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Key Points:35

• Four remote sensing �) models were evaluated using 25 flux towers from across36

South America37

• GLEAM and PT-JPL provided a significantly greater number of daily outputs38

• Comparisons with flux tower-based �) showed that GLEAM and PT-JPL produced39

higher correlations whereas '"(� was similar for all models40

• Performance of all models is reduced in dry environments41
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Abstract42

Many remote sensing-based evapotranspiration (RSBET) algorithms have been proposed in43

the past decades and evaluated using flux tower data, mainly over North America and Eu-44

rope. Model evaluation across South America has been done locally or using only a single45

algorithm at a time. Here, we provide the first evaluation of multiple RSBET models, at a46

daily scale, across a wide variety of biomes, climate zones, and land uses in South Amer-47

ica. We used meteorological data from 25 flux towers to force four remote sensing based �)48

models: Priestley–Taylor Jet Propulsion Laboratory (PT-JPL), Global Land Evaporation Am-49

sterdam Model (GLEAM), Penman–Monteith Mu model (PM-MOD), and Penman–Monteith50

Nagler model (PM-VI). �) was predicted satisfactorily by all four models, with correlations51

consistently higher ('2 > 0.6) for GLEAM and PT-JPL, and PM-MOD and PM-VI present-52

ing overall better responses in terms of PBIAS (−10 < %���( < 10%). As for PM-VI,53

this outcome is expected, given that the model requires calibration with local data. Model54

skill seems to be unrelated to land-use but instead presented some dependency on biome and55

climate, with the models producing the best results for wet to moderately wet environments.56

Our findings show the suitability of individual models for a number of combinations of land57

cover types, biomes, and climates. At the same time, no model outperformed the other for all58

conditions, and all models presented poor skills for sites in certain conditions, which empha-59

sizes the need of adapting individual algorithms to take into account intrinsic characteristics60

of climates and ecosystems in South America.61

1 Introduction62

Land evaporation, or evapotranspiration (�)), is the phenomenon by which water is63

converted from a liquid into its vapor phase over land. It plays a significant role in the modu-64

lation of global climate feedbacks being a key driver of the Earth’s carbon, energy, and wa-65

ter cycles at local, regional, and global scales [Cao et al., 2010; Tong et al., 2017; Khosa66

et al., 2019; Valle Júnior et al., 2020; de Oliveira et al., 2021]. In situ �) measurements67

can be obtained from micro-meteorological methods (e.g., eddy covariance, scintillome-68

try, or Bowen ratio method) and those derived from the soil water balance (e.g., directly69

using lysimeters, or from changes in profile soil moisture content obtained gravimetrically,70

from neutron probes, or capacitance-based soil water monitoring equipment). Besides, plant71

physiological techniques such as sap flow methods, provide direct estimates of transpiration72

[Verhoef and Campbell, 2006; Allen et al., 2011; Fisher et al., 2011], but only the micro-73

meteorological methods provide �) data at the field to landscape (e.g., scintillometry) scale.74

Over the past three decades, eddy covariance systems have become the state-of-the-art and75

standard in situ method to quantify land surface energy and mass fluxes for different types of76

ecosystems [Restrepo-Coupe et al., 2013; Rodrigues et al., 2016; Campos et al., 2019; Wang77

et al., 2020]. However, these techniques estimate fluxes for areas of relatively limited spatial78

dimensions (∼1 km2) depending on the heterogeneity of the landscape), and they are affected79

by specific local conditions, such as the occurrence of advection across sharp contrasts in80

vegetation and/or irrigation conditions, and those caused by topographic features, like cold81

air drainage for sloping terrain [Allen et al., 2011; Mutti et al., 2019; Mauder et al., 2020;82

Rahimzadegan and Janani, 2019; Mauder et al., 2020; Rwasoka et al., 2011].83

During the 1990s and 2000s, remote sensing based �) (RSBET) algorithms, using84

information from visible, near-infrared, and thermal infrared bands, were developed, such85

as the Surface Energy Balance Algorithms for Land (SEBAL, [Bastiaanssen et al., 1998]),86

Simplified Surface Energy Balance Index (S-SEBI, Roerink et al. [2000]), Surface Balance87

Energy System (SEBS, Su [2002]), Simplified Surface Energy Balance (SSEB, Senay et al.88

[2007]), and Two-Source Energy Balance Model (TSEB, Norman et al. [1995]; Kustas and89

Norman [1999]). These algorithms were developed for sub-regional applications, with a fo-90

cus on irrigation or water resources management. Over South America, their predictive skills91

have been assessed quite extensively, mostly for irrigated cropland [Teixeira et al., 2009;92

Paiva et al., 2011; Poblete-Echeverría and Ortega-Farias, 2012; Bezerra et al., 2013, 2015;93
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Olivera-Guerra et al., 2017; Lopes et al., 2019; Mutti et al., 2019]. Studies show that these94

models perform well when compared to field observations of �) [e.g Poblete-Echeverría95

and Ortega-Farias, 2012; Teixeira et al., 2009].96

Since the late 2000s, algorithms such as PT-JPL [Fisher et al., 2008], PM-MOD [Mu97

et al., 2007, 2011], and GLEAM [Miralles et al., 2011; Martens et al., 2017] focused on the98

use of satellite-derived observations to create spatially coherent global �) estimates [Fisher99

et al., 2017]. PT-JPL is at the core of the ECOSTRESS mission [Fisher et al., 2020], while100

PM-MOD is central to the global terrestrial MODIS �) product (MOD16). GLEAM is used101

for the annual State of the Climate report since 2015 [e.g Blunden and Arndt, 2020].102

Using flux tower data, previous studies conducted in South America evaluated GLEAM103

and MOD16 [Ruhoff et al., 2013; Moreira et al., 2019; Paca et al., 2019]. However, these104

studies validated off-the-shelf �) datasets generated by these models, not the models them-105

selves. Because such �) products are not produced using a common dataset of meteorolog-106

ical variables, a comparative evaluation cannot be made in terms of model structure. Rather,107

different model skills would be partially linked with the quality of the inputs. A multi-site108

tropical study, over several continents, validating the PT-JPL model at a regional scale on a109

monthly basis was presented by Fisher et al. [2009]. However, to the best of our knowledge,110

studies assessing the daily predictive skills have only been conducted at the local scale [Teix-111

eira et al., 2009, 2013; Miranda et al., 2017; Oliveira et al., 2018; Souza et al., 2019].112

A major challenge to verify the results of these methods is the scarcity of ground-113

based observations, due to the uneven spatio-temporal distribution of the �) monitoring114

efforts. As a result, remote sensing �) methods are typically evaluated or parameterized us-115

ing sites located only in North America, Europe [e.g., Ershadi et al., 2014; McCabe et al.,116

2016; Michel et al., 2016; Xu et al., 2019], Australia [Martens et al., 2016] and East Asia117

[Jang et al., 2013; Chang et al., 2018; Khan et al., 2018; Li et al., 2019]. For example, Mu118

et al. [2011] proposed improvements to the PM-MOD �) global algorithm [Mu et al., 2007],119

based on comparisons with �) measurements from 46 AmeriFlux sites, 45 of them located120

in USA and Canada. Martens et al. [2017] evaluated the GLEAM algorithm with 91 world-121

wide FLUXNET sites; however, ∼65 were located in the USA and in Europe. Therefore,122

these models might not satisfactorily represent �) in sparsely sampled regions with very123

different climate conditions such as South America, despite this continent representing ca.124

12% of the total Earth’s terrestrial area.125

South America spans two hemispheres, and four major climate zones, from the equator126

to sub-Antarctic regions, which makes it a geographically unique continent [Goymer, 2017;127

Trajano, 2019]. This continent hosts biomes ranging from tropical to deciduous forests, that128

are most sensitive to climate variability [Seddon et al., 2016]. Also, five out of six of the ter-129

restrial biomes not included in satellite-based �) algorithm evaluations at a global scale are130

found in South America (see Section 2.1). Thus, the evaluation of RSBET methods for South131

America offers an opportunity to reduce the current research gap, in particular at large spatial132

scales.133

FLUXNET provides a common framework for the verification of ET algorithms. Nev-134

ertheless, the available sites in the FLUXNET2015 database are not evenly distributed around135

the world [Pastorello et al., 2020]. Validating global models in South America is challeng-136

ing, mainly because the data from ∼90% of its FLUXNET registered sites are not readily137

available to the scientific community; less than 50% of South American AmeriFlux sites are138

available for direct access. Additionally, flux towers in woody savannas and evergreen broad-139

leaf forests account for nearly 65% of all Latin American FLUXNET sites while some of the140

biomes are not properly represented [Villarreal and Vargas, 2021].141

The identification of scientific gaps and the proposed improvements are considered a142

priority for the future development of �) assessment methods from remote sensing [Fisher143

et al., 2017]. Some of them include merging different ET-estimation methods, and the iden-144
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tification of their sources of uncertainty [Fisher et al., 2017; Zhang et al., 2017; Paca et al.,145

2019]. Indeed, despite the recent developments of remote sensing �) methods, there are still146

challenges concerning the refinement of those algorithms to remedy the lack of information147

on specific surface characteristics and fluxes of undersampled climate zones and vegetation148

types, such as fractional vegetation cover and net radiation, which are a substantial source149

of uncertainty in global satellite-based �) estimates [Ferguson et al., 2010; Vinukollu et al.,150

2011; Badgley et al., 2015].151

Here, we evaluated the predictive skills of four satellite-based �) models, designed152

for regional and continental scale applications, over South America. The main question we153

seek to answer is whether such models can be applied consistently to reliably capture �) in154

South America. Specific research questions include: (i) are the models capable of correctly155

estimating �) and its components? (ii) are the models predictive skills affected by climate,156

land cover type or biome?157

2 Study area, data, and methods158

2.1 South American biomes, flux tower-based KZ and meteorological data159

The study area encompasses five biomes (Table S1 in the Supporting Material – SM):160

Tropical & Subtropical Moist Broadleaf Forests (TSMBF); Flooded Grasslands & Savan-161

nas (FGS); Tropical & Subtropical Grasslands, Savannas & Shrublands (TSGSS); Tropical162

& Subtropical Dry Broadleaf Forests (TSDBF) and Temperate Broadleaf & Mixed Forests163

(TBMF) [Olson et al., 2001].164

We used daily meteorological data from 25 flux tower sites located across various165

South American biomes and land cover types to verify the predictive skill of the selected166

RSBET models (Figure 1a, Table S3 in SM). The time period considered for analysis was167

determined by the available time-series for each site (Figure S1 in SM). Further information168

about each biome is provided in SM. Ten sites are from FLUXNET [Pastorello et al., 2020],169

AmeriFlux networks [Novick et al., 2018] and Large-Scale Biosphere-Atmosphere Exper-170

iment in the Amazon (LBA) project [Saleska et al., 2013], while the remaining data were171

obtained from the respective principal investigators. The spatial patterns of mean annual pre-172

cipitation (%), air temperature ()), and potential evapotranspiration (%�)) show that selected173

sites encompass a wide variety of climates (Figure 1b).174

As we are interested in assessing models, instead of using the EC-measured latent189

heat flux, !� , to represent �) , we derived !� from the other energy balance fluxes, i.e.190

!� = '= − � − � [Twine et al., 2000; Wilson et al., 2002; Stoy et al., 2013; Fisher et al.,191

2020], where '= is the net radiation, � is the soil heat flux, and � is the sensible heat flux.192

The closure of the energy budget is rarely observed with flux tower measurements [Wilson193

et al., 2002; Foken, 2008]. Usually, the available energy ('= − �) is greater than (!� + �).194

The imbalances in the surface energy budget, reported here as an energy balance ratio, EBR195

(i.e. (!� + �)/('= − �)), range from 0.73 to 1.16 (mean ∼0.90) (Table S2, SM). It is196

paramount that only high-quality data were used to run and assess the models. We computed197

daily EBR for each site and excluded days with EBR < 0.75 or > 1.25. Daily averages of me-198

teorological variables were calculated from 30-min or hourly data only when at least 80% of199

the records per day were available. To obtain daytime and nighttime inputs for the MOD16200

model (PM-MOD in this paper), we considered only days with a minimum of twenty 30-min201

daytime records and twenty during the night. As in Mu et al. [2011], the shortwave incoming202

radiation ('6B ↓) was used to distinguish between daytime ('6B↓>10Wm−2) and nighttime203

('6B↓ < 10Wm−2). Regarding the fluxes, we used quality checked raw data that had not204

been gap-filled.205

The quality control procedure described above was not adopted for the SDF, TF1, and206

TF2 towers (see Figure 1a). At those sites, horizontal advection plays an important role due207

to extreme weather variations throughout the year [Levy et al., 2020], such that the energy208
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Figure 1. (a) Location of flux tower sites. Land cover types are indicated prior to tower names in the
map: Croplands (CROP), Deciduous Needleaf Forest (DNF), Evergreen Broadleaf Forest (EBF), Grasslands
(GRA), Mixed Forest (MF), Permanent Wetland (PW), and Woody Savanna (WS); Biome types [Olson et al.,
2001] are indicated by shades of green, yellow and blue on the map (see legend): Tropical & Subtropical
Moist Broadleaf Forests (TSMBF); Tropical & Subtropical Dry Broadleaf Forests (TSDBF); Temperate
Broadleaf & Mixed Forests (TBMF); Tropical & Subtropical Grasslands, Savannas & Shrublands (TSGSS);
Temperate Grasslands, Savannas & Shrublands (TGSS); Flooded Grasslands & Savannas (FGS); Montane
Grasslands & Shrublands (MGS); Mediterranean Forests, Woodlands & Scrub (MFWS); Deserts & Xeric
Shrublands (DXS); Climates across South America from selected representative sites are indicated by patterns
on the map (see legend): Tropical savanna (Aw), Tropical monsoon (Am), Hot semi-arid (BSh), Cold semi-
arid (BSk), Humid subtropical (Cfa), Temperate oceanic (Cfb), Dry-winter subtropical highland (Cwb), Polar
Tundra (Td) [Peel et al., 2007]. (b) Gridded annual average (AVG) and standard deviation (SD) for tempera-
ture ()), rainfall (%), and potential evapotranspiration (%�)) across South America and the monitored sites
[Harris et al., 2020].
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balance closure cannot be diagnosed by EBR, as described above. For instance, the SDF209

zone is known as an anticyclone pathway between the Pacific and Atlantic oceans, and TF1210

and TF2 are located in the extreme southern parts of Patagonia, a region characterized by211

strong winds. Thus, for those sites, we used �) derived from measured LE.212

2.2 Remote sensing-based vegetation indices213

The required vegetation indices (VI) to run the �) models are the Normalized Vegeta-214

tion Index (#�+�) and Enhanced Vegetation Index (�+�). Vegetation Optical Depth (+$�)215

is used in GLEAM. #�+� and �+� were derived from the 16-day Level 3 Global product of216

the MODerate Resolution Imaging Spectroradiometer (MODIS), aboard the Terra and Aqua217

satellites [Huete et al., 2002]. We used both MODIS VI products, i.e. MOD13Q1 (Terra)218

and MYD13Q1 (Aqua), at 250 m resolution, to derive 8-day composites of #�+� and �+�.219
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VOD was extracted from the product described in Moesinger et al. [2020]. Fisher et al.220

[2008] used the Soil Adjusted Vegetation Index ((�+�) instead of �+� because the former221

does not require the blue reflectance (0.45–0.51 `m), however, the authors recognize that222

both indices are very similar. As we are interested in assessing the �) models rather than223

the products resulting from different forcing data, we used �+� in Fisher’s model (PT-JPL).224

Leaf area index (!��) and other vegetation-related variables (e.g., fraction of Absorbed Pho-225

tosynthetically Active Radiation, 5%�') are handled differently in each model. For example,226

in PT-JPL, !�� is obtained from total fractional vegetation cover, whereas in PM-MOD the227

1-km MODIS !�� (MOD15) product is adopted. The original procedures to obtain those228

variables were not changed here. The following treatment was applied to the MODIS-derived229

data. “Good quality” pixels were selected, based on the quality assurance (QA) flags. Next,230

an autoregressive model was applied to fill in the gaps [Akaike, 1969]. Finally, we imple-231

mented a temporal filter to improve the 5%�' and !�� time series to reproduce precisely232

all pre-processing steps of the standard PM-MOD algorithm [Mu et al., 2011]. Filtering of233

5%�' and !�� allowed for the correction of underestimated values (abrupt and unrealistic234

drops in the time series) that mostly originate from cloud contamination effects which were235

not correctly identified in the quality control fields.236

2.3 Summary of remote sensing-based KZ models237

2.3.1 GLEAM238

GLEAM is a semi-empirical/process-based model that estimates the total evapora-239

tive flux and its components. In this study, version 3 of the algorithm is used [Martens et al.,240

2017]. The main aspects of the model are described briefly, while for details we refer to241

Martens et al. [2017] and Miralles et al. [2011]. The model calculates potential evaporation242

for four sub-grid land cover fractions: (1) open water, (2) low vegetation, (3) tall vegetation,243

and (4) bare soil using the Priestley and Taylor [1972] equation. For tall and low vegetation244

cover fractions, potential transpiration is constrained using an empirical evaporative stress245

factor which is calculated as a function of soil moisture at root-zone depth and microwave246

+$� as described in Martens et al. [2017]. +$� is a microwave parameter closely linked to247

vegetation water content [Liu et al., 2013] and in GLEAM it is used to represent phenologi-248

cal changes in vegetation. The soil moisture in the root-zone is calculated with a multi-layer249

water-balance model forced by precipitation and satellite surface soil moisture retrievals. For250

bare soil, the evaporative stress factor is calculated as a function of surface soil moisture only251

whereas for open water evaporation no stress factor is applied. For the tall vegetation cover252

fraction, rainfall interception loss is estimated with Gash’s analytical model [Gash, 1979;253

Miralles et al., 2010]. The ET is then calculated as the sum of low and tall vegetation tran-254

spiration, rainfall interception loss, bare soil evaporation, and open-water evaporation with255

each weighted by the respective fraction.256

2.3.2 PT-JPL257

The global ET model proposed by Fisher et al. [2008] is based on the Priestley and258

Taylor equation for potential �) (%�)), which is partitioned into actual plant transpiration,259

soil evaporation, and interception evaporation, i.e. �CA0=B + �B>8; + �8=C . To reduce po-260

tential �) to actual �) , the PT-JPL model applies ecophysiological constraints based on261

land surface information such as vegetation properties and humidity/vapor pressure deficit262

(+%�). Fisher et al. [2008] used #�+� and (�+� as a proxy for plant physiological status.263

We used �+� because it provides a better indication of green vegetation cover than #�+�,264

as acknowledged by Fisher et al. [2008]. The model partitions available energy using four265

plant-related constraints: !��, green canopy fraction, plant temperature, and plant mois-266

ture. Similar to PM-MOD (see next subsection), vegetation cover, canopy wetness, etc. de-267

termine how the available energy is partitioned among the ET terms. A unique aspect re-268

lated to the plant temperature constraint is the determination of an optimal temperature, )>?C269
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[Potter et al., 1993], which corresponds to an optimal stomatal conductance. The latter co-270

determines �CA0=B .271

2.3.3 PM-MOD272

The MOD16 ET model (PM-MOD) is based on the Penman-Monteith equation to pro-273

duce a daily global ET product summing up daytime and nighttime ET [Mu et al., 2011]. In274

this model, total �) is partitioned into �B>8; , �8=C , and �CA0=B. To compute �B>8; , PM-MOD275

uses potential soil evaporation and a soil moisture constraint function based on +%� and air276

relative humidity ('�) [Fisher et al., 2008]. The evaporation of the water intercepted by the277

canopy, �8=C , is calculated using the relevant equations from a revised version of the Biome-278

BGC model [Thornton, 1998]. The PM-MOD assumes that �8=C occurs when the vegetation279

is covered with water, i.e. when the water cover fraction ( 5F4C ) > 0, which is constrained by280

'� [Mu et al., 2011]. In the PM-MOD model 5F4C is calculated as in the PT-JPL model:281

5F4C is set to 0 if '�< 70% and 5F4C = '�4 if 70 < '� < 100% [Running et al., 2019].282

The PM-MOD model is designed to allow �CA0=B to occur during daytime and nighttime,283

by adding constraints to stomatal conductance for +%� and minimum temperature, and ig-284

noring constraints relating to high air temperature [Running et al., 2019]. The partitioning285

of available energy into soil or interception evaporation is based on vegetation cover (�2),286

which is assumed to be equal to the 5%�' from the MODIS product MOD15A2 [Mu et al.,287

2011]. Although this method is based on the PM equation, PM-MOD does neither require288

wind speed nor soil moisture data for the parameterization of aerodynamic and surface resis-289

tance. Further details about PM-MOD can be found in Mu et al. [2011] and Running et al.290

[2019]. Note that some updates have been implemented in PM-MOD since Mu et al. [2011],291

which can be found in Running et al. [2019]. These were also considered here in the imple-292

mentation of PM-MOD.293

2.3.4 PM-VI294

This model relies upon the hypothesis that �) is mostly controlled by specific domi-295

nant processes, such as transpiration and photosynthesis, hence a good correlation between296

such processes and �) is necessary for good model performance [Nagler et al., 2007]. There297

are several formulations to estimate �) from VIs [Nagler et al., 2005, 2009]. In this study,298

we selected the algorithm proposed by Nagler et al. [2013], which estimates �) using the299

reference crop evapotranspiration, �)>, from the FAO-56 Penman-Monteith (PM) equation300

[Allen et al., 1998], and a crop coefficient,  2+ � , derived from a vegetation index.  2+ � can301

be calculated in different ways [e.g., Nagler et al., 2005, 2013]. Following Nouri et al. [2016]302

and Oliveira et al. [2015],  2+ � was calculated as:303

 2+ � = 0

(
1 − 4−1×�+ �

)
− 2 (1)

where 0, 1 and 2 are fitted coefficients. We used a parameter optimization tool based304

on a genetic algorithm to optimise the coefficients to estimate ET values close to the mea-305

sured ones [Oliveira et al., 2015]. The fitting procedure minimizes the objective function306

($�) given by the sum of squared differences between tower-based �) (�)>1B) and �) esti-307

mates from the models (�)B8<) at time 8:308

$� =

=∑
8=1
[�)>1B (8) − �)B8<]2 (2)

This model, herein referred to as PM-VI, has frequently been employed to estimate ET309

at local and regional scales [Oliveira et al., 2015; Nouri et al., 2016; Jarchow et al., 2017].310

Although obtaining �)> requires a considerable amount of meteorological variables, the311

PM-VI implementation is easier and has a lower computational cost compared to other mod-312
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els. Unlike the other three models, PM-VI requires the calibration of the fitting coefficients,313

which can be a major issue for regions where �) and VI are poorly correlated or when cor-314

relations change over time [Chong et al., 1993]. To calibrate the fitting coefficients, we ran-315

domly selected 20% of the available data at each site and used the remaining 80% to validate316

the model.317

2.4 Quantifying model reliability318

The model predictive skill was visually evaluated with scatter plots of measured ver-319

sus modelled �) , as well as through the coefficient of determination ('2), root mean square320

error ('"(�), percent bias (%���(), concordance correlation coefficient (d), slope (<),321

and intercept (1) of the linear regression. The data used in the analysis were filtered for rainy322

days (% > 0.5mm). Our analysis proceeded from a general (no distinction among sites) to323

a site-by-site and group level analysis, i.e. per biome, climate, or land use. As the number324

of flux towers, and record length for each tower, within the groups was different, a sampling325

procedure was adopted to compute the per-group validation metrics: (i) skill metrics for each326

group were calculated using samples from each tower within the group. The sample size #327

was defined as half of the record length of the shortest available tower record within the cor-328

responding group; (ii) the samples were taken by randomly sampling the pool of available329

data within each tower dataset; (iii) this procedure was repeated 1000 times to get the mean330

and standard deviation ((�) of each metric per group. To establish a relationship between331

model predictive skill and water availability at individual tower sites, we obtained the arid-332

ity index (�� = %/�)>) from the global dataset provided by Trabucco and Zomer [2019].333

For many tower sites, the available meteorological data (even from nearby meteorological334

stations) were not sufficient to provide a reliable ��; hence the choice for a global dataset.335

3 Results336

3.1 ET partitioning337

Partitioning of �) among the three components (�B>8; , �8=C , �CA0=B) exhibited more338

variation for the PT-JPL and PM-MOD models. On average, �CA0=B accounted for 60% (PT-339

JPL) and 56% (PM-MOD) of �) but, across sites, it presented a smaller range (30% to 85%)340

for PT-JPL than for PM-MOD (20 to 90%) (Figure 2). GLEAM �CA0=B accounted for 82%341

of �) on average, varying between 60% and 95% across sites. Average interception across342

sites reached 9% (GLEAM), 13% (PT-JPL), and 24% (PM-MOD) of total �) . �8=C frac-343

tions range were similar for GLEAM and PT-JPL ((� ≈ 9%), whereas PM-MOD �8=C var-344

ied more among sites ((� = 18%). �8=C was often correlated with !��, especially for the345

GLEAM estimates ('2 = 0.57, Figure S2 in SM). PT-JPL �B>8; estimates exceeded the other346

models, particularly for sites with low !�� values (e.g., ESEC, CST, and USR).347

3.2 Overall model skills351

Since each model requires a different input dataset (Table S3, SM), the data available352

to run and validate each model varied. GLEAM and PT-JPL provided a significantly greater353

number of daily outputs: 7301 (GLEAM), 7277 (PT-JPL), 5905 (PM-MOD), and 6638 (PM-354

VI). The complete data set was used to produce scatter plots of �) records and model sim-355

ulations for each location (See Figures S4-S7 in SM). To allow a fair analysis, the results356

shown in the main text were obtained using data from days that were common across models,357

resulting in 4718 data points.358

To illustrate the relative contribution of each site to the scatter plots in Figure 3, we359

display the regression lines (light grey lines) between model and tower-based �) for each360

tower site, and the mean metrics across individual sites. In general, �) was reasonably pre-361

dicted by all models, as suggested by the relatively low spread of most points in the scatter362

plots, many regression lines close to the 1:1 line, mean root mean square error ('"(�) be-363

–8–



Confidential manuscript submitted to Water Resource Research

Figure 2. Evaporation fractions estimated by the models at each site (stacked bars) and average partitioning
of land evaporation per model (pie diagram). Black dots: !�� scaled between 0 and 1 based on the minimum
and maximum values of !��. Red ×: the concordance correlation coefficient.

348

349

350

low 1mmd−1 and mean concordance correlation coefficient, d, mostly above 0.65 (Figure 3).364

Nevertheless there is some spread for a few sites, e.g., in the PT-JPL scatter plot that displays365

a few sites with large bias despite strong overall correlation and d.366

The models slightly overestimate �) as suggested by higher density of points below367

the 1:1 line, except for GLEAM, which slightly underestimates. Correlations were similar368

between GLEAM and PT-JPL, with an average value of ∼0.65 and the highest values at in-369

dividual sites reaching close to 0.9, as indicated by the standard deviations (0.19 and 0.18,370

respectively). From Figure 3, it becomes evident that, despite the relatively lower spread of371

points for PM-VI, this model presented a less consistent performance across towers, as sug-372

gested by the contrasting slopes presented by the regression lines in that plot; hence the lower373

average determination coefficient ('2) and d. For complementary information, see Figure S3374

in SM.375

3.3 Model skills per biome, land use, and climate380

Figure 4 presents d, '"(� , %���(, and '2 for each model across six biomes, eight381

land use types, and seven climate classes in South America. Error bars are shown for all met-382

rics, and they represent the standard deviation resulting from the resampling procedure out-383

lined in 2.4. Note that the analysis about the FGS and TBMF biomes are based on one and384

three towers, respectively. For most biomes, '"(� and '2 did not significantly diverge. In385
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Figure 3. Scatter plots of observed vs. simulated daily evapotranspiration at all flux tower sites, for each
model. The light grey lines show the regression slope of individual sites. The coefficient of determination
('2), root mean square error ('"(�) and percent bias (%���() were averaged across towers and are dis-
played on the plots (N = 4,718).

376

377

378

379

general, TSGSS showed the best overall metrics for all models, while PM-VI in FGS (NPW386

site) presented the poorest (d < 0.5, '"(� > 1.5mmd−1, and '2 < 0.25). Model perfor-387

mance across towers within each biome did not vary much, as suggested by the relatively388

low range of the error bars for all metrics.389

The central panels in Figure 4 provide evidence for the high variability of model pre-390

dictive skills across different land uses (LU), which suggest that: (i) no model outperforms391

the others for all LU types, (ii) each model has intrinsic and in some cases exclusive charac-392

teristic that makes it more suitable for certain LU. Only for croplands (CROP) we found simi-393

lar metrics among models (d ≈ 0.8, 0.8 < '"(� < 1.2mmd−1, −20% < %���( < 10%,394

0.6 < '2 < 0.8). Conversely, for most LU, the metrics variation is remarkable (e.g., DBF:395

0.4 < d < 0.9, −50% < %���( < 10%, 0.25 < d < 0.80). On average, each model396

has the best skills for two LU; e.g., �) prediction for GRA and DBF was best with PT-JPL397

(d ≈ 0.9, '"(� ≈ 0.5mmd−1, %���( ≈ 0%, '2 > 0.75) whereas PM-VI presented398

similar skills for estimation of ET for CROP and PW. Likewise, model skill is related to the399

climate type. The analysis of d and '2 over semi-arid regions (BSk and BSh) indicates a rel-400

atively poor skill of all models (except PM-MOD for BSh climate). This is in contrast to the401
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overall good performance over more humid environments (e.g., Aw and Cwb). The greatest402

divergence among model performances was found for the Polar Tundra (Td) climate zone,403

for which PM-VI presented the highest d and '2 (both > 0.75), lowest '"(� (∼0.5mmd−1)404

and %���( (<10%).405
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3.4 Individual sites415

In this section, we explore the model performance at individual towers. Model skills416

for all individual sites are depicted in Figure 5. Sites with # < 30 are not discussed here but417

are considered in the scatter plots shown in the SM (Figures S4-S7). To facilitate the com-418

parison of our results with previous analyses using the same models, only three statistics are419

shown in Figure 5: '"(� , %���(, and '2. Other metrics are displayed in the scatter plots420
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in Figures S4-S7 in the SM. In Figure 5, the metrics for the various towers are displayed in421

order of increasing aridity (varying from ∼3 to 0, left to right), as suggested by the AI (see422

section 2.4). In general, there is a good agreement between the PM-based models in terms423

of '"(� and %���(. Despite the oscillations in statistical metrics among sites, especially424

for PM-VI, there is a general tendency of decreasing '2 as aridity increases, which is ac-425

companied by an increase in %���(. Conversely, '"(� does not seem to be affected by426

aridity; however, the absence of a downward trend in '"(� actually suggests a higher rel-427

ative error as �) decreases. In terms of individual metrics, '"(� values varied between428

∼0.5 and ∼1.5 mmd−1 for all models, with '"(� <1 mm d−1 for most sites. The boxplots429

show that '"(� variation is similar among models, except for PT-JPL which presents the430

lowest '"(� (e.g., K67). Figure 5 shows that %���( for PM-VI varies around zero across431

sites, which is expected given the model requires calibration with local data. However, based432

on '2, it is apparent that this model’s skill is quite limited for �� >∼1.2. In general, the PT-433

based models showed larger biases, with PT-JPL and GLEAM consistently overestimating434

and underestimating �) , respectively. In terms of '2, the PT-models ranked better than the435

PM-models for more than ∼50% of the towers.436
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4 Discussion442

We conducted the first multi-remote sensing ET model analysis in South America (SA)443

using a common set of forcing and validation data located on flux tower sites across a diverse444

range of land covers, climates, and biomes. Forcing data include both in situ (e.g., temper-445

ature and radiation) and remote sensing data, mainly related to vegetation (e.g., !�� and446

�+�). Many of these sites are not yet available in flux network databases, including sites447

with land cover (deciduous needle-leaf forests, DNF), a biome (FGS), and two climate types448

(polar tundra, hot semi-arid) that have not been previously assessed in other regional stud-449

ies on the performance of satellite-based �) models. Moreover, some classes included here450

were considered for validation of individual models only (e.g., semi-arid and tropical climate451

types, TSDBF biome, etc).452

Generally, model predictive skill over SA resembles what has been reported for other453

continents, including satisfactory values of coefficient of determination ('2 > 0.6) of the454

models (except PM-VI) for most validation sites, and consistently better results for the GLEAM455

and PT-JPL models, with '"(� ranging from ∼0.5 to 1.5 mm d−1. Also, in accordance456

with previous analysis, GLEAM and PT-JPL presented somewhat higher '"(� than PM-457

MOD, and the performance of all models decreased with increasing aridity [McCabe et al.,458

2016; Michel et al., 2016]. Nonetheless, the general analysis (Section 3.2) indicates that all459

models can be used reliably over most of the environmental conditions in SA covered in our460

study. The analysis across towers and groups (i.e., biome, land use type and climate, section461

3.3, Figure 4) identified considerable differences in terms of model skill.462

Our results agree with previous studies from [Ershadi et al., 2014; McCabe et al.,463

2016; Michel et al., 2016; Miralles et al., 2016] who applied PM-MOD, GLEAM (except464

Ershadi et al. [2014]) and PT-JPL to sites located in Africa, Asia, Australia, Europe and465

Middle East and reported that PM-MOD showed, for most sites, lower correlations with mea-466

sured �) compared to GLEAM and PT-JPL. Unlike previous analysis, our study agrees with467

Michel et al. [2016] in the sense that model skill seems to be unrelated to land cover. Michel468

et al. [2016] also reported a wide variation of '2 (0.2–0.8) and '"(� (0.8–2 mm d−1), for469

different sites under mixed forests. Conversely, contrasting results between our results and470

previous studies were found for woodland savanna. While we found 0.5 < '2 < 0.8 and471

0.7 < '"(� < 1.5 mmd−1, Michel et al. [2016] reported '2 < 0.2 and 1 < '"(� <472

3mm d−1.473

Overall, our group-wise analysis based on climate agrees with previous studies. For ex-474

ample, the poor model skill found here for the cold semi-arid (Bsk) climate (0.1 < '2 < 0.5)475

resembles that found by Michel et al. [2016] and McCabe et al. [2016] for several sites in476

the United States. While aridity could have played a role here, it could also be caused by the477

fact that semi-arid sites can often only support sparse canopies. Such canopies present chal-478

lenges when it comes to the description of aerodynamic transfer for example and radiation479

partitioning (see e.g Verhoef and Allen [2000]). Our findings also show a poor to moderate480

model skill for �) predictions for sites located in the Cfb climate zone, with PM-MOD hav-481

ing the worst performance. Conversely, PM-MOD presented the best predictive skill for the482

BSh climate, according to most metrics.483

Besides the three RSBET models commonly assessed (GLEAM, PT-JPL, and PM-484

MOD), our analysis included the PM-VI model, which has been validated mostly for crop-485

land or riparian ecosystems [e.g., Nagler et al., 2005, 2009, 2013; Jarchow et al., 2017].486

Here, we tested PM-VI for a much wider variety of biomes, climates and land uses, and487

found a poor predictive skill for several sites with �� > 1.2 (e.g K67, K77, K83) or �� < 0.8488

(e.g., CAA and SLU), even though the model accounts for a site-specific calibration. Con-489

sidering the good results obtained for ∼50% of the towers and the fact that, compared to the490

other models, PM-VI has a much simpler implementation, this model does have potential as491

long as sufficient data are available for calibration or, at least, validation. However, the need492

for local calibration is a hurdle for its implementation for most regions that are unsampled;493
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therefore future studies are necessary to investigate which factors are most relevant in the de-494

termination of the model fitting coefficients, and to provide distributed reference values for495

its coefficients (e.g., based on land use dynamics).496

We were able to identify a number of probable causes for poor model performance at497

individual sites, including (i) patch-scale heterogeneities; (ii) “mixed pixels”, i.e. mixed re-498

sponse of different vegetation types within a pixel; (iii) time-lag between �)>1B and �+�;499

(iv) model sensitivity to individual inputs; (v) low correlation between �) and vegetation500

indices (see Section 3.0 in the SM for more details). Although we did not verify this in our501

study, we do not dismiss the possibility that known uncertainties in the estimation of site-502

specific vegetation characteristics (e.g., 5%�' and leaf stomatal conductance in the PM-503

MOD; Ershadi et al. [2014]) are also causes of lower model performance. In our study, we504

used soil heat flux (�) which is generally measured below ground (usually at 5–20 cm deep)505

using soil heat flux plates. It could be argued that not correcting � for the heat storage be-506

tween the plate and the soil surface could lead to sub-optimal estimates of �) when !� is507

calculated as the residual of the energy balance, especially for towers where the soil is bare508

or covered by sparse vegetation, where � can be relatively large. This, in turn, could lead to509

the conclusion that the models are performing worse than is actually the case. Although de-510

sirable, correcting G for heat storage is rarely possible due to data unavailability (few sites511

only measure soil moisture and temperature, which are required to estimate soil heat capac-512

ity, and heat storage using the calorimetric method). Moreover, at daily scales and for most513

sites, G is either negligible in SA (summer or winter, when the amount of heat stored during514

the day roughly equals that lost during the night) or represents a minor portion only (spring515

and autumn) of the energy balance. As detailed and discussed in Section S3.0 and Figure S8516

in SM , it is highly unlikely that neglecting such corrections will have affected the results.517

There are, however, some issues worth mentioning here. Cause (vi), for instance, is a518

major issue for PM-VI, as expected because the model is highly dependent on VI dynamics519

(see Section 2.4) [Nagler et al., 2005]. Regarding cause (iv), the superior performance of520

the PT models over PM-MOD at most sites is probably linked to uncertainties resulting from521

the estimation of aerodynamic resistance [Ershadi et al., 2014]. In PM-MOD, the aerody-522

namic and surface resistances of each �) component (soil, interception, and transpiration)523

are parametrized based on biome-specific values of leaf-scale boundary layer conductance,524

for example [Mu et al., 2011]. Compared to the previous version of PM-MOD [Mu et al.,525

2007], this new approach resulted in a perceptible improvement only for cropland and decid-526

uous broadleaf forest flux tower sites, whereas for other land uses no meaningful change was527

reported [Ershadi et al., 2015]. Conversely, PT models are highly dependent on '= (causes528

iv and v); hence they often fail in dry environments (see metrics for �� <∼0.6 in Figure529

5) where �) seasonality is dictated by % and not radiation, or in regions with low '= (e.g.,530

TF2). Poor model responses at K77 (cropland, Figure S10 in SM) were attributed to causes531

(i) and (ii), as remnants of forest and shrubs were identified within the tower footprint and532

within MODIS pixel. VI products with higher resolution than MODIS exist and have been533

used to estimate ET [e.g., Aragon et al., 2018; Fisher et al., 2020]; thus offering a possible534

solution for causes (i) and (ii). Time lag between ET and EVI (cause iii) was identified at535

EUC, where EVI followed the decline of ET after ∼1–2 months of interval.536

Remote sensing based �) partitioning is expected to present some divergences from537

ground based measurements. This is the case especially for �B>8; , because of the difficulty to538

obtain remote sensing information on soil characteristics that drive �B>8; , such as soil tem-539

perature and moisture [Talsma et al., 2018a,b], in particular at high vegetation cover frac-540

tions. Globally, transpiration has been reported to account for 57–90% of global �) , based541

on in situ data and model outputs [Jasechko et al., 2013; Wei et al., 2017; Paschalis et al.,542

2018]. Although these are global estimates, we expected �CA0=B to be the largest �) compo-543

nent also in SA due to its prevailing tropical climate and corresponding vegetation types. Our544

results show that this was indeed the case for GLEAM with an �CA0=B/�) ratio of ∼80%,545

and for PT-JPL and PM-MOD with values of 57 and 60%, respectively. Nonetheless, based546
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on our findings, model predictive skill in estimating total �) is not necessarily associated547

with its ability to partition �) accurately.548

Concomitantly, inconsistencies in �) partitioning do not necessarily translate into in-549

accurate model estimates of total �) ; this depends on the modelling approach. On the one550

hand, if total �) results from the sum of �) components independently, then an under- or551

overestimation of �) components can reduce the overall model skill, or reasonable ET esti-552

mates can be achieved as the consequence of an occasional compensation of errors in �CA0=B ,553

�B>8; and �8=C . On the other hand, if the �) partitioning is derived from the estimate of a554

proxy value for total �) , such as available energy (as in PM-MOD and PT-JPL), the �) par-555

titioning is unlikely to influence the total �) estimates. Still, good estimates of �) compo-556

nents are important to differentiate the roles of vegetation and soil, i.e., how they contribute557

to vertical soil water fluxes and changes in profile soil water content. Reliable knowledge of558

the distribution between �B>8; and �CA0=B is also important when this information is used in559

hydrological models to calculate other water balance components, such as runoff.560

Ground-based �) partitioning data are generally not widely available; this also goes561

for most land cover types included in this study. We compared the models’ outputs with field562

experiment studies that measured one or more �) components either at the same sites as563

those used here or within the same region (Table 1). �) partitioning values derived from564

GLEAM seem to be more consistent with ground-based information available for tropical565

rainforests, croplands and grasslands than for wetlands, and mixed and deciduous needle-566

leaf forests (Table 1). As for PT-JPL; its �) partitioning fits reasonably well with observa-567

tions made for both tropical rain- and dry forests. Note that PT-JPL (as well as PM-MOD)568

constrain �CA0=B based on 5F4C ; hence, compared to GLEAM, transpiration will be lower569

under high '� in the model but �) can be high due to water availability in the soil and in-570

tercepted rainfall. Nonetheless, the overall predictive skill of PT-JPL was satisfactory at such571

sites (Figure 5 and Figure S6 in SM). Regarding PM-MOD, the main inconsistency is the572

�8=C4A for tropical forests (Table 1). Despite the wide variability in �CA0=B/�) among mod-573

els, their overall predictive skill was satisfactory, that is, not associated with their capability574

to correctly estimate each �) component individually (see SM for further discussion). No575

model was able to consistently capture the �) partitioning across all sites correctly, which576

is expected given the uncertainty of each �) component and the climate and land-cover577

variability in SA. However, the joint estimates of all models covered totally or partially all578

field-derived evidence on �) partitioning. This suggests that continental �) estimates for579

understudied regions, such as the SA, would benefit from merging ET outputs from models580

that are based on different methods [e.g., Paca et al., 2019].581

Despite our efforts to gather as much tower data as possible, with the goal of having a585

common data set for all models, we faced several limitations including: differences in lengths586

of observational time series across towers (up to 3 years), as well as lack in overlap of these587

time series; uneven distribution of towers across groups (e.g., biomes); and, finally, South588

American geographical features that were not considered in this study (e.g., MGS biome589

or desert climate type, BWk). Thus, it was not possible to assess, for all towers, model re-590

sponses during all seasons. Nonetheless, the fact that our dataset encompasses a wide variety591

of climates enabled us to evaluate, to a reasonable extent, model responses for contrasting592

seasons and fill in the gaps flagged up in the literature, such as the absence, in a similar anal-593

ysis, of towers in the tropical climate zone pointed out by McCabe et al. [2016].594

5 Conclusion595

Our results show that, in general, �) can be reasonably well predicted by all four596

models, despite an overall tendency of overestimation by PT-JPL and PM-MOD, and un-597

derestimation by GLEAM. Similar to results from other continents, model predictive skill598

in South America decreases as aridity increases. Our analysis emphasizes the need of im-599

proving model �) partitioning, although the link between flawed �) partitioning and poor600
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Table 1. Comparison of evaporation fractions for several land uses between this study and field-based
estimates. FE = field estimates. Land covers that present field data from the same modeling sites or same
geographical region are indicated with ’*’.
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model skill is not evident based on our results. Having reliable �) partitioning coefficients601

as part of the FLUXNET-type datasets would be immensely valuable in this respect, but un-602

fortunately such data are difficult to obtain, as they require labour-intensive and expensive603

methods (such as sapflow gauges and lysimeters), that also present problems with regards604

to upscaling from plot to field-scale. Correlations are consistently higher for GLEAM and605

PT-JPL, with '2 > 0.5 for most sites, whereas PM-MOD and PM-VI presented better per-606

formances in terms of PBIAS (−10 < %���( < 10% for most sites). As for PM-VI, this607

outcome is expected, given the model requires calibration with local data.608

The model skill seems to be unrelated to land cover type as we found a wide variability609

of metric values within the same class and across models. Conversely, a clear relationship610

between model skill and climate was noticed, with poor responses occurring in semi-arid re-611

gions whereas an overall good performance was found for more humid environments. Except612

for the FGS biome, we found that skill across models was mostly similar within the same613

biome.614

Despite the relatively high number of towers (compared to previous global analyses615

that used a similar amount of sites), gathering a balanced amount of data and uniform distri-616

bution of towers across different biomes and climate zones across the whole continent was617

challenging. Thus, we emphasize the importance of expanding the flux tower network in618

South America as well as the formation of bilateral collaboration for future contributions.619

Previous studies [e.g Michel et al., 2016; McCabe et al., 2016] have expressed the need of620

extending the evaluation of RSBET models to uncharted biomes and climate conditions. Our621

analysis fills this gap by assessing the reliability of four RSBET models over South America;622

we provide benchmarking metrics that can serve the improvement of ET models for better623

capturing ET over this continent.624
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