References
Alford, D.V. (1975). Bumblebees . Davis-Poynter.
Bates, D., Mächler, M., Bolker, B. & Walker, S. (2015). Fitting linear
mixed-effects models using lme4. Journal of Statistical Software ,
67, 1–48.
Beckerman, A., Benton, T.G., Ranta, E., Kaitala, V. & Lundberg, P.
(2002). Population dynamic consequences of delayed life-history effects.Trends in Ecology & Evolution , 17, 263–269.
Beekman, M., Lingeman, R., Kleijne, F.M. & Sabelis, M.W. (1998).
Optimal timing of the production of sexuals in bumblebee colonies.Entomologia Experimentalis et Applicata , 88, 147–154.
Bommarco, R., Lundin, O., Smith, H.G. & Rundlöf, M. (2012). Drastic
historic shifts in bumble-bee community composition in Sweden.Proceedings of the Royal Society B: Biological Sciences , 279,
309–315.
Bowers, M.A. (1986). Resource availability and timing of reproduction in
bumble bee colonies (Hymenoptera: Apidae). Environ Entomol , 15,
750–755.
Colla, S.R., Gadallah, F., Richardson, L., Wagner, D. & Gall, L.
(2012). Assessing declines of North American bumble bees (Bombus spp.)
using museum specimens. Biodivers Conserv , 21, 3585–3595.
Corbet, S.A., Williams, I.H. & Osborne, J.L. (1991). Bees and the
Pollination of Crops and Wild Flowers in the European Community.Bee World , 72, 47–59.
Couvillon, M.J. & Dornhaus, A. (2009). Location, location, location:
Larvae position inside the nest is correlated with adult body size in
worker bumble-bees (Bombus impatiens). Philosophical Transactions
- Royal Society of London, B , 276, 2411–2418.
Cresswell, J.E. (2017). A demographic approach to evaluating the impact
of stressors on bumble bee colonies. Ecological Entomology , 42,
221–229.
Crone, E.E. & Williams, N.M. (2016). Bumble bee colony dynamics:
quantifying the importance of land use and floral resources for colony
growth and queen production. Ecology Letters , 19, 460–468.
Duchateau, M.J. & Velthuis, H.H. (1988). Development and reproductive
strategies in Bombus terrestris colonies. Behaviour , 107,
186–207.
Ellis, M.M. & Crone, E.E. (2013). The role of transient dynamics in
stochastic population growth for nine perennial plants. Ecology ,
94, 1681–1686.
Ezard, T.H.G., Bullock, J.M., Dalgleish, H.J., Millon, A., Pelletier,
F., Ozgul, A., et al. (2010). Matrix models for a changeable
world: the importance of transient dynamics in population management.Journal of Applied Ecology , 47, 515–523.
Gamelon, M., Gimenez, O., Baubet, E., Coulson, T., Tuljapurkar, S. &
Gaillard, J.-M. (2014). Influence of life-history tactics on transient
dynamics: a comparative analysis across mammalian populations. The
American Naturalist , 184, 673–683.
Goldblatt, J. & Fell, R. (2011). Adult longevity of workers of the
bumble bees Bombus fervidus (F.) and Bombus pennsylvanicus (De Geer)
(Hymenoptera: Apidae). Canadian Journal of Zoology , 65,
2349–2353.
Goulson, D. (2010). Bumblebees: Behaviour, Ecology, and
Conservation . Oxford University Press.
Goulson, D., Peat, J., Stout, J.C., Tucker, J., Darvill, B., Derwent,
L.C., et al. (2002). Can alloethism in workers of the bumblebee,
Bombus terrestris, be explained in terms of foraging efficiency?Animal Behaviour , 64, 123–130.
Gratton, C. & Denno, R.F. (2003). Inter-year carryover effects of a
nutrient pulse on Spartina plants, herbivores, and natural enemies.Ecology , 84, 2692–2707.
Harrison, X.A., Blount, J.D., Inger, R., Norris, D.R. & Bearhop, S.
(2011). Carry-over effects as drivers of fitness differences in animals.Journal of Animal Ecology , 80, 4–18.
Heimpel, G.E. & Rosenheim, J.A. (1998). Egg Limitation in Parasitoids:
A Review of the Evidence and a Case Study. Biological Control ,
11, 160–168.
Kämper, W., Werner, P.K., Hilpert, A., Westphal, C., Blüthgen, N., Eltz,
T., et al. (2016). How landscape, pollen intake and pollen
quality affect colony growth in Bombus terrestris. Landscape
Ecol , 31, 2245–2258.
Kerr, J.T., Pindar, A., Galpern, P., Packer, L., Potts, S.G., Roberts,
S.M., et al. (2015). Climate change impacts on bumblebees
converge across continents. Science , 349, 177–180.
Kerr, N.Z., Crone, E.E. & Williams, N.M. (2019). Integrating vital
rates explains optimal worker size for resource return by bumblebee
workers. Functional Ecology , 33, 467–478.
Kleijn, D., Winfree, R., Bartomeus, I., Carvalheiro, L.G., Henry, M.,
Isaacs, R., et al. (2015). Delivery of crop pollination services
is an insufficient argument for wild pollinator conservation.Nature Communications , 6, 1–9.
Klein, S., Pasquaretta, C., Barron, A.B., Devaud, J.-M. & Lihoreau, M.
(2017). Inter-individual variability in the foraging behaviour of
traplining bumblebees. Scientific reports , 7, 4561.
Kremen, C., Williams, N.M. & Thorp, R.W. (2002). Crop pollination from
native bees at risk from agricultural intensification. PNAS , 99,
16812–16816.
Lindström, J. (1999). Early development and fitness in birds and
mammals. Trends in Ecology & Evolution , 14, 343–348.
Liz, E. & Ruiz-Herrera, A. (2016). Potential impact of carry-over
effects in the dynamics and management of seasonal populations.PLOS ONE , 11, e0155579.
Macevicz, S. & Oster, G. (1976). Modeling social insect populations II:
Optimal reproductive strategies in annual eusocial insect colonies.Behav Ecol Sociobiol , 1, 265–282.
Malfi, R.L., Crone, E. & Williams, N. (2019). Demographic benefits of
early season resources for bumble bee (B. vosnesenskii) colonies.Oecologia , 191, 377–388.
Malfi, R.L., Walter, J.A., Roulston, T.H., Stuligross, C., McIntosh, S.
& Bauer, L. (2018). The influence of conopid flies on bumble bee colony
productivity under different food resource conditions. Ecological
Monographs , 88, 653–671.
McDonald, J.L., Stott, I., Townley, S. & Hodgson, D.J. (2016).
Transients drive the demographic dynamics of plant populations in
variable environments. Journal of Ecology , 104, 306–314.
Müller, C.B. & Schmid‐Hempel, P. (1992). Correlates of reproductive
success among field colonies of Bombus lucorum: the importance of growth
and parasites. Ecological Entomology , 17, 343–353.
Neff, J.L. (2008). Components of nest provisioning behavior in solitary
bees (Hymenoptera: Apoidea). Apidologie , 39, 30–45.
Neubert, M.G. & Caswell, H. (1997). Alternatives to Resilience for
Measuring the Responses of Ecological Systems to Perturbations.Ecology , 78, 653–665.
O’Connor, C.M., Norris, D.R., Crossin, G.T. & Cooke, S.J. (2014).
Biological carryover effects: linking common concepts and mechanisms in
ecology and evolution. Ecosphere , 5, art28.
Pechenik, J.A. (2006). Larval experience and latent
effects—metamorphosis is not a new beginning. Integr Comp Biol ,
46, 323–333.
Pelletier, L. & McNeil, J.N. (2003). The effect of food supplementation
on reproductive success in bumblebee field colonies. Oikos , 103,
688–694.
Pereboom, J.J.M., Velthuis, H.H.W. & Duchateau, M.J. (2003). The
organisation of larval feeding in bumblebees (Hymenoptera, Apidae) and
its significance to caste differentiation. Insectes soc. , 50,
127–133.
Persson, A.S. & Smith, H.G. (2011). Bumblebee colonies produce larger
foragers in complex landscapes. Basic and Applied Ecology ,
S1439179111001265.
R Core Team. (2018). R: A language and environment for statistical
computing. R Foundation for Statistical Computing, Vienna,
Austria.
Reader, R.J. (1984). Comparison of the annual flowering schedules for
Scottish heathland and mediterranean-type shrublands. Oikos ,
1–8.
Rodd, F., Plowright, R. & Owen, R. (1980). Mortality rates of adult
bumble bee workers (Hymenoptera: Apidae). Canadian Journal of
Zoology , 58, 1718–1721.
Roulston, T.H. & Goodell, K. (2011). The role of resources and risks in
regulating wild bee populations. Annu. Rev. Entomol. , 56,
293–312.
Rundlöf, M., Andersson, G.K.S., Bommarco, R., Fries, I., Hederström, V.,
Herbertsson, L., et al. (2015). Seed coating with a neonicotinoid
insecticide negatively affects wild bees. Nature , 521, 77–80.
Rundlöf, M. & Lundin, O. (2019). Can Costs of Pesticide Exposure for
Bumblebees Be Balanced by Benefits from a Mass-Flowering Crop?Environ. Sci. Technol. , 53, 14144–14151.
Rundlöf, M., Persson, A.S., Smith, H.G. & Bommarco, R. (2014).
Late-season mass-flowering red clover increases bumble bee queen and
male densities. Biological Conservation , 172, 138–145.
Sabo, J.L. & Post, D.M. (2008). Quantifying periodic, stochastic, and
catastrophic environmental variation. Ecological Monographs , 78,
19–40.
Schellhorn, N.A., Gagic, V. & Bommarco, R. (2015). Time will tell:
resource continuity bolsters ecosystem services. Trends Ecol.
Evol. (Amst.) , 30, 524–530.
Scheper, J., Bommarco, R., Holzschuh, A., Potts, S.G., Riedinger, V.,
Roberts, S.P.M., et al. (2015). Local and landscape-level floral
resources explain effects of wildflower strips on wild bees across four
European countries. Journal of Applied Ecology , 52, 1165–1175.
Smeets, P. & Duchateau, M.J. (2003). Longevity of Bombus terrestris
workers (Hymenoptera: Apidae) in relation to pollen availability, in the
absence of foraging. Apidologie , 34, 333–337.
Spaethe, J. & Weidenmüller, A. (2002). Size variation and foraging rate
in bumblebees (Bombus terrestris). Insectes soc. , 49, 142–146.
Spiesman, B.J., Bennett, A., Isaacs, R. & Gratton, C. (2017). Bumble
bee colony growth and reproduction depend on local flower dominance and
natural habitat area in the surrounding landscape. Biological
Conservation , 206, 217–223.
Stott, I., Townley, S. & Hodgson, D.J. (2011). A framework for studying
transient dynamics of population projection matrix models. Ecology
Letters , 14, 959–970.
Sutcliffe, G.H. & Plowright, R.C. (1988). The effects of food supply on
adult size in the bumble bee Bombus terricola Kirby (Hymenoptera:
Apidae). The Canadian Entomologist , 120, 1051–1058.
Tenhumberg, B., Tyre, A.J. & Rebarber, R. (2009). Model complexity
affects transient population dynamics following a dispersal event: a
case study with pea aphids. Ecology , 90, 1878–1890.
Thomson, J.D. & Goodell, K. (2001). Pollen removal and deposition by
honeybee and bumblebee visitors to apple and almond flowers.Journal of Applied Ecology , 38, 1032–1044.
USDA Farm Services Agency. (2019). Conservation Reserve Program
Statistics .
Westphal, C., Steffan‐Dewenter, I. & Tscharntke, T. (2009). Mass
flowering oilseed rape improves early colony growth but not sexual
reproduction of bumblebees. Journal of Applied Ecology , 46,
187–193.
Whitehorn, P.R., O’Connor, S., Wackers, F.L. & Goulson, D. (2012).
Neonicotinoid Pesticide Reduces Bumble Bee Colony Growth and Queen
Production. Science , 336, 351–352.
Williams, N.M., Regetz, J. & Kremen, C. (2012). Landscape-scale
resources promote colony growth but not reproductive performance of
bumble bees. Ecology , 93, 1049–1058.
Williams, N.M., Ward, K.L., Pope, N., Isaacs, R., Wilson, J., May, E.A.,et al. (2015). Native wildflower plantings support wild bee
abundance and diversity in agricultural landscapes across the United
States. Ecol Appl , 25, 2119–2131.
Williams, P.H., Thorp, R.W., Richardson, L.L. & Colla, S.R. (2014).Bumble Bees of North America . Princeton University Press.
Wood, T.J., Gibbs, J., Graham, K.K. & Isaacs, R. (2019). Narrow pollen
diets are associated with declining Midwestern bumble bee species.Ecology , 100, e02697.
Yadav, P. & Borges, R.M. (2018). Why resource history matters: age and
oviposition history affect oviposition behaviour in exploiters of a
mutualism. Ecological entomology , 43, 473–482.
Yang, L.H., Bastow, J.L., Spence, K.O. & Wright, A.N. (2008). What can
we learn from resource pulses. Ecology , 89, 621–634.
Zeileis, A., Kleiber, C. & Jackman, S. (2008). Regression models for
count data in R. Journal of Statistical Software , 27, 1–25.
Zhang, Y., Zhang, H., Yang, N., Wang, J. & Wan, F. (2014). Income
resources and reproductive opportunities change life history traits and
the egg/time limitation trade-off in a synovigenic parasitoid.Ecological entomology , 39, 723–731.