Sciences of the United States of America. 98(25):14669-74. doi: 10.1073/pnas.251341998.
  54. Edan, R.A., Luqmani, Y.A., Masocha, W., 2013. COL-3, a chemically modified tetracycline, inhibits lipopolysaccharide-induced microglia activation and cytokine expression in the brain. PLoS One. 8(2): e57827. doi:10.1371/journal.pone.0057827.
  55. Egeberg, A., Hansen, P.R., Gislason, G.H., Thyssen, J.P., 2016. Exploring the association between rosacea and Parkinson disease: A Danish nationwide cohort study. JAMA Neurology. 73(5):529-34. doi: 10.1001/jamaneurol.2016.0022.
  56. Espadas, I., Keifman, E., Palomo-Garo, C., Burgaz, S., García, C., Fernández-Ruiz, J., Moratalla, R., 2020. Beneficial effects of the phytocannabinoid Δ9-THCV in L-DOPA-induced dyskinesia in Parkinson’s disease. Neurobiol Dis. 141:104892. doi: 10.1016/j.nbd.2020.104892.
  57. Espay, A.J., Morgante, F., Merola, A., Fasano, A., Marsili, L., Fox, S.H., Bezard, E., Picconi, B., Calabresi, P., Lang, A.E., 2018. Levodopa-induced dyskinesia in Parkinson disease: Current and evolving concepts. Ann Neurol. 84(6):797-811. doi: 10.1002/ana.25364.
  58. Fahn, S., Oakes, D., Shoulson, I., Kieburtz, K., Rudolph, A., Lang, A., Olanow, C.W., Tanner, C., Marek, K., 2004. Parkinson Study Group. Levodopa and the progression of Parkinson’s disease. N Engl J Med. 351(24):2498-508. doi: 10.1056/NEJMoa033447.
  59. Fernández, R.A.R., Pereira, Y.C.L., Iyomasa. D.M., Calzzani, R.A., Leite-Panissi, C.R.A., Iyomasa, M.M., et al., 2018. Metabolic and vascular pattern in medial pterygoid muscle is altered by chronic stress in an animal model of hypodontia. Physiology and Behavior. 185: 70-78. doi: 10.1016/j.physbeh.2017.12.026.
  60. Galis, Z.S., Sukhova, G.K., Libby, P., 1995. Microscopic localization of active proteases by in situ zymography: detection of matrix metalloproteinase activity in vascular tissue. FASEBJ. 9: 974‐980. doi: 10.1096/fasebj.9.10.7615167.
  61. Garcia-Martinez, E.M., Sanz-Blasco, S., Karachitos, A., Bandez, M.J., Fernandez-Gomez, F.J., Perez-Alvarez, S., et al., 2010. Mitochondria and calcium flux as targets of neuroprotection caused by minocycline in cerebellar granule cells. Biochemical Pharmacology. 79(2):239-50. doi: 10.1016/j.bcp.2009.07.028.
  62. Gearing, P. Beckett, M. Christodoulou, M. Churchill, J.M. Clements, M. Crimmin, A.H. Davidson, A.H. Drummond, W.A. Galloway, R. Gilbert, et al., 1995. Matrix metalloproteinases and processing of pro-TNF-alpha J. Leukoc. Biol. 57:74-777. doi: 10.1002/jlb.57.5.774.
  63. Gerhard, A., Pavese, N., Hotton, G., Turkheimer, F., Es, M., Hammers, A., Eggert, K., Oertel, W., Banati, R.B., Brooks, D.J., 2006. In vivo imaging of microglial activation with [11C](R)-PK11195 PET in idiopathic Parkinson’s disease. Neurobiol Dis. 21:404–412. doi: 10.1016/j.nbd.2005.08.002.
  64. Giocanti-Auregan, A., Vacca, O., Bénard, R., Cao, S., Siqueiros, L., Montañez, C., Paques, M., Sahel, J.A., Sennlaub, F., Guillonneau, X., Rendon, A., Tadayoni, R., 2016. Altered astrocyte morphology and vascular development in dystrophin-Dp71-null mice. Glia. 64(5):716-29. doi: 10.1002/glia.22956
  65. Gomes, M.Z., Del Bel, E.A., 2003. Effects of electrolytic and 6-hydroxydopamine lesions of rat nigrostriatal pathway on nitric oxide synthase and nicotinamide adenine dinucleotide phosphate diaphorase. Brain Res Bull. 62(2):107-15. doi: 10.1016/j.brainresbull.2003.08.010.
  66. Gomes, M.Z., Raisman-Vozari, R., Del Bel, E.A., 2008. A nitric oxide synthase inhibitor decreases 6-hydroxydopamine effects on tyrosine hydroxylase and neuronal nitric oxide synthase in the rat nigrostriatal pathway. Brain Research. 1203: 160-169. doi: 10.1016/j.brainres.2008.01.088.
  67. Gompels, L.L., Smith, A., Charles, P.J., Rogers, W., Soon-Shiong, J., Mitchell, A., et al., 2006. Single-blind randomized trial of combination antibiotic therapy in rheumatoid arthritis. J Rheumatol. 33(2):224–7.
  68. González-Lizárraga, F., Socías, S.B., Ávila, C.L., Torres-Bugeau, C.M., Barbosa, L.R., Binolfi, A., Sepúlveda-Díaz, J.E., Del-Bel, E., Fernandez, C.O., Papy-Garcia, D., Itri, R., Raisman-Vozari, R., Chehín, R.N., 2017. Repurposing doxycycline for synucleinopathies: remodelling of α-synuclein oligomers towards non-toxic parallel beta-sheet structured species. Sci Rep. 7:41755. doi: 10.1038/srep41755
  69. Gottschall, P.E., Yu, X., 1995. Cytokines regulate gelatinase A and B (matrix metalloproteinase 2 and 9) activity in cultured rat astrocytes Journal of Neurochemistry. 64(4): 1513–1520. doi: 10.1046/j.1471-4159.1995.64041513. x.
  70. Hsieh, M.H., Meng, W.Y., Liao, W.C., Weng, J.C., Li, H.H., Su, H.L., Lin, C.L., Hung, C.S., Ho, Y.J., 2017. Ceftriaxone reverses deficits of behavior and neurogenesis in an MPTP-induced rat model of Parkinson’s disease dementia. Brain Res Bull. 132: 129-138. doi: 10.1016/j.brainresbull.2017.05.015.
  71. Hsu, C.Y., Hung, C.S., Chang, H.M., Liao, W.C., Ho, S.C., Ho, Y.J., 2015. Ceftriaxone prevents and reverses behavioral and neuronal deficits in an MPTP-induced animal model of Parkinson’s disease dementia. Neuropharmacology. 91:43-56. doi: 10.1016/j.neuropharm.2014.11.023.
  72. Huang, C.K., Chang, Y.T., Amstislavskaya, T.G., Tikhonova, M.A., Lin, C.L., Hung, C.S., Lai, T.J., Ho, Y.J., 2015. Synergistic effects of ceftriaxone and erythropoietin on neuronal and behavioral deficits in an MPTP-induced animal model of Parkinson’s disease dementia. Behav Brain Res. 294: 198-207. doi: 10.1016/j.bbr.2015.08.011.
  73. Huot, P., Johnston, T.H., Koprich, J.B., Fox, S.H., Brotchie, J.M., 2013. The pharmacology of L-DOPA-induced dyskinesia in Parkinson’s disease. Pharmacol Rev. 65(1):171-222. doi: 10.1124/pr.111.005678.
  74. Itoh, H. Nagase, I.B. Thogersen, J.J. Enghild, Y. Sasaguri, Y. M., 1996. Degradation of interleukin 1beta by matrix metalloproteinases J. Biol. Chem. 271:14657-14660. doi: 10.1074/jbc.271.25.14657.
  75. Janelidze, S., Lindqvist, D., Francardo, V., Hall, S., Zetterberg, H., Blennow, K., Adler, C.H., Beach, T.G., Serrano, G.E., van Westen, D., Londos, E., Cenci, M.A., Hansson, O., 2015. Increased CSF biomarkers of angiogenesis in Parkinson disease. Neurology. 85(21):1834-42. doi: 10.1212/WNL.0000000000002151.
  76. Jenner, P., 2008. Molecular mechanisms of L-DOPA-induced dyskinesia. Nat Rev Neurosci. 9(9):665-77. doi: 10.1038/nrn2471.
  77. Jenner, P., Olanow, C.W., 1996. Oxidative stress and the pathogenesis of Parkinson’s disease. Neurology. 47(6 Suppl 3): S161‐S170. doi:10.1212/wnl.47.6_suppl_3.161s.
  78. Johnston, T.H., Lacoste, A.M.B., Visanji, N.P., Lang, A.E., Fox, S.H., Brotchie, J.M., 2019. Repurposing drugs to treat l-DOPA-induced dyskinesia in Parkinson’s disease. Neuropharmacology. 147:11-27. doi: 10.1016/j.neuropharm.2018.05.035.
  79. Johnston, T.H., Versi, E., Howson, P.A., Ravenscroft, P., Fox, S.H., Hill, M.P., Reidenberg, B.E., Corey. R., Brotchie, J.M., 2018. DPI-289, a novel mixed delta opioid agonist / mu opioid antagonist (DAMA), has L-DOPA-sparing potential in Parkinson’s disease. Neuropharmacology. 131:116-127. doi: 10.1016/j.neuropharm.2017.11.046..
  80. Kelsey, J.E., Neville C., 2014. The effects of the β-lactam antibiotic, ceftriaxone, on forepaw stepping and l-DOPA-induced dyskinesia in a rodent model of Parkinson’s disease. Psychopharmacology. 231(12):2405-15. doi: 10.1007/s00213-013-3400-6.
  81. Kettenmann, H., Hanisch, U.K., Noda, M., Verkhratsky, A., 2011. Physiology of microglia. Physiol Rev. 91(2):461-553. doi: 10.1152/physrev.00011.2010.
  82. Kim, E.M., Shin, E.J., Choi, J.H., Son, H.J., Park, I.S., Joh, T.H., Hwang, O., 2010. Matrix metalloproteinase-3 is increased and participates in neuronal apoptotic signaling downstream of caspase- 12 during endoplasmic reticulum stress. J. Biol. Chem. 285:16444-52. doi: 10.1074/jbc.M109.093799.
  83. Kim, J.H., Lee, H.W., Hwang, J., Kim, J., Lee, M., Han, H., Lee, W., Suk, K., 2012. Microglia-inhibiting activity of Parkinson’s disease drug amantadine. Neurobiol Aging. 33(9): 2145‐2159. doi: 10.1016/j.neurobiolaging.2011.08.011.
  84. Kim, Y.S., Choi, D.H., Block, M.L., Lorenzl, S., Yang, L., Kim, Y.J., et al., 2007. A pivotal role of matrix metalloproteinase-3 activity in dopaminergic neuronal degeneration via microglial activation. FASEB J. 21:179–87. doi: 10.1096/fj.06-5865com.
  85. Kirik, D., Rosenblad, C., Björklund A., 1998. Characterization of behavioral and neurodegenerative changes following partial lesions of the nigrostriatal dopamine system induced by intrastriatal 6-hydroxydopamine in the rat. Exp Neurol. 152(2):259-77. doi: 10.1006/exnr.1998.6848.
  86. Klein, N.C., Cunha, B.A., 1995. Tetracyclines. Med Clin North Am. 79(4):789-801. doi: 10.1016/s0025-7125(16)30039-6.
  87. Knott, C., Stern, G., Wilkin, G.P., 2000. Inflammatory regulators in Parkinson’s disease: iNOS, lipocortin-1, and cyclooxygenases-1 and -2. Molecular and Cellular Neuroscience. 16: 724-739. doi: 10.1006/mcne.2000.0914.
  88. Koli, K., Myllärniemi, M., Keski-Oja, J., Kinnula, V.L., 2008. “Transforming growth factor-β activation in the lung: focus on fibrosis and reactive oxygen species Antioxidants and Redox Signaling. 10 (2) 333–342. doi: 10.1089/ars.2007.1914.
  89. Kurlan, R., Rothfield, K.P., Woodward, W.R., Nutt, J.G., Miller, C., Lichter, D., Shoulson, I., 1988. Erratic gastric emptying of levodopa may cause ”random” fluctuations of parkinsonian mobility. Neurology. 38(3): 419‐421. doi:10.1212/wnl.38.3.419.
  90. Langevitz, P., Bank, I., Zemer, D., Book, M., Pras, M., 1992. Treatment of resistant rheumatoid arthritis with minocycline: an open study. J Rheumatol. 19(10):1502–4.
  91. Lanza, K., Perkins, A.E., Deak, T., Bishop, C., 2019. Late aging-associated increases in L-DOPA-induced dyskinesia are accompanied by heightened neuroinflammation in the hemi-parkinsonian rat. Neurobiol Aging. 81:190-199. doi: 10.1016/j.neuroscience.2008.07.016.
  92. Lazzarini, M., Martin, S., Mitkovski, M., Vozari, R.R., Stühmer, W., Bel Del, E., 2013. Doxycycline restrains glia and confers neuroprotection in a 6-OHDA Parkinson model. GLIA. 61(7):1084-100. doi: 10.1002/glia.22496.
  93. Lerner, R.P., Francardo, V., Fujita, K., Bimpisidis, Z., Jourdain, V.A., Tang, C.C., Dewey, S.L., Chaly, T., Cenci, M.A., Eidelberg, D., 2017. Levodopa-induced abnormal involuntary movements correlate with altered permeability of the blood-brain-barrier in the basal ganglia. Sci Rep. 7(1):16005. doi: 10.1038/s41598-017-16228-1.
  94. Liang, Y., Zhou, T., Chen, Y., Lin, D., Jing, X., Peng, S., Zheng, D., Zeng, Z., Lei, M., Wu, X., Huang, K., Yang, L., Xiao, S., Liu, J., Tao, E., 2017. Rifampicin inhibits rotenone-induced microglial inflammation via enhancement of autophagy. Neurotoxicology. 63:137-145. doi: 10.1053/j.ajkd.2016.01.020.
  95. Lin, D., Jing, X., Chen, Y., Liang, Y., Lei, M., Peng, S., Zhou, T., Zheng, D., Zeng, Z., Wu, X., Yang, L., Xiao, S., Liu, J., Tao, E., 2017. Rifampicin pre-treatment inhibits the toxicity of rotenone-induced PC12 cells by enhancing sumoylation modification of α-synuclein. Biochem Biophys Res Commun. 485(1): 23-29. doi: 10.1016/j.bbrc.2017.01.100.
  96. Lindgren, H.S., Rylander, D., Iderberg, H., Andersson, M., O’Sullivan, S.S., Williams, D.R., Lees, A.J., Cenci, M.A., 2011. Putaminal upregulation of FosB/ΔFosB-like immunoreactivity in Parkinson’s disease patients with dyskinesia. J Parkinsons Dis. 1(4):347-57. doi: 10.3233/JPD-2011-11068.
  97. Liu, B., Teschemacher, A.G., Kasparov, S., 2017. Neuroprotective potential of astroglia. J Neurosci Res. 95(11):2126-2139. doi: 10.1002/jnr.24140.
  98. Liu, Y., Ramamurthy, N., Marecek, J., Lee, H.M., Chen, J.L., et al., 2001. The Lipophilicity, Pharmacokinetics, and Cellular Uptake of Different Chemically-Modified Tetracyclines (CMTs). Curr Med Chem. 8: 243–252. doi: 10.2174/0929867013373525.
  99. Lorenzl, S., Albers, D.S., Narr, S., Chirichigno, J., Beal, M.F., 2002. Expression of MMP-2, MMP9, and MMP-1 and their endogenous counterregulators TIMP-1 and TIMP-2 in postmortem brain tissue of Parkinson’s disease. Experimental Neurology. 178(1):13-20. doi: 10.1006/exnr.2002.8019.
  100. Lorenzl, S., Calingasan, N., Yang, L., Albers, D.S., Shugama, S., Gregorio, J., Krell, H.W., Chirichigno, J., Joh, T., Beal, M.F., 2004. Matrix metalloproteinase-9 is elevated in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced parkinsonism in mice. Neuromolecular Med. 5(2):119-32. doi: 10.1385/NMM:5:2:119.
  101. Lundblad, M., Andersson, M., Winkler, C., Kirik, D., Wierup, N., Cenci, M.A., 2002. Pharmacological validation of behavioural measures of akinesia and dyskinesia in a rat model of Parkinson’s disease. European Journal of Neuroscience. 15(1):120-32. doi: 10.1046/j.0953-816x.2001.01843. x.
  102. Lundblad, M., Picconi, B., Lindgren, H., Cenci, M.A., 2004. A model of L-DOPA-induced dyskinesia in 6-hydroxydopamine lesioned mice: relation to motor and cellular parameters of nigrostriatal function. Neurobiol Dis. 16(1):110-23. doi: 10.1016/j.nbd.2004.01.007.
  103. Mansson, R., Hansson, M.J., Morota, S., Uchino, H., Ekdahl, C.T., Elme´r, E., 2007. Re-evaluation of mitochondrial permeability transition as a primary neuroprotective target of minocycline. Neurobiol Dis. 25(1):198–205. doi: 10.1016/j.nbd.2006.09.008.
  104. Mattappalil, A., Mergenhagen, K.A., 2014. Neurotoxicity with antimicrobials in the elderly: a review. Clin Ther. 36(11):1489-1511.e4. doi: 10.1016/j.clinthera.2014.09.020
  105. McGeer, P.L., Schwab, C., Parent, A., Doudet, D., 2003. Presence of reactive microglia in monkey substantia nigra years after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine administration. Ann Neurol. 54(5):599-604. doi: 10.1002/ana.10728.
  106. Monte, A.S., Greicy, C.S., Roger, S.M., Joanna, K.S., Júnia, V.S., Rafaela, C.C., Bruna, M.M., Ribeiro, D.F., Silvânia M.M., 2013. Prevention and reversal of ketamine-induced schizophrenia related behavior by minocycline in mice: possible involvement of antioxidant and nitrergic pathway J. Psychopharmacol. 11:1032-1043. doi: 10.1177/0269881113503506.
  107. Morrison, B.E., Marcondes, M.C.G., Nomura, D.K., Sanchez-Alavez, M., Sanchez-Gonzalez, A., Saar, I., et al., 2012. Cutting Edge: IL-13R 1 Expression in Dopaminergic Neurons Contributes to Their Oxidative Stress-Mediated Loss following Chronic Peripheral Treatment with Lipopolysaccharide. The Journal of Immunology. 189: 5498-5502. doi: 10.4049/jimmunol.1102150.
  108. Muir, E.M., Adcock, K.H., Morgenstern, D.A., Clayton, R., von Stillfried, N., Rhodes, K., Ellis, C., Fawcett, J.W., Rogers, J.H., 2002. Matrix metalloproteases and their inhibitors are produced by overlapping populations of activated astrocytes. Brain Res Mol Brain Res. 100(1–2): 103–117. doi: 10.1016/s0169-328x(02)00132-8.
  109. Mulas, G., Espa, E., Fenu, S., Spiga, S., Cossu, G., Pillai, E., et al., 2016. Differential induction of dyskinesia and neuroinflammation by pulsatile versus continuous L-DOPA delivery in the 6-OHDA model of Parkinson’s disease. Experimental Neurology. 286: 83-92. doi: 10.1016/j.expneurol.2016.09.013.
  110. Muñoz, A., Garrido-Gil, P., Dominguez-Meijide, A., Labandeira-Garcia, J.L., 2014. Angiotensin type 1 receptor blockage reduces l-dopa-induced dyskinesia in the 6-OHDA model of Parkinson’s disease. Involvement of vascular endothelial growth factor and interleukin-1β. Experimental Neurology. 261: 720-432. doi: 10.1016/j.expneurol.2014.08.019.
  111. Munzar, P., Li, H., Nicholson, K.L., Wiley, J.L., Balster, R.L., 2002. Enhancement of the discriminative stimulus effects of phencyclidine by the tetracycline antibiotics doxycycline and minocycline in rats. Psychopharmacology (Berl). 160(3):331–6. doi: 10.1007/s00213-001-0989-7.
  112. Nascimento, G.C., Rizzi, E., Gerlach, R.F., Leite-Panissi, C.R.A., 2013. Expression of MMP-2 and MMP-9 in the rat trigeminal ganglion during the development of temporomandibular joint inflammation. Brazilian Journal of Medical and Biological Research. 46(11):956-967. doi: 10.1590/1414-431X20133138
  113. Ndlovu, B.C., Daniels, W.M.U., Mabandla, M.V., 2016. Amelioration of l-Dopa-Associated Dyskinesias with Triterpenoic Acid in a Parkinsonian Rat Model. Neurotoxicity Research. 29(1): 126-134. doi: 10.1007/s12640-015-9567-3.
  114. Nikodemova, M., Duncan, I.D., Watters, J.J., 2006. Minocycline exerts inhibitory effects on multiple mitogen-activated protein kinases and IκBα degradation in a stimulus specific manner in microglia. Journal of Neurochemistry. 96(2):314-23. doi: 10.1111/j.1471-4159.2005.03520. x.
  115. NINDS NET-PD Investigators. 2006. A randomized, double-blind, futility clinical trial of creatine and minocycline in early Parkinson disease. Neurology. 66(5):664-71. doi: 10.1212/01.wnl.0000201252. 57661.e1.
  116. Ogier, C., Bernard, A., Chollet, A.M., Le Diguardher, T., Hanessian, S., Charton, G., Khrestchatisky, M., Rivera, S., 2006. Matrix metalloproteinase-2 (MMP-2) regulates astrocyte motility in connection with the actin cytoskeleton and integrins. Glia. 54(4):272–284. doi: 10.1002/glia.20349.
  117. Ohlin, K.E., Francardo, V., Lindgren, H.S., Sillivan, S.E., O’Sullivan, S.S., Luksik, A.S., Vassoler, F.M., Lees, A.J., Konradi, C., Cenci, M.A., 2011. Vascular endothelial growth factor is upregulated by L-dopa in the parkinsonian brain: implications for the development of dyskinesia. Brain. 134(Pt 8):2339-57. doi: 10.1093/brain/awr165.
  118. Ohlin, K.E., Sebastianutto, I., Adkins, C.E., Lundblad, C., Lockman, P.R., Cenci, M.A., 2012. Impact of L-DOPA treatment on regional cerebral blood flow and metabolism in the basal ganglia in a rat model of Parkinson’s disease. Neuroimage. 61(1):228-39. doi: 10.1016/j.neuroimage.2012.02.066.
  119. Olanow, C.W., Agid, Y., Mizuno, Y., Albanese, A., Bonuccelli, U., Damier, P., De Yebenes, J., Gershanik, O., Guttman, M., Grandas, F., Hallett, M., Hornykiewicz, O., Jenner, P., Katzenschlager, R., Langston, W.J., LeWitt, P., Melamed, E., Mena, M.A., Michel, P.P., Mytilineou, C., Obeso, J.A., Poewe, W., Quinn, N., Raisman-Vozari, R., Rajput, A.H., Rascol, O., Sampaio, C., Stocchi, F., 2004. Levodopa in the treatment of Parkinson’s disease: current controversies. Mov Disord. 19(9):997-1005. doi: 10.1002/mds.20243.
  120. Olsson, M., Nikkhah, G., Bentlage, C., Björklund, A., 1995. Forelimb akinesia in the rat Parkinson model: differential effects of dopamine agonists and nigral transplants as assessed by a new stepping test. J Neurosci. 15(5 Pt 2):3863-75. doi: 10.1523/JNEUROSCI.15-05-03863.1995.
  121. Ouchi, Y., Yoshikawa, E., Sekine, Y., Futatsubashi, M., Kanno, T., Ogusu, T., Torizuka, T., 2005. Microglial activation and dopamine terminal loss in early Parkinson’s disease. Ann Neurol. 57(2):168-75. doi: 10.1002/ana.20338.
  122. Padovan-Neto, F.E., Cavalcanti-Kiwiatkoviski, R., Carolino, R.O.G., Anselmo-Franci, J., Del Bel, E., 2015. Effects of prolonged neuronal nitric oxide synthase inhibition on the development and expression of l-DOPA-induced dyskinesia in 6-OHDA-lesioned rats. Neuropharmacology. 89: 87-97. doi: 10.1016/j.neuropharm.2014.08.019 0028-3908.
  123. Padovan-Neto, F.E., Echeverry, M.B., Tumas, V., Del-Bel, E.A., 2009. Nitric oxide synthase inhibition attenuates l-DOPA-induced dyskinesias in a rodent model of Parkinson’s disease. Neuroscience. 159(3):927-35. doi: 10.1016/j.neuroscience.2009.01.034.
  124. Paxinos, G., Watson, C., 2004. The Rat Brain in Stereotaxic Coordinates - The New Coronal Set. Elsevier.
  125. Payne, J.B., Golub, L.M., Stoner, J.A., Lee, H.M., Reinhardt, R.A., Sorsa, T., Slepian, M.J., 2011. The effect of subantimicrobial-dose-doxycycline periodontal therapy on serum biomarkers of systemic inflammation: a randomized, double-masked, placebo-controlled clinical trial. J Am Dent Assoc. 142(3):262-73. doi: 10.14219/jada.archive.2011.0165.
  126. Picconi, B., Bagetta, V., Ghiglieri, V., Paillè, V., Di Filippo, M., Pendolino, V., Tozzi, A., Giampà, C., Fusco, F.R., Sgobio, C., Calabresi, P., 2011. Inhibition of phosphodiesterases rescues striatal long-term depression and reduces levodopa-induced dyskinesia. Brain. 134(Pt 2):375-87. doi: 10.1093/brain/awq342.
  127. Picconi, B., Centonze, D., Håkansson, K., Bernardi, G., 2003. Greengard P, Fisone G, Cenci MA, Calabresi P. Loss of bidirectional striatal synaptic plasticity in L-DOPA-induced dyskinesia. Nat Neurosci. 6(5):501-6. doi: 10.1038/nn1040.
  128. Ramírez-García, G., Palafox-Sánchez, V., Limón, I.D., 2015. Nitrosative and cognitive effects of chronic L-DOPA administration in rats with intra-nigral 6-OHDA lesion. Neuroscience. 290:492-508. doi: 10.1016/j.neuroscience.2015.01.047.
  129. Reglodi, D., Renaud, J., Tamas, A., Tizabi, Y., Socías, S.B., Del-Bel, E., Raisman-Vozari R., 2017. Novel tactics for neuroprotection in Parkinson’s disease: Role of antibiotics, polyphenols and neuropeptides. Progress in Neurobiology. 155:120-148. doi: 10.1016/j.pneurobio.2015.10.004.
  130. Robinson, T.E., Becker, J.B., 1983. The rotational behavior model: asymmetry in the effects of unilateral 6-OHDA lesions of the substantia nigra in rats. Brain Res. 28;264(1):127-31. doi: 10.1016/0006-8993(83)91129-0.
  131. Röhl, C., Lucius, R., Sievers, J., 200. The effect of activated microglia on astrogliosis parameters in astrocyte cultures. Brain Research. 238(1): 64-70. doi: 10.1016/j.brainres.2006.10.057.
  132. Santa-Cecília, F.V., Leite, C.A., Del-Bel, E., Raisman-Vozari, R., 2019. The Neuroprotective Effect of Doxycycline on Neurodegenerative Diseases. Neurotox Res. 35(4):981-986. doi: 10.3389/fphar.2019.00738
  133. Schlesinger, F.K. Krampfl, G., Haeseler, R., Dengler, J., 2004. Bufler Competitive and open channel block of recombinant nAChR channels by different antibiotics Neuromuscul. Disord. 14:307-312. doi: 10.1213/00000539-200004000-00036.
  134. Sian, J., Dexter, D.T., Lees, A.J., Daniel, S., Agid, Y., Javoy-Agid, F., et al., 1994. Alterations in glutathione levels in Parkinson’s disease and other neurodegenerative disorders affecting basal ganglia. Annals of Neurology. 36(3):348-55. doi: 10.1002/ana.410360305.
  135. Sidoryk-Wegrzynowicz, M., Wegrzynowicz, M., Lee, E., Bowman, A. B., & Aschner, M. 2011. Role of astrocytes in brain function and disease. Toxicologic Pathology. 39:115–123. doi: 10.1177/0192623310385254.
  136. Socias, S.B., González-Lizárraga, F., Avila, C.L., Vera, C., Acuña, L., Sepulveda-Diaz, J.E., Del-Bel, E., Raisman-Vozari, R., Chehin, R.N., 2018. Exploiting the therapeutic potential of ready-to-use drugs: Repurposing antibiotics against amyloid aggregation in neurodegenerative diseases. Prog Neurobiol. 162:17-36. doi: 10.1016/j.pneurobio.2017.12.002.
  137. Sofroniew, M.V., Vinters, H.V., 2010. Astrocytes: Biology and pathology. Acta Neuropathol. 119: 7–35. doi: 10.1007/s00401-009-0619-8.
  138. Solís, O., Espadas, I., Del-Bel, E.A., Moratalla, R., 2015. Nitric oxide synthase inhibition decreases l-DOPA-induced dyskinesia and the expression of striatal molecular markers in Pitx3-/- aphakia mice. Neurobiology of Disease. 73:49-59. doi: 10.1016/j.nbd.2014.09.010.
  139. Somogyi, P., Takagi, H., 1982. A note on the use of picric acid-paraformaldehydeglutaraldehyde fixative for correlated light and electron microscopic immunocytochemistry. Neuroscience. 7: 1779-1783. doi: 10.1016/0306-4522(82)90035-5.
  140. Spinnewyn, B., Mautino, G., Marin, J.G., Rocher, M.N., Grandoulier, A.S., Ferrandis, E., et al., 2011. BN82451 attenuates l-dopa-induced dyskinesia in 6-OHDA-lesioned rat model of Parkison’s disease. Neuropharmacology. 60(4): 692-700. doi: 10.1016/j.neuropharm.2010.11.019.
  141. Stephenson, J., Nutma, E., van der Valk, P., Amor, S., 2018. Inflammation in CNS neurodegenerative diseases. Immunology. 154(2):204-219. doi: 10.1111/imm.12922
  142. Stoilova, T., Colombo, L., Forloni, G., Tagliavini, F., Salmona, M., 2013. A new face for old antibiotics: tetracyclines in treatment of amyloidoses. J Med Chem. 56(15):5987-6006. doi: 10.1021/jm400161p.
  143. Tansey, M.G., McCoy, M.K., Frank-Cannon, T.C., 2007. Neuroinflammatory mechanisms in Parkinson’s disease: potential environmental triggers, pathways, and targets for early therapeutic intervention. Exp Neurol. 208(1):1-25. doi: 10.1016/j.expneurol.2007.07.004.
  144. Teema, A.M., Zaitone, S.A., Moustafa, Y.M., 2016. Ibuprofen or piroxicam protects nigral neurons and delays the development of l-dopa induced dyskinesia in rats with experimental Parkinsonism: Influence on angiogenesis. Neuropharmacology. 107: 432-450. doi: 10.1016/j.neuropharm.2016.03.034.
  145. Teismann, P., Tieu, K., Choi, D.K., Wu. D.C., Naini, A., Hunot, S., et al., 2003. Cyclooxygenase-2 is instrumental in Parkinson’s disease neurodegeneration. Proceedings of the National Academy of Sciences. 100(9):5473-5478. doi: 10.1073/pnas.0837397100.
  146. Tekumalla, P.K., Calon, F., Rahman, Z., Birdi, S., Rajput, A.H., Hornykiewicz, O., Di Paolo, T., Bédard, P.J., Nestler, E.J., 2001. Elevated levels of DeltaFosB and RGS9 in striatum in Parkinson’s disease. Biol Psychiatry. 15;50(10):813-6. doi: 10.1016/s0006-3223(01)01234-3.
  147. Ungerstedt, U., Arbuthnott, G.W., 1970. Quantitative recording of rotational behavior in rats after 6-hydroxy-dopamine lesions of the nigrostriatal dopamine system. Brain Res. 18;24(3):485-93. doi: 10.1016/0006-8993(70)90187-3.
  148. Vijayakumar, D., Jankovic, J., 2016. Drug-Induced Dyskinesia, Part 1: Treatment of Levodopa-Induced Dyskinesia. Drugs. 76(7):759-77. doi: 10.1007/s40265-016-0566-3.
  149. Weng, J.C., Tikhonova, M.A., Chen, J.H., Shen, M.S., Meng, W.Y., Chang, Y.T., Chen, K.H., Liang, K.C., Hung, C.S., Amstislavskaya, T.G., Ho. Y.J., 2016. Ceftriaxone prevents the neurodegeneration and decreased neurogenesis seen in a Parkinson’s disease rat model: An immunohistochemical and MRI study. Behav Brain Res. 05:126-39. doi: 10.1016/j.bbr.2016.02.034.
  150. Winkler, C., Kirik, D., Björklund, A., Cenci, M.A., 2002. L-DOPA-induced dyskinesia in the intrastriatal 6-hydroxydopamine model of Parkinson’s disease: Relation to motor and cellular parameters of nigrostriatal function. Neurobiology of Disease. 10(2):165-86. doi: 10.1006/nbdi.2002.0499.
  151. Wolf, S.A., Boddeke, H.W., Kettenmann, H., 2017. Microglia in Physiology and Disease. Annu Rev Physiol. 79:619-643. doi: 10.1146/annurev-physiol-022516-034406.
  152. Worlitzer, M.M..A, Viel, T., Jacobs, A.H., Schwamborn, J.C., 2013. The majority of newly generated cells in the adult mouse substantia nigra express low levels of Doublecortin, but their proliferation is unaffected by 6-OHDA-induced nigral lesion or Minocycline-mediated inhibition of neuroinflammation. European Journal of Neuroscience. 38(5):2684-92. doi: 10.1111/ejn.12269.
  153. Wu, D.C., Teismann, P., Tieu, K., Vila, M., Jackson-Lewis, V., Ischiropoulos, H., et al., 2003. NADPH oxidase mediates oxidative stress in the 1-methyl-4-phenyl-1,2,3,6- tetrahydropyridine model of Parkinson’s disease. Proceedings of the National Academy of Sciences. 100(10):6145-50. doi: 10.1073/pnas.0937239100
  154. Wu, X., Liang, Y., Jing, X., Lin, D., Chen, Y., Zhou, T., Peng, S., Zheng, D., Zeng, Z., Lei, M., Huang, K., Tao, E., 2018. Rifampicin Prevents SH-SY5Y Cells from Rotenone-Induced Apoptosis via the PI3K/Akt/GSK-3β/CREB Signaling Pathway. Neurochem Res. 43(4):886-893. doi: 10.1007/s11064-018-2494-y.
  155. Yimer, E.M., Hishe, H.Z., Tuem, K.B., 2019. Repurposing of the β-Lactam Antibiotic, Ceftriaxone for Neurological Disorders: A Review. Front Neurosci. 13:236. doi: 10.3389/fnins.2019.00236.
  156. You, H., Mariani, L.L., Mangone, G., Le Febvre de Nailly, D., Charbonnier-Beaupel, F., Corvol, J.C., 2018. Molecular basis of dopamine replacement therapy and its side effects in Parkinson’s disease. Cell Tissue Res. 373(1):111-135. doi: 10.1007/s00441-018-2813-2.
  157. Yuhas, Y., Berent, E., Cohen, R., Ashkenazi, S., 2009. Role of NF-kappaB activation and peroxisome proliferator-activated receptor gamma inhibition in the effect of rifampin on inducible nitric oxide synthase transcription in human lung epithelial cells. Antimicrob. Agents Chemother. 53: 1539–1545. doi: 10.1128/AAC.00961-08.
  158. Yulug, B., Hanoglu, L., Kilic, E., Schabitz, W.R., 2014. RIFAMPICIN: an antibiotic with brain protective function. Brain Res Bull. 107: 37-42. doi: 10.1016/j.brainresbull.2014.05.007.
  159. Zhang, G.B., Feng, Y.H., Wang, P.Q., Song, J.H., Wang, P., Wang, S.A., 2015. A study on the protective role of doxycycline upon dopaminergic neuron of LPS-PD rat model rat. European Review for Medical and Pharmacological Sciences. 19(18):3468-74.
  160. Zhang, L., Shirayama, Y., Shimizu, E., Iyo, M., Hashimoto, K., 2006. Protective effects of minocycline on 3,4-methylenedioxymethamphetamine-induced neurotoxicity in serotonergic and dopaminergic neurons of mouse brain. Eur J Pharmacol. 544(1-3):1-9. doi: 10.1016/j.ejphar.2006.05.047.
  161. Zhou, C., Huang, Y., Przedborski, S., 2008. Oxidative stress in Parkinson’s disease: a mechanism of pathogenic and therapeutic significance. Ann N Y Acad Sci. 1147: 93‐104. doi:10.1196/annals.1427.023.
Supplementary Table 1 – Open Field Data a