5 References
[1] Lübbert, A., Jørgensen, S. B., Bioreactor performance: a more
scientific approach for practice. J. Biotechnol. 2001, 85 ,
187–212.
[2] Garcia-Ochoa, F., Gomez, E., Bioreactor scale-up and oxygen
transfer rate in microbial processes: An overview. Biotechnol.
Adv. 2008, 27 , 153–76.
[3] Kirk, T, V., Szita, N., Oxygen transfer characteristics of
miniaturized bioreactor systems. Biotechnol. Bioeng . 2013,110 , 1005–19.
[4] Doran, M. P., Mass Transfer, in: Elsevier Ltd. (Ed.)Bioprocess Engineering Principles, Academic Press, London 2013,
pp. 397-444.
[5] Hermann, R., Lehmann, M., Büchs, J., Characterization of
gas-liquid mass transfer phenomena in microtiter plates.Biotechnol. Bioeng. 2003, 81 , 178–86.
[6] Harrison, P, R., Medcalf, N., Rafiq, A, Q., Cell
therapy-processing economics: Small-scale microfactories as a stepping
stone toward large-scale macrofactories. Regen. Med. 2018,13 , 159–73.
[7] Reichen, M,. Macown, J, R., Jaccard, N., Super, A. et al.,
Microfabricated Modular Scale-Down Device for Regenerative Medicine
Process Development. PLoS. One. 2012,7 , e52246.
[8] Li, X., Scott, K., Kelly, J, W., Huang, Z,. Development of a
Computational Fluid Dynamics Model for Scaling-up Ambr Bioreactors.Biotechnol. Bioprocess. Eng. 2018,23 , 710–25.
[9] Nienow, W, A., Reactor engineering in large scale animal cell
culture. Cytotechnology. 2006, 50 , 9–33.
[10] Klöckner, W., Büchs, J., Advances in shaking technologies.Trends. Biotechnol. 2012, 30 , 307–14.
[11] Mitre, E., Schulze, M., Cumme, A, G., Rössler, F. et al.,
Turbo-mixing in microplates. J. Biomol. Screen. 2007, 12 ,
361–9.
[12] Xie, M., Xia, J., Zhou, Z., Chu, J. et al., Flow pattern,
mixing, gas hold-up and mass transfer coefficient of triple-impeller
configurations in stirred tank bioreactors. Ind. Eng. Chem. Res.2014, 53 , 5941–53.
[13] El-Ali, J., Sorger, K, P., Jensen, F, K., Cells on chips.Nature 2006, 442 , 403–11.
[14] Hashmi, A., Xu, J., On the Quantification of Mixing in
Microfluidics. J. Lab. Autom. 2014, 19 , 488–91.
[15] Dunn, J, I., Einseleb, A., Oxygen Transfer Coefficients by the
Dynamic Method. J. appl. Chem. Biotechnol. 1975, 25 ,
707-720.
[16] Tribe, A, L. Briens, L, C., Margaritis, A., Determination of
the volumetric mass transfer coefficient (kLa) using the dynamic “gas
out-gas in” Method: Analysis of errors caused by dissolved oxygen
probes. Biotechnol. Bioeng. 1995, 46 , 388–92.
[17] Islam, S, R., Tisi, D., Levy, S, M., Lye, J, G., Scale-up of
Escherichia coli growth and recombinant protein expression conditions
from microwell to laboratory and pilot scale based on matched k La.Biotechnol. Bioeng. 2008, 99 , 1128–39.
[18] Islam, S, R., Tisi, D., Levy, S, M., Lye, J, G., Framework for
the Rapid Optimization of Soluble Protein Expression in Escherichia coli
Combining Microscale Experiments and Statistical Experimental Design.Biotechnol. Prog. 2007, 23 , 785–93.
[19] Wittmann, C., Kim, M, H., John, G., Heinzle, E.,
Characterization and application of an optical sensor for quantification
of dissolved O2 in shake-flasks. Biotechnol. Lett. 2003,25 , 377–80.
[20] John, T, G., Klimant, I., Wittmann, C., Heinzle, E., Integrated
optical sensing of dissolved oxygen in microtiter plates: A novel tool
for microbial cultivation. Biotechnol. Bioeng. 2003, 81 ,
829–36.
[21] Duetz, A, Q., Microtiter plates as mini-bioreactors:
miniaturization of fermentation methods. Trends. Microbiol. 2007,15 , 469–75.
[22] Betts, I, J., Baganz, F., Microbial Cell Factories Miniature
bioreactors: current practices and future opportunities. Microb.
Cell. Fact. 2006, 5, 21.
[23] Micheletti, M., Barrett, T., Doig, S., Baganz, F. et al., Fluid
mixing in shaken bioreactors: Implications for scale-up predictions from
microlitre-scale microbial and mammalian cell cultures. Chem. Eng.
Sci. 2006, 61 , 2939–49.
[24] Büchs, J., Introduction to advantages and problems of shaken
cultures. Biochem. Eng. J. , 2001, 7, 91–88.
[25] Zhang, Z., Szita, N., Boccazzi, P., Sinskey, J, A., Jensen, F,
K., A well-mixed, polymer-based microbioreactor with integrated optical
measurements. Biotechnol. Bioeng. 2006, 93 , 286–96.
[26] Litvinova, S, L., Sokhonevich, A, N., Gutsol, A, A., Kofanova,
A, K., The influence of immunoregulatory cytokines IL-2, IL-7, and IL-15
upon activation, proliferation, and apoptosis of immune memory T-cells
in vitro. Cell. Tissue. Biol. 2013, 7 , 539–44.
[27] Ganusov, V, V., Milutinović, D., De Boer, J, R., IL-2 Regulates
Expansion of CD4 + T Cell Populations by Affecting Cell Death: Insights
from Modeling CFSE Data. J. Immunol. 2007, 179 , 950–7.
[28] Deenick, K, E., Gett, V, A., Hodgkin, D, P., Stochastic Model
of T Cell Proliferation: A Calculus Revealing IL-2 Regulation of
Precursor Frequencies, Cell Cycle Time, and Survival. J. Immunol.2003, 170 , 4963–72.
[29] Jaleco, S., Swainson, L, Dardalhon, V., Burjanadze M, et al.,
Homeostasis of Naive and Memory CD4 + T Cells: IL-2 and IL-7
Differentially Regulate the Balance Between Proliferation and
Fas-Mediated Apoptosis. J. Immunol. 2003, 171 , 61–8.
[30] Rochman, Y., Spolski, R., Leonard, J, W., New insights into the
regulation of T cells by γc family cytokines. Nat. Rev. Immunol.2009, 9 , 480–90.