References
Abe, K., & Kimura, H. (1996). The possible role of hydrogen sulfide as
an endogenous neuromodulator. The Journal of Neuroscience , 16,
1066–1071. https://doi.org/10.1523/JNEUROSCI.16‐03‐01066.1996
Abou-Hamdan A, Ransy C, Roger T, Guedouari-Bounihi H, Galardon E,
Bouillaud F. (2016)
Positive
feedback during sulfide oxidation fine-tunes cellular affinity for
oxygen. Biochim Biophys Acta . 1857, 1464-1472. doi:
10.1016/j.bbabio.2016.04.282.
Aizenman, E., Lipton, D. A., & Loring, R. H. (1989). Selective
modulation of NMDA responses by reduction and oxidation. Neuron ,
2, 1257–1263. https://doi.org/10.1016/0896‐6273(89)90310‐3
American Psychiatric Association (2013) Diagnostic and statistical
manual of mental disorders, 5th edn. Arlington, VA:
American Psychiatric Publishing.
Arnold WP, Mittal CK, Katsuki S, Murad F. (1977) Nitric oxide activates
guanylate cyclase and increases guanosine 3′:5′-cyclic monophosphate
levels in various tissue preparations. Proc Natl Acad Sci U S
A. 74, 3203–3207.
Braff DL, Geyer MA, Swerdlow NR. (2001)
Human
studies of prepulse inhibition of startle: normal subjects, patient
groups, and pharmacological studies. Psychopharmacology (Berl) .
156, 234-258. doi: 10.1007/s002130100810.
Bredt DS, Hwang PM, Glatt CE, Lowenstein C, Reed RR, Snyder
SH (1991). Cloned and expressed nitric oxide synthase structurally
resembles cytochrome P‐450 reductase. Nature 351, 714– 718.
Bredt DS, Snyder SH (1990). Isolation of nitric oxide synthetase, a
calmodulin‐requiring enzyme. Proc Natl Acad Sci U S
A 87, 682– 685.
Cao L, Cao X, Zhou Y, Nagpure BV, Wu ZY, Hu LF, Yang Y, Sethi G, Moore
PK, Bian JS. (2018)
Hydrogen
sulfide inhibits ATP-induced neuroinflammation and
Aβ1-42 synthesis by suppressing the activation of STAT3
and cathepsin S. Brain Behav Immun. 73, 603-614. doi:
10.1016/j.bbi.2018.07.005.
Cepeda
C, Tong
XP. Huntington’s Disease: From Basic Science to Therapeutics. (2018)CNS Neurosci Ther 24, 247-249. doi: 10.1111/cns.12841.
Chaganti
SS, McCusker
EA, Loy
CT. (2017) What Do We Know About Late Onset Huntington’s Disease?J Huntingtons Dis 6, 95-103. doi: 10.3233/JHD-170247.
Chen
G, Suzuki
H, Weston
AH. (1988) Acetylcholine releases endothelium-derived hyperpolarizing
factor and EDRF from rat blood vessels.Br
J Pharmacol. 95, 1165-74. doi: 10.1111/j.1476-5381.1988.tb11752.x.
Chiku, T., Padovani, D., Zhu, W., Singh, S., Vitvitsky, V., & Banerjee,
R. (2009). H2S biogenesis by human cystathionine γ‐lyase
leads to the novel sulfur metabolites lanthionine and homolanthionine
and is responsive to the grade of hyperhomocysteinemia. The
Journal of Biological Chemistry , 284, 11601–11612.
https://doi.org/10.1074/jbc.
M808026200
Choi, D. W. (1988) Glutamate neurotoxicity and diseases of the nervous
system. Neuron 1, 623–634
Choi P, Golts
N, Snyder
H, Chong
M, Petrucelli
L, Hardy
J, Sparkman
D, Cochran
E, Lee
JM, Wolozin B. (2001) Co-association of Parkin and Alpha-SynucleinNeuroreport 12, 2839-2843. doi: 10.1097/00001756-200109170-00017.
Choi
YB, Tenneti
L, Le
DA, Ortiz
J, Bai
G, Chen
HS, Lipton
SA. (2000) Molecular Basis of NMDA Receptor-Coupled Ion Channel
Modulation by S-nitrosylation. Nat Neurosci 3, 15-21. doi:
10.1038/71090.
Chung, K. K., Thomas, B., Li, X., Pletnikova, O., Troncoso, J. C.,
Marsh, L., … Dawson, T. M. (2004). S‐nitrosylation of parkin
regulates ubiquitination and compromises parkin’s protective function.Science , 304, 1328–1331.
https://doi.org/10.1126/science.1093891
Clarke HT (1932). The action of sulfite upon cystine. J Biol Chem97: 235–248.
Cortese‐Krott, M. M., Kuhnle, G. G. C., Dyson, A., Fernandez, B. O.,
Grman, M., DuMond, J. F., … Feelisch, M. (2015). Key bioactive
reaction products of the NO/H2S interaction are S/N‐hybrid species,
polysulfides, and nitroxyl. Proceedings of the National Academy of
Sciences of the United States of America , 112, E4651–E4660.
https://doi.org/ 10.1073/pnas.1509277112
Contestabile A, Ciani E. (2004) Role of nitric oxide in the regulation
of neuronal proliferation, survival and differentiation.Neurochem Int . 45, 903-14. doi: 10.1016/j.neuint.2004.03.021.
Czyzewski BK, Wang DN. (2012)
Identification and
characterization of a bacterial hydrosulphide ion channel.Nature 483 , 494–497.
É
Dóka , T
Ida , M
Dagnell, Y
Abiko, N
C
Luong, N
Balog, T
Takata, B
Espinosa, A
Nishimura, Q
Cheng, Y
Funato, H
Miki, J
M
Fukuto, J
R
Prigge, E
E
Schmidt, E
S J
Arnér, Y
Kumagai, T
Akaike, P
Nagy. (2020) Control of Protein Function Through Oxidation and
Reduction of Persulfidated States. Sci Adv 6:eaax8358. doi:
10.1126/sciadv.aax8358.
Eberhardt, M., Dux, M., Namer, B., Jiljkovic, J., Cordasic, N., Will,
C., … Filipovic, M. R. (2014). H2S and NO cooperatively regulate
vascular tone by activating a neuroendocrine HNO–TRPA1–CGRP signaling
pathway. Nature Communications , 5, 4381. https://doi.org/10.1038/
ncomms5381
Fernandez
Cardoso GM, Pletsch JT, Parmeggiani B, Grings M, Glanzel NM, Bobermin
LD, ……
Leipnitz
G. (2017) Bioenergetics Dysfunction, Mitochondrial Permeability
Transition Pore Opening and Lipid Peroxidation Induced by Hydrogen
Sulfide as Relevant Pathomechanisms Underlying the Neurological
Dysfunction Characteristic of Ethylmalonic Encephalopathy. Biochim
Biophys Acta Mol Basis Dis 1863, 2192-2201. doi:
10.1016/j.bbadis.2017.06.007.
Filipovic, M. R., Miljkovic, J. L., Nauser, T., Royzen, M., Klos, K.,
Shubina, T., … Ivanović‐Burmazović, I. (2012). Chemical
characterization of the smallest S‐nitrosothiol, HSNO; cellular
cross‐talk of H2S and Snitrosothiols. Journal of the American
Chemical Society , 134, 12016–12027. https://doi.org/10.1021/ja3009693
Furchgott RF, Zawadzki JV. (1980)
The
obligatory role of endothelial cells in the relaxation of arterial
smooth muscle by acetylcholine. Nature . 288, 373-376. doi:
10.1038/288373a0.
Garthwaite J. (1991) Glutamate, nitric oxide and cell-cell signalling in
the nervous system. Trends Neurosci . 14, 60-7. doi:
10.1016/0166-2236(91)90022-m.
Garthwaite J, Charles SL, Chess Williams R (1988). Endothelium‐derived
relaxing factor release on activation of NMDA receptors suggests role as
intercellular messenger in the brain. Nature 336, 385– 388.
Giovanoli
S, Engler H, Engler A, Richetto J, Mareike
Voget, Roman
Willi, Christine
Winter, Marco
A Riva, Preben B Mortensen, Joram
Feldon, Manfred
Schedlowski, Urs
Meyer. (2013) Stress in Puberty Unmasks Latent Neuropathological
Consequences of Prenatal Immune Activation in Mice. Science 339,
1095-1099. doi: 10.1126/science.1228261.
Goodwin, L. R., Francom, D., Dieken, F. P., Taylor, J. D., Warenycia, M.
W., Reiffenstein, R. J., & Dowling, G. (1989). Determination of sulfide
in brain tissue by gas dialysis/ion chromatography: Postmortem studies
and two case reports. Journal of Analytical Toxicology , 13,
105–109. https://doi.org/10.1093/jat/13.2.105
Goubern, M., Andriamihaja, M., Nübel, T., Blachier, F., & Bouillaud, F.
(2007). Sulfide, the first inorganic substrate for human cells.The FASEB Journal , 21, 1699–1706.
https://doi.org/10.1096/fj.06‐7407com
Greiner, R., Palinkas, Z., Basell, K., Becher, D., Antelmann, H., Nagy,
P., & Dick, T. P. (2013). Polysulfides link H2S to
protein thiol oxidation. Antioxidants and Redox Signaling , 19,
1749–1765. https://doi.org/10.1089/ ars.2012.5041
Hatakeyama, Y., Takahashi, K., Tominaga, M., Kimura, H., & Ohta, T.
(2015). Polysulfide evokes acute pain through the activation of
nociceptive TRPA1 in mouse sensory neurons. Molecular Pain , 11,
24.
He
XL, Yan
N, Chen
XS, Qi
YW, Yan
Y, Cai Z. (2016) Hydrogen Sulfide Down-Regulates BACE1 and PS1 via
Activating PI3K/Akt Pathway in the Brain of APP/PS1 Transgenic Mouse.Pharmacol Rep 68, 975-982. doi: 10.1016/j.pharep.2016.05.006.
Hildebrandt, T. M., & Grieshaber, M. K. (2008). Three enzymatic
activities catalyze the oxidation of sulfide to thiosulfate in mammalian
and invertebrate mitochondria. The FEBS Journal , 275, 3352–3361.
https://doi. org/10.1111/j.1742‐4658.2008.06482.x
Hildebrandt
TM, Meo ID, Zeviani M, Viscomi
C, Braun
HP. (2013) Proteome Adaptations in Ethe1-deficient Mice Indicate a Role
in Lipid Catabolism and Cytoskeleton Organization via Post-Translational
Protein Modifications. Biosci Rep 33: e00052. doi:
10.1042/BSR20130051.
Hill BC, Woon TC, Nicholls P, Peterson J, Greenwood C, Thomson AJ.
(1984) Interactions of sulphide and other ligands
with cytochrome c oxidase. An electron-paramagnetic-resonance study.Biochem J. 224, 591-600. doi: 10.1042/bj2240591.
Hosoki, R., Matsuki, N., & Kimura, H. (1997). The possible role of
hydrogen sulfide as an endogenous smooth muscle relaxant in synergy with
nitric oxide. Biochem Biophys Res Commun , 237, 527–531.
https://doi.org/10.1006/bbrc.1997.6878
Hu LF, Lu M, Tiong CX, Dawe GS, Hu G, Bian JS. (2010) Neuroprotective
effects of hydrogen sulfide on Parkinson’s disease rat models.Aging Cell. 9, 135-46. doi: 10.1111/j.1474-9726.2009.00543.x.
Ichinohe A, Kanaumi T, Takashima S, Enokido Y, Nagai Y, Kimura H. (2005)
Cystathionine beta-synthase is enriched in the brains of Down’s
patients. Biochem Biophys Res Commun. 338, 1547-50. doi:
10.1016/j.bbrc.2005.10.118.
Ide M, Ohnishi T, Toyoshima M, Balan S, Maekawa M, Shimamoto-Mitsuyama
C, Iwayama Y, Ohba H, Watanabe A, Ishii T, Shibuya N, Kimura Y, Hisano
Y, Murata Y, Hara T, Morikawa M, Hashimoto K, Nozaki Y, Toyota T, Wada
Y, Tanaka Y, Kato T, Nishi A, Fujisawa S, Okano H, Itokawa M, Hirokawa
N, Kunii Y, Kakita A, Yabe H, Iwamoto K, Meno K, Katagiri T, Dean B,
Uchida K, Kimura H, Yoshikawa T. (2019) Excess hydrogen sulfide and
polysulfides production underlies a schizophrenia pathophysiology.EMBO Mol Med. 11:e10695. doi: 10.15252/emmm.201910695.
Ignarro LJ, Buga GM, Wood KS, Byrns RE, Chaudhuri G. (1987)
Endothelium-derived
relaxing factor produced and released from artery and vein
is nitric oxide. Proc Natl Acad Sci U S A. 84, 9265-9269. doi:
10.1073/pnas.84.24.9265.
Ishigami, M., Hiraki, K., Umemura, K., Ogasawara, Y., Ishii, K., &
Kimura, H. (2009). A source of hydrogen sulfide and a mechanism of its
release in
the brain. Antioxidants and Redox Signaling , 11, 205–214.
https://doi. org/10.1089/ars.2008.2132
Ishii I, Akahoshi N, Yu XN, Kobayashi Y, Namekata K, Komaki G, Kimura H.
(2004)
Murine
cystathionine gamma-lyase: complete cDNA and genomic sequences, promoter
activity, tissue distribution and developmental expression.Biochem J. 381, 113-123. doi: 10.1042/BJ20040243.
Issy AC, Dos-Santos-Pereira M, Pedrazzi JFC, Kubrusly RCC, Del-Bel E.
(2018)
The
role of striatum and prefrontal cortex in the prevention of
amphetamine-induced schizophrenia-like effects mediated by nitric oxide
compounds.
Prog Neuropsychopharmacol Biol Psychiatry. 86, 353-362. doi:
10.1016/j.pnpbp.2018.03.015
Jarosz, A. P., Wei, W., Gauld, J. W., Auld, J., Ozcan, F., Aslan, M., &
Mutus, B. (2015). Glyceraldehyde 3‐phosphate dehydrogenase (GAPDH) is
inactivated by S‐sulfuration in vitro. Free Radical Biology and
Medicine , 89, 512–521.
https://doi.org/10.1016/j.freeradbiomed.2015.09.007
Jaffrey
SR, Erdjument-Bromage
H, Ferris
CD, Tempst
P, Snyder
SH. (2001) Protein S-nitrosylation: A Physiological Signal for Neuronal
Nitric Oxide. Nat Cell Biol 3, 193-197. doi: 10.1038/35055104.
Jennings ML. (2013)
Transport
of H2S and HS− across the human red
blood cell membrane: rapid H2S diffusion and
AE1-mediated Cl−/HS− exchange.Am J Physiol Cell Physiol 305, C941-C950.
https://doi.org/10.1152/ajpcell.00178.2013
Jęśko H, Lenkiewicz AM, Wilkaniec A, Adamczyk A. (2019)
The
interplay between parkin and alpha-synuclein; possible implications for
the pathogenesis of Parkinson’s disease. Acta Neurobiol Exp
(Wars) . 79, 276-289.
Kamoun P, Belardinelli MC, Chabli A, Lallouchi K, Chadefaux-Vekemans B.
(2003) Endogenous hydrogen sulfide overproduction in Down syndrome.Am J Med Genet A. 116A, 310-311. doi: 10.1002/ajmg.a.10847.
Kimura, H. (2015a). Signaling molecules: Hydrogen sulfide and
polysulfide. Antioxidants and Redox Signaling , 22, 362–376.
https://doi.org/ 10.1089/ars.2014.5869
Kimura, H. (2015b). Hydrogen sulfide and polysulfides as signaling
molecules. Prc. Jpn. Acad. Ser. B. 91, 131-159. doi:
10.2183/pjab.91.131.
Kimura, H. (2016). Hydrogen polysulfide
(H2Sn) signaling along with hydrogen
sulfide (H2S) and nitric oxide (NO). Journal of
Neural Transmission , 123, 1235–1245.
https://doi.org/10.1007/s00702‐016‐1600‐z
Kimura H. (2020)
Signalling
by hydrogen sulfide and polysulfides via protein S-sulfuration.Br J Pharmacol. 177, 720-733. doi: 10.1111/bph.14579.
Kimura, Y., Dargusch, R., Schubert, D., & Kimura, H. (2006). Hydrogen
sulfide protects HT22 neuronal cells from oxidative stress.Antioxidants and Redox Signaling , 8, 661–670.
https://doi.org/10.1089/ ars.2006.8.661
Kimura, Y., Goto, Y.‐I., & Kimura, H. (2010). Hydrogen sulfide
increases glutathione production and suppresses oxidative stress in
mitochondria. Antioxidants and Redox Signaling , 12,1 –13.
https://doi.org/10.1089/ ars.2008.2282
Kimura, Y., & Kimura, H. (2004). Hydrogen sulfide protects neurons from
oxidative stress. The FASEB Journal , 18, 1165–1167.
https://doi.org/ 10.1096/fj.04‐1815fje
Kimura, Y., Koike, S., Shibuya, N., Lefer, D., Ogasawara, Y., & Kimura,
H. (2017). 3‐Mercaptopyruvate sulfurtransferase produces potential redox
regulators cysteine‐ and glutathione‐persulfide (Cys‐SSH and GSSH)
together with signaling molecules H2S2,
H2S3 and H2S. Scientific
Reports, 7, 10459. https://doi.org/10.1038/s41598‐01711004‐7
Kimura, Y., Mikami, Y., Osumi, K., Tsugane, M., Oka, J.‐I., & Kimura,
H. (2013). Polysulfides are possible H2S‐derived signaling molecules in
rat brain. The FASEB Journal , 27, 2451–2457. https://doi.org/
10.1096/fj.12‐226415
Kimura, Y., Shibuya, N., & Kimura, H. (2019). Sulfite protects neurons
from oxidative stress. British Journal of Pharmacology . 176,
571-582. DOI: https:// doi.org/10.1111/bph.14373
Kimura, Y., Toyofuku, Y., Koike, S., Shibuya, N., Nagahara, N., Lefer,
D., … Kimura, H. (2015). Identification of
H2S3 and H2S produced by
3mercaptopyruvate sulfurtransferase in the brain. Scientific
Reports , 5, 14774. https://doi.org/10.1038/srep14774
King, A. L., Polhemus, D., Bhushan, S., Otsuka, H., Kondo, K.,
Nicholson, C. K., … Lefer, D. J. (2014). Hydrogen sulfide
cytoprotective signaling is endothelial nitric oxide synthase–nitric
oxide dependent. Proceedings of the National Academy of Sciences
of the United States of America , 111, 3182–3187.
https://doi.org/10.1073/pnas.1321871111
Koike, S., Kawamura, K., Kimura, Y., Shibuya, N., Kiimura, H., &
Ogasawara, Y. (2017). Analysis of endogenous H2S and
H2Sn in mouse brain by high performance
liquid chromatography with fluorescence and tandem mass spectrometric
detection. Free Radical Biology and Medicine , 113, 355–362.
https://doi.org/10.1016/j.freeradbiomed.2017.10.346
Koike S, Kayama T, Yamamoto S, Komine D, Tanaka R, Nishimoto S, Suzuki
T, Kishida A, Ogasawara Y. (2019) Polysulfides protect SH-SY5Y cells
from methylglyoxal-induced toxicity by suppressing protein
carbonylation: A possible physiological scavenger for carbonyl stress in
the brain. Neurotoxicology. 55, 13-19. doi:
10.1016/j.neuro.2016.05.003
Koike, S., Ogasawara, Y., Shibuya, N., Kimura, H., & Ishii, K. (2013).
Polysulfide exerts a protective effect against cytotoxicity caused by
t‐buthylhydroperoxide through Nrf2 signaling in neuroblastoma cells.FEBS Letters , 587, 3548–3555.
https://doi.org/10.1016/j.
febslet.2013.09.013
Kondo K, Bhushan S, King AL, Prabhu SD, Hamid T, Koenig S, Murohara T,
Predmore BL, Gojon G Sr, Gojon G Jr, Wang R, Karusula N, Nicholson CK,
Calvert JW, Lefer DJ. (2013)
H₂S
protects against pressure overload-induced heart failure via
upregulation of endothelial nitric oxide synthase. Circulation .
127, 1116-1127. doi: 10.1161/CIRCULATIONAHA.112.000855.
Kumar A, Dejanovic B, Hetsh F, Semtner M, Fusca D, Arjune S et al.
(2018). S-sulfocysteine/NMDA receptor-dependent signaling underlies
neurodegeneration in molybdenum cofactor deficiency. J Clin Invest127: 4365–4378.
Lagoutte E, Mimoun S, Andriamihaja M, Chaumontet C, Blachier F,
Bouillaud F. (2010) Oxidation of hydrogen sulfide remains a priority in
mammalian cells and causes reverse electron transfer in colonocytes.Biochim Biophys Acta. 1797, 1500-1511. doi:
10.1016/j.bbabio.2010.04.004.
Landry, A. P., Ballou, D. P., & Banerjee, R. (2017).
H2S oxidation by nanodisc‐embedded human sulfide quinone
oxidoreductase. The Journal of Biological Chemistry , 292,
11641–11649. https://doi.org/ 10.1074/jbc.M117.788547
Lancaster JR Jr. (2017)
How
are nitrosothiols formed de novo in vivo? Arch Biochem Biophys .
617, 137-144. doi: 10.1016/j.abb.2016.10.015.
Lewerenz, J., Ates, G., Methner, A., Conrad, M. & Maher, P. (2018)
Oxytosis/Ferroptosis (Re-)Emerging Roles for Oxidative Stress-Dependent
Non-Apptotic Cell Death in Diseases of the Central Nervous System.Front. Neurosci. 12, 214.
Li YL, Wu PF, C JG, Wang S, Han QQ, Li D, Wang W, Guan XL, Li D, Long
LH, Huang JG, Wang F. (2017) Activity-dependent sulfhydration signal
controls N-methyl-D-aspartate subtype glutamate receptor-dependent
synaptic plasticity via increasing D-serine availability.Antioxid. Redox Signal. 27, 398-414. Doi: 10.1089/ars.2016.6936.
Linden, D. R., Furne, J., Stoltz, G. J., Abdel‐Rehim, M. S., Levitt, M.
D., & Szurszewski, J. H. (2012). Sulphide quinone reductase contributes
to hydrogen sulphide metabolism in murine peripheral tissues but not in
the CNS. British Journal of Pharmacology , 165, 2178–2190.
https:// doi.org/10.1111/j.1476‐5381.2011.01681.x
Mao CC, Guidotti A, Costa E (1974). The regulation of cyclic guanosine
monophosphate in rat cerebellum: possible involvement of putative amino
acid neurotransmitters. Brain Res 79, 510– 514.
Marechal D, Brault V, Leon A, Martin D, Lopes Pereira P, Loaëc N,
Birling MC, Friocourt G, Blondel M, Herault Y. (2019) Cbs
overdosage is necessary and sufficient to induce cognitive
phenotypes in mouse models of Down syndrome and interacts
genetically with Dyrk1a. Hum Mol Genet. 28, 1561-1577. doi:
10.1093/hmg/ddy447.
Matsui T, Sugiyama R, Sakanashi K, Tamura Y, Iida M, Nambu Y, Higuchi T,
Suematsu M, Ikeda-Saito M. (2018)
Hydrogen sulfide bypasses
the rate-limiting oxygen activation of heme oxygenase. J Biol
Chem. 293, 16931-16939. doi: 10.1074/jbc.RA118.004641.
Melino G, Bernassola F, Knight RA, Corasaniti MT, Nistico G,
Finazzi-Agro A. (1997)
S-nitrosylation
regulates apoptosis. Nature . 388, 432-433. doi: 10.1038/41237.
Meyer
U, Feldon J. (2012) To poly(I:C) or Not to poly(I:C): Advancing
Preclinical Schizophrenia Research Through the Use of Prenatal Immune
Activation Models. Neuropharmacology 62, 1308-1321. doi:
10.1016/j.neuropharm.2011.01.009.
Mikami, Y., Shibuya, N., Kimura, Y., Ogasawara, Y., & Kimura, H.
(2011). Thioredoxin and dihydrolipoic acid are endogenous reductants
required for 3‐mercaptopyruvate sulfurtransferase to produce hydrogen
sulfide. The Biochemical Journal , 439, 479–485. https://doi.org/
10.1042/BJ20110841
Miki B, Toyoshima M, Okada Y, Akamatsu W, Ueda J, Nemoto-Miyauchi
T, Sunaga F, Toritsuka M, Ikawa D, et al…..Iwamoto K. (2014)
Increased l1 Retrotransposition in the Neuronal Genome in Schizophrenia.Neuron 81, 306-313. doi: 10.1016/j.neuron.2013.10.053.
Minamishima, S., Bougaki, M., Sips, P. Y., Yu, J. D., Minamishima, Y.
A., Elrod, J. W., … Ichinose, F. (2009). Hydrogen sulfide
improves survival after cardiac arrest and cardiopulmonary resuscitation
via a nitric oxide synthase 3‐dependent mechanism in mice.Circulation , 120, 888–896.
https://doi.org/10.1161/CIRCULATIONAHA.108.833491
Mishanina, T. V., Libiad, M., & Banerjee, R. (2015). Biogenesis of
reactive sulfur species for signaling by hydrogen sulfide oxidation
pathways. Nature Chemical Biology , 11, 457–464.
https://doi.org/10.1038/ nchembio.1834
Mishanina, T. V., Yadav, P. K., Ballou, D. P., & Banerjee, R. (2015).
Transient kinetic analysis of hydrogen sulfide oxidation catalyzed by
human sulfide quinone oxidoreductase. The Journal of Biological
Chemistry , 290, 25072–25080.
https://doi.org/10.1074/jbc.M115.682369
Miyamoto, R., Koike, S., Takano, Y., Shibuya, N., Kimura, Y., Hanaoka,
K., … Kimura, H. (2017). Polysulfides
(H2Sn) produced from the interaction of
hydrogen sulfide (H2S) and nitric oxide (NO) activate
TRPA1 channels. Scientific Reports , 7, 45995.
https://doi.org/10.1038/ srep45995
Modis, K., Coletta, C., Erdelyi, K., Papapetropoulos, A., & Szabo, C.
(2013). Intramitochondrial hydrogen sulfide production by
3mercaptopyruvate sulfurtransferase maintains mitochondrial electron
flow and supports cellular bioenergetics. The FASEB Journal , 27,
601–611. https://doi.org/10.1096/fj.12‐216507
Moustafa, A., & Habara, Y. (2016). Cross talk between polysulfide and
nitric oxide in rat peritoneal mast cells. American Journal of
Physiology. Cell Physiology , 310, C894–C902.
https://doi.org/10.1152/ ajpcell.00028.2016
Murphy, T. H., Miyamoto, M., Sastre, A., Schnaar, R. L., and Coyle, J.
T. (1989) Glutamate toxicity in a neuronal cell line involves inhibition
of cystine transport leading to oxidative stress. Neuron 2,
1547–1558.
Mustafa, A. K., Gadalla, M. M., Sen, N., Kim, S., Mu, W., Gazi, S. K.,
… Snyder, S. (2009). H2S signals through protein
S‐sulfhydration. Science Signaling , 2, ra72.
Mustafa, A. K., Sikka, G., Gazi, S. K., Steppan, J., Jung, S. M.,
Bhunia, A. K., … Snyder,S.H. (2011). Hydrogen sulfide as
endothelium‐derived hyperpolarizing factor sulfhydrates potassium
channels. Circulation Research , 109, 1259–1268.
https://doi.org/10.1161/CIRCRESAHA.111.240242
Nagahara, N.
(2018). Multiple role of 3‐mercaptopyruvatesulfurtransferase:
Antioxidative function, H2S and polysulfide production and possible SOxproduction. British Journal of Pharmacology , 175, 577–589.
Nagahara, N., Koike, S., Nirasawa, T., Kimura, H., & Ogasawara, Y.
(2018). Alternative pathway of H2S and polysulfides
production from sulfurated catalytic‐cysteine of reaction intermediates
of 3mercaptopyruvate sulfurtransferase. Biochemical and
Biophysical Research Communications , 496, 648–653.
https://doi.org/10.1016/j.
bbrc.2018.01.056
Nagahara N, Nirasawa
T, Yoshii
T, Niimura Y. (2012) Is Novel Signal Transducer Sulfur Oxide Involved in
the Redox Cycle of Persulfide at the Catalytic Site Cysteine in a Stable
Reaction Intermediate of Mercaptopyruvate Sulfurtransferase?Antioxid Redox Signal. 16, 747-753. doi: 10.1089/ars.2011.4468.
Nagahara, N., Yoshii, T., Abe, Y., & Matsumura, T. (2007). Thioredoxin
dependent enzymatic activation of mercaptopyruvate sulfurtransferase. An
intersubunit disulfide bond serves as a redox switch for activation.Journal of Biological Chemistry , 282, 1561–1569.
https://doi.org/ 10.1074/jbc.M605931200
Nagai, Y., Tsugane, M., Oka, J., & Kimura, H. (2004). Hydrogen sulfide
induces calcium waves in astrocytes. The FASEB Journal , 18,
557–559. https://doi.org/10.1096/fj.03‐1052fje
Nagai, Y., Tsugane, M., Oka, J.‐I., & Kimura, H. (2006). Polysulfides
induce calcium waves in rat hippocampal astrocytes. Journal of
Pharmacological Sciences , 100, 200.
Nielsen, R. W., Tachibana, C., Hansen, N. E., & Winther, J. R. (2011).
Trisulfides in proteins. Antioxidants and Redox Signaling , 15,
67–75. https:// doi.org/10.1089/ars.2010.3677
O’Dell TJ, Hawkins RD, Kandel ER, Arancio 0 (1991) Tests of the roles of
two diffusible substances in long-term potentiation: evidence for nitric
oxide as a possible early retrograde messenger. Proc Natl Acad Sci
USA 88, 11285-11289.
Ogasawara, Y., Ishii, K., Togawa, T., & Tanabe, S. (1993).
Determination of bound sulfur in serum by gas dialysis/high‐performance
liquid chromatography. Analytical Biochemistry , 215, 73 –81.
https://doi.org/ 10.1006/abio.1993.1556
Ogasawara, Y., Isoda, S., & Tanabe, S. (1994). Tissue and subcellular
distribution of bound and acid‐labile sulfur, and the enzymic capacity
for sulfide production in the rat. Biological and Pharmaceutical
Bulletin , 17, 1535–1542. https://doi.org/10.1248/bpb.17.1535
Ohnishi T, Balan S, Toyoshima M, Maekawa M, Ohba H, Watanabe A, Iwayama
Y, Fujita Y, Tan Y, Hisano Y, Shimamoto-Mitsuyama C, Nozaki Y, Esaki K,
Nagaoka A, Matsumoto J, Hino M, Mataga N, Hayashi-Takagi A, Hashimoto K,
Kunii Y, Kakita A, Yabe H, Yoshikawa T. (2019)
Investigation
of betaine as a novel psychotherapeutic for schizophrenia.EBioMedicine . 45, 432-446. doi: 10.1016/j.ebiom.2019.05.062.
Ojika K, Tsugu Y, Mitake S, Otsuka Y, Katada E. (1998)
NMDA
receptor activation enhances the release of a cholinergic
differentiation peptide (HCNP) from hippocampal neurons in vitro.Brain Res Dev Brain Res . 106, 173-80. doi:
10.1016/s0165-3806(98)00014-5.
Olson, K. R., Gao, Y., Arif, F., Arora, K., Patel, S., DeLeon, E. R.,
… Straub, K. D. (2018). Metabolism of hydrogen sulfide
(H2S) and production of reactive sulfur species (RSS) by
superoxide dismutase. Redox Biology, 15, 74–85.
https://doi.org/10.1016/j.redox.2017.11.009
Olson, K. R., Gao, Y., DeLeon, E. R., Arif, M., Arif, F., Arora, N., &
Straub, K. D. (2017). Catalase as a sulfide–sulfur oxido‐reductase: An
ancient (and modern?) regulator of reactive sulfur species (RSS). Redox
Biology, 12, 325–339. https://doi.org/10.1016/j.redox.2017.02.021
Oosumi, K., Tsugane, M., Ishigami, M., Nagai, Y., Iwai, T., Oka, J.‐I.,
& Kimura, H. (2010). Polysulfide activates TRP channels and increases
intracellular Ca2+ in astrocytes. Neuroscience
Research , 685, e109–e222.
Palmer RM, Ferrige AG, Moncada S (1987). Nitric oxide release accounts
for the biological activity of endothelium‐derived relaxing
factor. Nature 327, 524– 526.
Panagaki T, Randi EB, Augsburger F, Szabo C. (2019)
Overproduction of H(2)S, generated by CBS, inhibits mitochondrial
Complex IV and suppresses oxidative phosphorylation in Down syndrome.Proc Natl Acad Sci U S A . 116, 18769-18771. doi:
10.1073/pnas.1911895116.
Paul BD, Sbodio JI, Xu R, Vandiver MS, Cha JY, Snowman AM, Snyder SH.
(2014) Cystathionine γ-lyase deficiency mediates neurodegeneration
in Huntington’s disease.
Nature . 509, 96-100. doi: 10.1038/nature13136.
Pitsikas N. (2016) The Role of Nitric Oxide Synthase Inhibitors
in Schizophrenia. Curr Med Chem . 23, 2692-2705. doi:
10.2174/0929867323666160812151054.
Reddy PH, Oliver DM. (2019)
Amyloid
Beta and Phosphorylated Tau-Induced Defective Autophagy and Mitophagy in
Alzheimer’s Disease. Cells , 8:488. doi: 10.3390/cells8050488.
Reed TT, Pierce WM Jr, Turner DM, Markesbery WR, Butterfield DA. (2009)
Proteomic
identification of nitrated brain proteins in
early Alzheimer’s disease inferior parietal lobule. Version 2. J
Cell Mol Med . 13, 2019-2029. doi: 10.1111/j.1582-4934.2008.00478.x.
Reiffenstein, R. J., Hulbert, W. C., & Roth, S. H. (1992). Toxicology
of hydrogen sulfide. Annual Review of Pharmacology and
Toxicology , 32, 109–134.
https://doi.org/10.1146/annurev.pa.32.040192.000545
Ruetz, M., Kumutima, J., Lewis, B. E., Filipovic, M. R., Lehnert, N.,
Stemmler, T. L., & Banerjee, R. (2017). A distal ligand mutes the
interaction of hydrogen sulfide with human neuroglobin. The
Journal of Biological Chemistry , 292, 6512–6528.
https://doi.org/10.1074/jbc.
M116.770370
Savage, J. C., & Gould, D. H. (1990). Determination of sulfide in brain
tissue and rumen fluid by ion‐interaction reversed‐phase
high‐performance liquid chromatography. Journal of
Chromatography , 526, 540–545.
https://doi.org/10.1016/S0378‐4347(00)82537‐2
Sbodio JI, Snyder SH, Paul BD. (2016)
Transcriptional
control of amino acid homeostasis is disrupted in Huntington’s disease.Proc Natl Acad Sci U S A . 113, 8843-8848. doi:
10.1073/pnas.1608264113.
Sbodio JI, Snyder SH, Paul BD. (2018)
Golgi
stress response reprograms cysteine metabolism to confer cytoprotection
in Huntington’s disease. Proc Natl Acad Sci U S A. 115, 780-785.
doi: 10.1073/pnas.1717877115.
Searcy, D. G. (1996). HS−:O 2 oxidoreductase activity of Cu, Zn
superoxide dismutase. Archives of Biochemistry and Biophysics ,
334, 50–58. https:// doi.org/10.1006/abbi.1996.0428
Searcy, D. G., Whitehead, J. P., & Maroney, M. J. (1995). Interaction
of Cu, Zn superoxide dismutase with hydrogen sulfide. Archives of
Biochemistry and Biophysics , 318, 251–263. https://doi.org/10.1006/
abbi.1995.1228
Selkoe DJ, Hardy J. (2016)
The
amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol
Med . 8, 595-608. doi: 10.15252/emmm.201606210.
Seth D, Hess DT, Hausladen A, Wang L, Wang YJ, Stamler JS. (2018) A
Multiplex Enzymatic Machinery for Cellular Protein S-nitrosylation.Mol Cell. 69, 451-464.e6. doi: 10.1016/j.molcel.2017.12.025.
Shatalin, K., Shatalina, E., Mironov, A. and Nudler, E. (2011)
H2S: A universal defense against antibiotics in
bacteria. Science 334, 986–990.
Shibuya, N., Koike, S., Tanaka, M., Ishigami‐Yuasa, M., Kimura, Y.,
Ogasawara, Y., … Kimura, H. (2013). A novel pathway for the
production of hydrogen sulfide from D‐cysteine in mammalian cells.Nature Communications , 4, 1366.
https://doi.org/10.1038/ncomms2371
Shibuya, N., Tanaka, M., Yoshida, M., Ogasawara, Y., Togawa, T., Ishii,
K., & Kimura, H. (2009). 3‐Mercaptopyruvate sulfurtransferase produces
hydrogen sulfide and bound sulfane sulfur in the brain.Antioxidants and Redox Signaling , 11, 703–714.
https://doi.org/10.1089/ ars.2008.2253
Shigetomi, E., Jackson‐Weaver, O., Huckstepp, R. T., O’Dell, T. J., &
Khakh, B. S. (2013). TRPA1 channels are regulators of astrocyte basal
calcium levels and long‐term potentiation via constitutive D‐serine
release. The Journal of Neuroscience , 33, 10143–10153.
https://doi.org/10.1523/ JNEUROSCI.5779‐12.2013
Stipanuk, M. H., & Beck, P. W. (1982). Characterization of the enzymic
capacity for cysteine desulphhydration in liver and kidney of the rat.The Biochemical Journal , 206, 267–277. https://doi.org/10.1042/
bj2060267
Streng, T., Axelsson, H. E., Hedlund, P., Andersson, D. A., Jordt, S.
E., Bevan, S., … Zygmunt, P. M. (2008). Distribution and function
of the hydrogen sulfide‐sensitive TRPA1 ion channel in rat urinary
bladder. European Urology , 53, 391–399.
https://doi.org/10.1016/j.eururo.2007.10.024
Stubbert, D., Prysyazhna, O., Rudyk, O., Scotcher, J., Burgoyne, J. R.,
& Eaton, P. (2014). Protein kinase G Iα oxidation paradoxically
underlies blood pressure lowering by the reductant hydrogen sulfide.Hypertension , 64, 1344–1351. https://doi.org/
10.1161/HYPERTENSIONAHA.114.04281
Szabo C, Ransy C, Módis K, Andriamihaja M, Murghes B, Coletta C, Olah G,
Yanagi K, Bouillaud F. (2014) Regulation of mitochondrial bioenergetic
function by hydrogen sulfide. Part I. Biochemical and physiological
mechanisms. Br J Pharmacol . 171, 2099-2122. doi:
10.1111/bph.12369.
Tan, S., Schubert, D., and Maher, P. (2001) Oxytosis: A novel form of
programmed cell death. Cur. Top. Med. Chem . 1, 497–506
Taqatqeh
F, Mergia E, Neitz A, Eysel UT, Koesling D, Mittmann T. (2009) More Than
a Retrograde Messenger: Nitric Oxide Needs Two cGMP Pathways to Induce
Hippocampal Long-Term Potentiation. J Neurosci 29,
9344-9350. doi: 10.1523/JNEUROSCI.1902-09.2009.
Taub JW, Huang X, Matherly LH, Stout ML, Buck SA, Massey GV, Becton DL,
Chang MN, Weinstein HJ, Ravindranath Y. (1999) Expression of chromosome
21-localized genes in acute myeloid leukemia:
differences between Down syndrome and non-Down syndrome blast
cells and relationship to in vitro sensitivity to cytosine
arabinoside and daunorubicin.
Blood . 94, 1393-400.
Tiranti V, Viscomi C, Hildebrandt T, Di Meo I, Mineri R, Tiveron C,
Levitt MD, Prelle A, Fagiolari G, Rimoldi M, Zeviani M. (2009)
Loss
of ETHE1, a mitochondrial dioxygenase, causes fatal sulfide toxicity in
ethylmalonic encephalopathy. Nat Med . 15, 200-205. doi:
10.1038/nm.1907.
Topcuoglu C, Bakirhan A, Yilmaz FM, Neselioglu S, Erel O, Sahiner SY.
(2017)
Thiol/disulfide
homeostasis in untreated schizophrenia patients. Psychiatry Res .
251:212-216. doi: 10.1016/j.psychres.2017.02.016.
Toyoshima M, Jiang X, Ogawa T, Ohnishi T, Yoshihara S, Balan S,
Yoshikawa T, Hirokawa N. (2019) Enhanced carbonyl stress induces
irreversible multimerization of CRMP2 in schizophrenia pathogenesis.Life Sci Alliance. 2: e201900478. doi: 10.26508/lsa.201900478.
Umemura K, Kimura H. (2007)
Hydrogen
sulfide enhances reducing activity in neurons: neurotrophic role of
H2S in the brain? Antioxid Redox Signal. 9, 2035-2041.
doi: 10.1089/ars.2007.1802.
Ünal K, Erzin G, Yüksel RN, Alisik M, Erel Ö.Nord. (2018)
Thiol/disulphide
homeostasis in schizophrenia patients with positive symptoms. J
Psychiatry . 72, 281-284. doi: 10.1080/08039488.2018.1441906
Vandini E, Ottani A, Zaffe D, Calevro A, Canalini F, Cavallini GM, Rossi
R, Guarini S, Giuliani D. (2019)
Mechanisms
of Hydrogen Sulfide against the Progression of Severe Alzheimer’s
Disease in Transgenic Mice at Different Ages. Pharmacology . 103,
50-60. doi: 10.1159/000494113.
Vandiver, M. S., Paul, B. D., Xu, R., Karuppagounder, S., Rao, F.,
Snowman, A. M., … Snyder, S. H. (2013). Sulfhydration mediates
neuroprotective actions of parkin. Nature Communications , 4,
1626. https://doi.org/ 10.1038/ncomms2623
Viscomi
C, Burlina AB, Dweikat I, Savoiardo M, Lamperti
C, Hildebrandt
T, Tiranti V, Zeviani M. (2010) Combined Treatment With Oral
Metronidazole and N-acetylcysteine Is Effective in Ethylmalonic
Encephalopathy. Nat Med 16, 869-871. doi: 10.1038/nm.2188.
Vitvitsky, V., Yadav, P. K., Kurthen, A., & Banerjee, R. (2015).
Sulfide oxidation by a noncanonical pathway in red blood cells generates
thiosulfate and polysulfides. Journal of Biological Chemistry ,
290, 8310–8320.
Wang, L., Cvetkov, T. L., Chance, M. R., & Moiseenkova‐Bell, V. Y.
(2012). Identification of in vivo disulfide conformation of TRPA1 ion
channel. The Journal of Biological Chemistry , 287, 6169–6176.
https://doi.org/ 10.1074/jbc.M111.329748
Warenycia, M. W., Goodwin, L. R., Benishin, C. G., Reiffenstein, R. J.,
Francom, D. M., Taylor, J. D., & Dieken, F. P. (1989). Acute hydrogen
sulfide poisoning. Demonstration of selective uptake of sulfide by the
brainstem by measurement of brain sulfide levels. Biochemical
Pharmacology , 38, 973–981.
https://doi.org/10.1016/0006‐2952(89)90288‐8
Warenycia, M. W., Goodwin, L. R., Francom, D. M., Dieken, F. P.,
Kombian, S. B., & Reiffenstein, R. J. (1990). Dithiothreitol liberates
non‐acid labile sulfide from brain tissue of
H2S‐poisoned animals. Archives of Toxicology , 64,
650–655. https://doi.org/10.1007/BF01974693
Warenycia, M. W., Smith, K. A., Blashko, C. S., Kombian, S. B., &
Reiffenstein, R. J. (1989). Monoamine oxidase inhibition as a sequel of
hydrogen sulfide intoxication: Increases in brain catecholamine and
5‐hydroxytryptamine levels. Archives of Toxicology , 63, 131–136.
https://doi.org/10.1007/BF00316435
Watanabe A, Toyota T, Owada Y, Hayashi T, Iwayama Y, Matsumata M,
Ishitsuka Y, Nakaya A, Maekawa M, Ohnishi T, Arai R, Sakurai K, Yamada
K, Kondo H, Hashimoto K, Osumi N, Yoshikawa T. (2007)
Fabp7
maps to a quantitative trait locus for a schizophrenia endophenotype.
Version 2. PLoS Biol. 5: e297. doi: 10.1371/journal.pbio.0050297.
Whiteman, M., Li, L., Kostetski, I., Chu, S. H., Siau, J. L., Bhatia,
M., & Moore, P. K. (2006). Evidence for the formation of a novel
nitrosothiol from the gaseous mediators nitric oxide and hydrogen
sulphide. Biochemical and Biophysical Research Communications ,
343, 303–310. https://doi.org/10.1016/j.bbrc.2006.02.154
Wright DJ, Gray LJ, Finkelstein DI, Crouch PJ, Pow D, Pang TY, Li S,
Smith ZM, Francis PS, Renoir T, Hannan AJ. (2016)
N-acetylcysteine
modulates glutamatergic dysfunction and depressive behavior
in Huntington’s disease. Hum Mol Genet. 25, 2923-2933. doi:
10.1093/hmg/ddw144.
Xie
L, Hu
LF, Teo XQ, Tiong CX, Tazzari V, Sparatore A, Soldato
PD, Dawe
GS, Bian JS. (2013) Therapeutic Effect of Hydrogen Sulfide-Releasing
L-Dopa Derivative ACS84 on 6-OHDA-induced Parkinson’s Disease Rat Model.PLoS One 8: e60200. doi: 10.1371/journal.pone.0060200.
Xiong JW, Wei B, Li YK, Zhan JQ, Jiang SZ, Chen HB, Yan K, Yu B, Yang
YJ. (2018) Decreased plasma levels of gasotransmitter hydrogen sulfide
in patients with schizophrenia: correlation with psychopathology and
cognition. Psychopharmacology (Berl) . 235, 2267-2274. doi:
10.1007/s00213-018-4923-7.
Yao
D, Gu
Z, Nakamura
T, Shi
ZQ, Ma
Y, Gaston
B, Palmer
LA, Rockenstein
EM, ……Lipton
SA. (2004) Nitrosative Stress Linked to Sporadic Parkinson’s Disease:
S-nitrosylation of Parkin Regulates Its E3 Ubiquitin Ligase Activity.Proc Natl Acad Sci U S A 101, 10810-10814. doi:
10.1073/pnas.0404161101.
Yin WL, Yin
WG , Huang
BS , Wu
LX. (2017) Neuroprotective Effects of Lentivirus-Mediated
Cystathionine-Beta-Synthase Overexpression Against 6-OHDA-induced
Parkinson’s Disease Rats. Neurosci Lett 657, 45-52. doi:
10.1016/j.neulet.2017.07.019.
Yong
R, Searcy
DG. (2001) Sulfide Oxidation Coupled to ATP Synthesis in Chicken Liver
Mitochondria. Comp Biochem Physiol B Biochem Mol Biol 129,
129-37.
doi: 10.1016/s1096-4959(01)00309-8.
Zhao W, Zhang
J, Lu
Y, Wang
R. (2001) The Vasorelaxant Effect of H(2)S as a Novel Endogenous Gaseous
K(ATP) Channel Opener EMBO J, 20, 6008-6016.
doi: 10.1093/emboj/20.21.6008.
Zhuo
M, Small
SA, Kandel
ER, Hawkins
RD. (1993) Nitric Oxide and Carbon Monoxide Produce Activity-Dependent
Long-Term Synaptic Enhancement in Hippocampus. Science , 260,
1946-1950. doi: 10.1126/science.8100368.