References
Alford, D.V. (1975). Bumblebees . Davis-Poynter.
Bates, D., Mächler, M., Bolker, B. & Walker, S. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software , 67, 1–48.
Beckerman, A., Benton, T.G., Ranta, E., Kaitala, V. & Lundberg, P. (2002). Population dynamic consequences of delayed life-history effects.Trends in Ecology & Evolution , 17, 263–269.
Beekman, M., Lingeman, R., Kleijne, F.M. & Sabelis, M.W. (1998). Optimal timing of the production of sexuals in bumblebee colonies.Entomologia Experimentalis et Applicata , 88, 147–154.
Bommarco, R., Lundin, O., Smith, H.G. & Rundlöf, M. (2012). Drastic historic shifts in bumble-bee community composition in Sweden.Proceedings of the Royal Society B: Biological Sciences , 279, 309–315.
Bowers, M.A. (1986). Resource availability and timing of reproduction in bumble bee colonies (Hymenoptera: Apidae). Environ Entomol , 15, 750–755.
Colla, S.R., Gadallah, F., Richardson, L., Wagner, D. & Gall, L. (2012). Assessing declines of North American bumble bees (Bombus spp.) using museum specimens. Biodivers Conserv , 21, 3585–3595.
Corbet, S.A., Williams, I.H. & Osborne, J.L. (1991). Bees and the Pollination of Crops and Wild Flowers in the European Community.Bee World , 72, 47–59.
Couvillon, M.J. & Dornhaus, A. (2009). Location, location, location: Larvae position inside the nest is correlated with adult body size in worker bumble-bees (Bombus impatiens). Philosophical Transactions - Royal Society of London, B , 276, 2411–2418.
Cresswell, J.E. (2017). A demographic approach to evaluating the impact of stressors on bumble bee colonies. Ecological Entomology , 42, 221–229.
Crone, E.E. & Williams, N.M. (2016). Bumble bee colony dynamics: quantifying the importance of land use and floral resources for colony growth and queen production. Ecology Letters , 19, 460–468.
Duchateau, M.J. & Velthuis, H.H. (1988). Development and reproductive strategies in Bombus terrestris colonies. Behaviour , 107, 186–207.
Ellis, M.M. & Crone, E.E. (2013). The role of transient dynamics in stochastic population growth for nine perennial plants. Ecology , 94, 1681–1686.
Ezard, T.H.G., Bullock, J.M., Dalgleish, H.J., Millon, A., Pelletier, F., Ozgul, A., et al. (2010). Matrix models for a changeable world: the importance of transient dynamics in population management.Journal of Applied Ecology , 47, 515–523.
Gamelon, M., Gimenez, O., Baubet, E., Coulson, T., Tuljapurkar, S. & Gaillard, J.-M. (2014). Influence of life-history tactics on transient dynamics: a comparative analysis across mammalian populations. The American Naturalist , 184, 673–683.
Goldblatt, J. & Fell, R. (2011). Adult longevity of workers of the bumble bees Bombus fervidus (F.) and Bombus pennsylvanicus (De Geer) (Hymenoptera: Apidae). Canadian Journal of Zoology , 65, 2349–2353.
Goulson, D. (2010). Bumblebees: Behaviour, Ecology, and Conservation . Oxford University Press.
Goulson, D., Peat, J., Stout, J.C., Tucker, J., Darvill, B., Derwent, L.C., et al. (2002). Can alloethism in workers of the bumblebee, Bombus terrestris, be explained in terms of foraging efficiency?Animal Behaviour , 64, 123–130.
Gratton, C. & Denno, R.F. (2003). Inter-year carryover effects of a nutrient pulse on Spartina plants, herbivores, and natural enemies.Ecology , 84, 2692–2707.
Harrison, X.A., Blount, J.D., Inger, R., Norris, D.R. & Bearhop, S. (2011). Carry-over effects as drivers of fitness differences in animals.Journal of Animal Ecology , 80, 4–18.
Heimpel, G.E. & Rosenheim, J.A. (1998). Egg Limitation in Parasitoids: A Review of the Evidence and a Case Study. Biological Control , 11, 160–168.
Kämper, W., Werner, P.K., Hilpert, A., Westphal, C., Blüthgen, N., Eltz, T., et al. (2016). How landscape, pollen intake and pollen quality affect colony growth in Bombus terrestris. Landscape Ecol , 31, 2245–2258.
Kerr, J.T., Pindar, A., Galpern, P., Packer, L., Potts, S.G., Roberts, S.M., et al. (2015). Climate change impacts on bumblebees converge across continents. Science , 349, 177–180.
Kerr, N.Z., Crone, E.E. & Williams, N.M. (2019). Integrating vital rates explains optimal worker size for resource return by bumblebee workers. Functional Ecology , 33, 467–478.
Kleijn, D., Winfree, R., Bartomeus, I., Carvalheiro, L.G., Henry, M., Isaacs, R., et al. (2015). Delivery of crop pollination services is an insufficient argument for wild pollinator conservation.Nature Communications , 6, 1–9.
Klein, S., Pasquaretta, C., Barron, A.B., Devaud, J.-M. & Lihoreau, M. (2017). Inter-individual variability in the foraging behaviour of traplining bumblebees. Scientific reports , 7, 4561.
Kremen, C., Williams, N.M. & Thorp, R.W. (2002). Crop pollination from native bees at risk from agricultural intensification. PNAS , 99, 16812–16816.
Lindström, J. (1999). Early development and fitness in birds and mammals. Trends in Ecology & Evolution , 14, 343–348.
Liz, E. & Ruiz-Herrera, A. (2016). Potential impact of carry-over effects in the dynamics and management of seasonal populations.PLOS ONE , 11, e0155579.
Macevicz, S. & Oster, G. (1976). Modeling social insect populations II: Optimal reproductive strategies in annual eusocial insect colonies.Behav Ecol Sociobiol , 1, 265–282.
Malfi, R.L., Crone, E. & Williams, N. (2019). Demographic benefits of early season resources for bumble bee (B. vosnesenskii) colonies.Oecologia , 191, 377–388.
Malfi, R.L., Walter, J.A., Roulston, T.H., Stuligross, C., McIntosh, S. & Bauer, L. (2018). The influence of conopid flies on bumble bee colony productivity under different food resource conditions. Ecological Monographs , 88, 653–671.
McDonald, J.L., Stott, I., Townley, S. & Hodgson, D.J. (2016). Transients drive the demographic dynamics of plant populations in variable environments. Journal of Ecology , 104, 306–314.
Müller, C.B. & Schmid‐Hempel, P. (1992). Correlates of reproductive success among field colonies of Bombus lucorum: the importance of growth and parasites. Ecological Entomology , 17, 343–353.
Neff, J.L. (2008). Components of nest provisioning behavior in solitary bees (Hymenoptera: Apoidea). Apidologie , 39, 30–45.
Neubert, M.G. & Caswell, H. (1997). Alternatives to Resilience for Measuring the Responses of Ecological Systems to Perturbations.Ecology , 78, 653–665.
O’Connor, C.M., Norris, D.R., Crossin, G.T. & Cooke, S.J. (2014). Biological carryover effects: linking common concepts and mechanisms in ecology and evolution. Ecosphere , 5, art28.
Pechenik, J.A. (2006). Larval experience and latent effects—metamorphosis is not a new beginning. Integr Comp Biol , 46, 323–333.
Pelletier, L. & McNeil, J.N. (2003). The effect of food supplementation on reproductive success in bumblebee field colonies. Oikos , 103, 688–694.
Pereboom, J.J.M., Velthuis, H.H.W. & Duchateau, M.J. (2003). The organisation of larval feeding in bumblebees (Hymenoptera, Apidae) and its significance to caste differentiation. Insectes soc. , 50, 127–133.
Persson, A.S. & Smith, H.G. (2011). Bumblebee colonies produce larger foragers in complex landscapes. Basic and Applied Ecology , S1439179111001265.
R Core Team. (2018). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
Reader, R.J. (1984). Comparison of the annual flowering schedules for Scottish heathland and mediterranean-type shrublands. Oikos , 1–8.
Rodd, F., Plowright, R. & Owen, R. (1980). Mortality rates of adult bumble bee workers (Hymenoptera: Apidae). Canadian Journal of Zoology , 58, 1718–1721.
Roulston, T.H. & Goodell, K. (2011). The role of resources and risks in regulating wild bee populations. Annu. Rev. Entomol. , 56, 293–312.
Rundlöf, M., Andersson, G.K.S., Bommarco, R., Fries, I., Hederström, V., Herbertsson, L., et al. (2015). Seed coating with a neonicotinoid insecticide negatively affects wild bees. Nature , 521, 77–80.
Rundlöf, M. & Lundin, O. (2019). Can Costs of Pesticide Exposure for Bumblebees Be Balanced by Benefits from a Mass-Flowering Crop?Environ. Sci. Technol. , 53, 14144–14151.
Rundlöf, M., Persson, A.S., Smith, H.G. & Bommarco, R. (2014). Late-season mass-flowering red clover increases bumble bee queen and male densities. Biological Conservation , 172, 138–145.
Sabo, J.L. & Post, D.M. (2008). Quantifying periodic, stochastic, and catastrophic environmental variation. Ecological Monographs , 78, 19–40.
Schellhorn, N.A., Gagic, V. & Bommarco, R. (2015). Time will tell: resource continuity bolsters ecosystem services. Trends Ecol. Evol. (Amst.) , 30, 524–530.
Scheper, J., Bommarco, R., Holzschuh, A., Potts, S.G., Riedinger, V., Roberts, S.P.M., et al. (2015). Local and landscape-level floral resources explain effects of wildflower strips on wild bees across four European countries. Journal of Applied Ecology , 52, 1165–1175.
Smeets, P. & Duchateau, M.J. (2003). Longevity of Bombus terrestris workers (Hymenoptera: Apidae) in relation to pollen availability, in the absence of foraging. Apidologie , 34, 333–337.
Spaethe, J. & Weidenmüller, A. (2002). Size variation and foraging rate in bumblebees (Bombus terrestris). Insectes soc. , 49, 142–146.
Spiesman, B.J., Bennett, A., Isaacs, R. & Gratton, C. (2017). Bumble bee colony growth and reproduction depend on local flower dominance and natural habitat area in the surrounding landscape. Biological Conservation , 206, 217–223.
Stott, I., Townley, S. & Hodgson, D.J. (2011). A framework for studying transient dynamics of population projection matrix models. Ecology Letters , 14, 959–970.
Sutcliffe, G.H. & Plowright, R.C. (1988). The effects of food supply on adult size in the bumble bee Bombus terricola Kirby (Hymenoptera: Apidae). The Canadian Entomologist , 120, 1051–1058.
Tenhumberg, B., Tyre, A.J. & Rebarber, R. (2009). Model complexity affects transient population dynamics following a dispersal event: a case study with pea aphids. Ecology , 90, 1878–1890.
Thomson, J.D. & Goodell, K. (2001). Pollen removal and deposition by honeybee and bumblebee visitors to apple and almond flowers.Journal of Applied Ecology , 38, 1032–1044.
USDA Farm Services Agency. (2019). Conservation Reserve Program Statistics .
Westphal, C., Steffan‐Dewenter, I. & Tscharntke, T. (2009). Mass flowering oilseed rape improves early colony growth but not sexual reproduction of bumblebees. Journal of Applied Ecology , 46, 187–193.
Whitehorn, P.R., O’Connor, S., Wackers, F.L. & Goulson, D. (2012). Neonicotinoid Pesticide Reduces Bumble Bee Colony Growth and Queen Production. Science , 336, 351–352.
Williams, N.M., Regetz, J. & Kremen, C. (2012). Landscape-scale resources promote colony growth but not reproductive performance of bumble bees. Ecology , 93, 1049–1058.
Williams, N.M., Ward, K.L., Pope, N., Isaacs, R., Wilson, J., May, E.A.,et al. (2015). Native wildflower plantings support wild bee abundance and diversity in agricultural landscapes across the United States. Ecol Appl , 25, 2119–2131.
Williams, P.H., Thorp, R.W., Richardson, L.L. & Colla, S.R. (2014).Bumble Bees of North America . Princeton University Press.
Wood, T.J., Gibbs, J., Graham, K.K. & Isaacs, R. (2019). Narrow pollen diets are associated with declining Midwestern bumble bee species.Ecology , 100, e02697.
Yadav, P. & Borges, R.M. (2018). Why resource history matters: age and oviposition history affect oviposition behaviour in exploiters of a mutualism. Ecological entomology , 43, 473–482.
Yang, L.H., Bastow, J.L., Spence, K.O. & Wright, A.N. (2008). What can we learn from resource pulses. Ecology , 89, 621–634.
Zeileis, A., Kleiber, C. & Jackman, S. (2008). Regression models for count data in R. Journal of Statistical Software , 27, 1–25.
Zhang, Y., Zhang, H., Yang, N., Wang, J. & Wan, F. (2014). Income resources and reproductive opportunities change life history traits and the egg/time limitation trade-off in a synovigenic parasitoid.Ecological entomology , 39, 723–731.