5 References
[1] Lübbert, A., Jørgensen, S. B., Bioreactor performance: a more scientific approach for practice. J. Biotechnol. 2001, 85 , 187–212.
[2] Garcia-Ochoa, F., Gomez, E., Bioreactor scale-up and oxygen transfer rate in microbial processes: An overview. Biotechnol. Adv. 2008, 27 , 153–76.
[3] Kirk, T, V., Szita, N., Oxygen transfer characteristics of miniaturized bioreactor systems. Biotechnol. Bioeng . 2013,110 , 1005–19.
[4] Doran, M. P., Mass Transfer, in: Elsevier Ltd. (Ed.)Bioprocess Engineering Principles, Academic Press, London 2013, pp. 397-444.
[5] Hermann, R., Lehmann, M., Büchs, J., Characterization of gas-liquid mass transfer phenomena in microtiter plates.Biotechnol. Bioeng. 2003, 81 , 178–86.
[6] Harrison, P, R., Medcalf, N., Rafiq, A, Q., Cell therapy-processing economics: Small-scale microfactories as a stepping stone toward large-scale macrofactories. Regen. Med. 2018,13 , 159–73.
[7] Reichen, M,. Macown, J, R., Jaccard, N., Super, A. et al., Microfabricated Modular Scale-Down Device for Regenerative Medicine Process Development. PLoS. One. 2012,7 , e52246.
[8] Li, X., Scott, K., Kelly, J, W., Huang, Z,. Development of a Computational Fluid Dynamics Model for Scaling-up Ambr Bioreactors.Biotechnol. Bioprocess. Eng. 2018,23 , 710–25.
[9] Nienow, W, A., Reactor engineering in large scale animal cell culture. Cytotechnology. 2006, 50 , 9–33.
[10] Klöckner, W., Büchs, J., Advances in shaking technologies.Trends. Biotechnol. 2012, 30 , 307–14.
[11] Mitre, E., Schulze, M., Cumme, A, G., Rössler, F. et al., Turbo-mixing in microplates. J. Biomol. Screen. 2007, 12 , 361–9.
[12] Xie, M., Xia, J., Zhou, Z., Chu, J. et al., Flow pattern, mixing, gas hold-up and mass transfer coefficient of triple-impeller configurations in stirred tank bioreactors. Ind. Eng. Chem. Res.2014, 53 , 5941–53.
[13] El-Ali, J., Sorger, K, P., Jensen, F, K., Cells on chips.Nature 2006, 442 , 403–11.
[14] Hashmi, A., Xu, J., On the Quantification of Mixing in Microfluidics. J. Lab. Autom. 2014, 19 , 488–91.
[15] Dunn, J, I., Einseleb, A., Oxygen Transfer Coefficients by the Dynamic Method. J. appl. Chem. Biotechnol. 1975, 25 , 707-720.
[16] Tribe, A, L. Briens, L, C., Margaritis, A., Determination of the volumetric mass transfer coefficient (kLa) using the dynamic “gas out-gas in” Method: Analysis of errors caused by dissolved oxygen probes. Biotechnol. Bioeng. 1995, 46 , 388–92.
[17] Islam, S, R., Tisi, D., Levy, S, M., Lye, J, G., Scale-up of Escherichia coli growth and recombinant protein expression conditions from microwell to laboratory and pilot scale based on matched k La.Biotechnol. Bioeng. 2008, 99 , 1128–39.
[18] Islam, S, R., Tisi, D., Levy, S, M., Lye, J, G., Framework for the Rapid Optimization of Soluble Protein Expression in Escherichia coli Combining Microscale Experiments and Statistical Experimental Design.Biotechnol. Prog. 2007, 23 , 785–93.
[19] Wittmann, C., Kim, M, H., John, G., Heinzle, E., Characterization and application of an optical sensor for quantification of dissolved O2 in shake-flasks. Biotechnol. Lett. 2003,25 , 377–80.
[20] John, T, G., Klimant, I., Wittmann, C., Heinzle, E., Integrated optical sensing of dissolved oxygen in microtiter plates: A novel tool for microbial cultivation. Biotechnol. Bioeng. 2003, 81 , 829–36.
[21] Duetz, A, Q., Microtiter plates as mini-bioreactors: miniaturization of fermentation methods. Trends. Microbiol. 2007,15 , 469–75.
[22] Betts, I, J., Baganz, F., Microbial Cell Factories Miniature bioreactors: current practices and future opportunities. Microb. Cell. Fact. 2006, 5, 21.
[23] Micheletti, M., Barrett, T., Doig, S., Baganz, F. et al., Fluid mixing in shaken bioreactors: Implications for scale-up predictions from microlitre-scale microbial and mammalian cell cultures. Chem. Eng. Sci. 2006, 61 , 2939–49.
[24] Büchs, J., Introduction to advantages and problems of shaken cultures. Biochem. Eng. J. , 2001, 7, 91–88.
[25] Zhang, Z., Szita, N., Boccazzi, P., Sinskey, J, A., Jensen, F, K., A well-mixed, polymer-based microbioreactor with integrated optical measurements. Biotechnol. Bioeng. 2006, 93 , 286–96.
[26] Litvinova, S, L., Sokhonevich, A, N., Gutsol, A, A., Kofanova, A, K., The influence of immunoregulatory cytokines IL-2, IL-7, and IL-15 upon activation, proliferation, and apoptosis of immune memory T-cells in vitro. Cell. Tissue. Biol. 2013, 7 , 539–44.
[27] Ganusov, V, V., Milutinović, D., De Boer, J, R., IL-2 Regulates Expansion of CD4 + T Cell Populations by Affecting Cell Death: Insights from Modeling CFSE Data. J. Immunol. 2007, 179 , 950–7.
[28] Deenick, K, E., Gett, V, A., Hodgkin, D, P., Stochastic Model of T Cell Proliferation: A Calculus Revealing IL-2 Regulation of Precursor Frequencies, Cell Cycle Time, and Survival. J. Immunol.2003, 170 , 4963–72.
[29] Jaleco, S., Swainson, L, Dardalhon, V., Burjanadze M, et al., Homeostasis of Naive and Memory CD4 + T Cells: IL-2 and IL-7 Differentially Regulate the Balance Between Proliferation and Fas-Mediated Apoptosis. J. Immunol. 2003, 171 , 61–8.
[30] Rochman, Y., Spolski, R., Leonard, J, W., New insights into the regulation of T cells by γc family cytokines. Nat. Rev. Immunol.2009, 9 , 480–90.